
3 introduces kinetics theories during the crystal growth process. Chapters 4, 5, and 6 cover the intermolecular reactions on surfaces. Chapter 7 continues the introduction of nucleation of crystals from surface energy and kinetics standpoints, mainly using the Monte Carlo method. Chapter 8 gives a good introduction to the application of molecular dynamics to nucleation, crystal growth, and defects for short- and long-range ordered structures. Finally, chapter 9 presents many

examples on how to apply those theories to mathematical models. Each example includes detailed background and the necessary programming codes for the model. Some recommended experiments are also given to illustrate each example.

The book does not cover all aspects of simulation in materials science, but the authors have successfully focused and condensed the content on atomic surface phenomena and processes of crystallization by incorporating computational

simulation methods. The highly concentrated content in each chapter and well-illustrated examples make it a useful handbook or textbook for researchers or postgraduate students with a certain level of materials physics and chemistry background.

Reviewer: Yan Hong of General Electric, USA.

Advanced materials science and engineering of carbon

Michio Inagaki, Feiyu Kang, Masahiro Toyoda, and Hidetaka Konno

ISBN 978-0-12-407789-8

his book gives an excellent introduction to carbon materials for researchers in this field. Carbon is an interesting and functional element forming many important materials, such as diamond, graphite, amorphous carbon, fullerenes, carbon nanotubes, and graphene. In this book, the authors present a comprehensive review of carbon materials, aiming at understanding the advanced materials science and engineering of carbon.

The book comprises 17 chapters and 434 pages. It is divided into three parts. The first part (chapter 1) gives an introduction to carbon materials; the second part (chapters 2-10) is concerned with the formation and preparation of carbon materials; the third part (chapters 11–17) deals with applications of carbon materials. Appropriate references are listed at the end of each chapter.

Chapter 1 gives an overview of carbon materials and an outline of the book. Chapters 2 and 3 review carbon nanotubes and graphene, respectively, with emphasis on their formation and mechanism. Chapters 4-10 go into processes with specific procedures and the resultant carbon materials, including carbonization under pressure (chapter 4), graphitization under high pressure and stress (chapter 5), glass-like carbons with focus on their activation and graphitization (chapter 6), template carbonization to control morphology and pore structure (chapter 7), carbon nanofibers synthesized by electrospinning (chapter 8), carbon foams with new applications (chapter 9), and nanoporous carbon membranes and webs (chapter 10).

Chapters 11–17 cover several applications of carbon materials, such as electrochemical capacitors (chapter 11), lithium-ion rechargeable batteries (chapter 12), photocatalysis (chapter 13), spilled-oil recovery (chapter 14), adsorption of molecules and ions (chapter 15), highly oriented graphite with high thermal conductivity (chapter 16), and isotropic high-density graphite for nuclear applications (chapter 17).

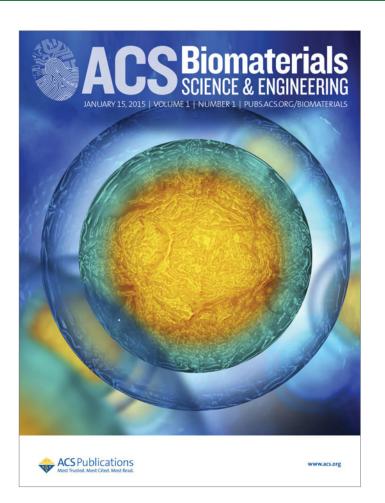
This book provides a concise and comprehensive introduction to carbon materials, from material fabrication to practical applications. It is neither too advanced nor too elementary, so it is useful as a foundation for materials research. The authors have succeeded in providing a comprehensive summary and review of published results.

This book is written in a clear manner and can be well understood. I recommend this book without hesitation to all interested in carbon materials, particularly to those entering the field. It is written at a level appropriate to researchers with a chemistry, physics, or materials background. Also, it is a good book for advanced undergraduate and graduate students.

Reviewer: Jianguo Lu is an Associate Professor at Zhejiang University, China.

NEW TITLES from the Materials Research Society and Cambridge University Press Book Collection WWW.MRS.ORG/BOOKS-TEXTBOOKS

See ad on page 1020.



Now accepting submissions

EDITOR-IN-CHIEF
David L. Kaplan
Tufts University

Research at the intersection of chemistry, biology, materials science, and engineering >>>

ACS Publications is pleased to introduce ACS Biomaterials Science & Engineering, a new journal formed to address the rapid growth, fueled by the biomedical and biotechnology industries.

Manuscripts will cover a broad spectrum of topics including:

- > Modeling and informatics tools for biomaterials
- > New biomaterials, bioinspired and biomimetic approaches to biomaterials
- ➤ Biomaterial interfaces, health risk studies studies of biomaterial
- ➤ Bioelectronics, bioMEMS, biomaterials based devices and prosthetics
- Regenerative medicine, biomaterial technology for tissues, genetic designs and bioengineering

MRS Booth 123

Recent Titles

from the Materials Research Society and Cambridge University Press

Book Collection

Biological Materials Science Biological Materials, Bioinspired Materials, and Biomaterials

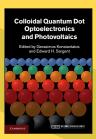
AUTHORS: Marc André Meyers and Po-Yu Chen

ISBN: 9781107010451 **List Price:** \$99.00

MRS Member Discount Price: \$79.00

Split into three sections—Basic Biology Principles, Biological Materials, and Bioinspired Materials and Biomimetics-this book presents biological materials along with the structural and functional classification of biopolymers, bioelastomers, foams, and ceramic composites.

www.cambridge.org/bms


Biomaterials and Regenerative Medicine

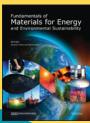
EDITOR: Peter Ma ISBN: 9781107012097 List Price: \$185.00

MRS Member Discount Price: \$148.00

Emphasizing basic principles and methodology, this book covers stem cell interactions, fabrication technologies, design principles, physical characterization and biological evaluation, across a broad variety of systems and biomaterials

www.cambridge.org/biomaterials

Colloidal Quantum Dot Optoelectronics and Photovoltaics


EDITORS: Gerasimos Konstantatos and Edward H. Sargent

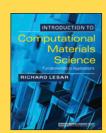
ISBN: 9780521198264 List Price: \$130.00

MRS Member Discount Price: \$104.00

Written in an accessible style by the world's leading experts, this book captures the most up-to-date research in colloidal quantum dot devices.

www.cambridge.org/colloidal

Fundamentals of Materials for Energy and Environmental Sustainability

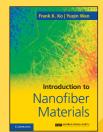

EDITORS: David S. Ginley and David Cahen ISBN: 9781107000230

List Price: \$105.00

MRS Member Discount Price: \$84.00

A unique, interdisciplinary textbook with contributions from more than 100 experts in energy and the environment from around the world.

www.cambridge.org/ginley


Introduction to Computational Materials Science Fundamentals to Applications

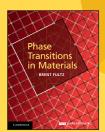
AUTHOR: Richard LeSar ISBN: 9780521845878 List Price: \$95.00

MRS Member Discount Price: \$76.00

Emphasizing essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behavior.

www.cambridge.org/lesar

Introduction to Nanofiber Materials

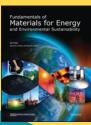

AUTHORS: Frank K. Ko and Yuqin Wan

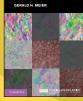
ISBN: 9780521879835 List Price: \$99.00

MRS Member Discount Price: \$79.00

Presenting the latest coverage of the fundamentals and applications of nanofibrous materials and their structures for graduate students and researchers, this book bridges the communication gap between fiber technologists and materials scientists and engineers.

www.cambridge.org/nanofiber


Phase Transitions in Materials


AUTHOR: Brent Fultz ISBN: 9781107067240 List Price: \$90.00

MRS Member Discount Price: \$72.00

Offering a fresh viewpoint on phase changes and the thermodynamics of materials, this textbook covers the thermodynamics and kinetics of the most important phase transitions in materials science, spanning classical metallurgy through to nanoscience and quantum phase transitions.

www.cambridge.org/fultz

Thermodynamics of Surfaces and Interfaces Concepts in Inorganic Materials

AUTHOR: Gerald H. Meier ISBN: 9780521879088 **List Price:** \$120.00

MRS Member Discount Price: \$96.00

This book provides an accessible yet rigorous discussion of the thermodynamics of surfaces and interfaces, delivering a comprehensive guide without an overwhelming amount of mathematics.

www.cambridge.org/meier

Enter Discount Code **MRSMEMBER** at checkout to apply the MRS Member discount.

Not an MRS Member? Join today at www.mrs.org/join.

MRS PUBLISHING

Do you have an idea for a new book or journal on a materials-related topic? Is there a materials topic that is underrepresented, or shows exceptional potential for growth within the MRS publications portfolio? If so, then submit a proposal to the Materials Research Society—where we don't just serve the materials community, we ARE the materials community.

FACTS & FEATURES

- The Materials Research Society is built on a culture of collaboration across disciplines, around the world, and from science to applications. MRS publications embrace such diverse thought and reflect a dynamic community.
- As not-for-profit organizations, MRS and our publishing partner, Cambridge University Press, share values in service to advancing materials science and education. Fair compensation for authors is balanced with product pricing accessible to the community.
- We are selective and looking for pioneering print and electronic products for a global community of students, researchers and practitioners. A team of materials science leaders guides and assesses new grassroots product ideas versus MRS values, strategic objectives and the competitive environment.
- MRS has materials science expertise and access to high-quality scientific editorial talent. We are interdisciplinary and connected to the relevant leadingedge materials communities.
- In partnership with Cambridge University Press, we offer international excellence in scholarly publishing, with editorial, production, marketing and sales teams all held to the highest standards.
- The MRS/Cambridge collaboration brings with it an immediate reader/subscriber base of 16,000+ MRS members and over 2,500 academic, industrial and government libraries worldwide—providing unparalleled and targeted scope, reach and impact.

For more information, or to discuss your publishing ideas, contact:

Betsy Fleischer, MRS Principal Development Editor

fleischer@mrs.org • 724.779.2746

MRS ENERGY SUSTAINABILITY

MRS ENERGY © SUSTAINABILITY

A Review Journal

First Articles Published!

A Review Journal

Concerning the global-scale introduction of renewable energies: Technical and economic challenges

David Faiman, Ben-Gurion University of the Negev, Israel

The rectenna device: From theory to practice (a review)

Evgeniy Donchev, Jing Sheng Pang, Peter K. Petrov, Neil M. Alford, Imperial College London, United Kingdom; and Peter M. Gammon, University of Warwick, United Kingdom

From highly graphitic to amorphous carbon dots: A critical review

Antonios Kelarakis, University of Central Lancashire, United Kingdom

Surface engineering for phase change heat transfer: A review

Daniel Attinger, Christophe Frankiewicz, Iowa State University, USA; Amy Rachel Betz, Kansas State University, USA; Constantine Megaridis, Thomas Schutzius, Arindam Das, University of Illinois at Chicago, USA; Ranjan Ganguly, Jadavpur University, India; and Chang-Jin Kim, University of California, Los Angeles, USA

Look for these articles to publish soon.

Recent results on the integration of renewable electric power into the US grid Jay Apt, Carnegie Mellon University, USA

A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

Douglas J. Arent, Jeffrey Logan, Jordan Macknick, Garvin Heath, Patricia Statwick,
National Renewable Energy Laboratory, USA; William Boyd, University of Colorado Law School,
USA; Kenneth Medlock III, Rice University, USA; Francis O'Sullivan, Massachusetts Institute
of Technology, USA; Jae Edmonds, Leon Clarke, Pacific Northwest National Laboratory, USA;
Hillard Huntington, Stanford University, USA; and Morgan Bazilian, Columbia University, USA

Transforming the global energy system is required to avoid the sixth mass extinction Anthony D. Barnosky, University of California, Berkeley, USA

A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities

Aditya Chauhan, Rahul Vaish, Indian Institute of Technology, India; and Chris R. Bowen, University of Bath, United Kingdom

Laser processing of materials for renewable energy applications

Mool C. Gupta, University of Virginia, USA; and David E. Carlson, BP Solar, USA

Inorganic and methane clathrates: Versatility of guest-host compounds for energy harvesting Carolyn A. Koh and Lakshmi Krishna, Colorado School of Mines, USA

A review on direct methanol fuel cells from the perspective of energy and sustainability Prabhuram Joghee, Jennifer Nekuda Malik, Svitlana Pylypenko, and Ryan O'Hayre, Colorado School of Mines, USA

Solid state lighting with wide band gap semiconductors
Faiz Rahman, Ohio University, USA

Public perceptions of and engagement with emerging low-carbon energy technologies

Elizabeth J. Wilson, University of Minnesota, USA; **Tarla Rai Peterson,** Texas A&M University, USA; and **Jennie C. Stephens,** University of Vermont, USA

SUBMIT YOUR PROPOSAL TODAY.

For more information, including author benefits, open access options, indexing and proposal form, visit www.mrs.org/energy-sustainability-journal.

EDITORS-IN-CHIEF

David S. Ginley

National Renewable Energy Laboratory, USA

David Cahen

Weizmann Institute of Science, Israel

Sally M. Benson Stanford University, USA

CHAIR, ADVISORY BOARD

Alan J. Hurd

Los Alamos National Laboratory

MRS Energy & Sustainability—A Review Journal publishes reviews on key topics in materials research and development as they relate to energy and sustainability.

Review topics include new R&D of both established and new areas; interdisciplinary systems integration; and objective application of economic, sociological and governmental models, enabling research and technological developments. Reviews will be set in an integrated context of scientific, technological and sociological complexities relating to environment and sustainability.

The intended readership is a broad spectrum of scientists, academics, policymakers and industry professionals, all interested in the interdisciplinary nature of science, technology and policy aspects of energy and sustainability.

Published jointly by the Materials Research Society and Cambridge University Press

