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ABSTRACT. Our goal of the paper is to investigate the Waring problem for up-
per triangular matrix algebras, which gives a complete solution of a conjecture
proposed by Panja and Prasad in 2023.

1. INTRODUCTION

The classical Waring problem proposed by Edward Waring in 1770 asserted
that for every positive integer k there exists a positive integer g(k) such that ev-
ery positive integer can be expressed as a sum of g(k) kth powers of nonnegative
integers. In 1909, David Hilbert solved the problem. Various extensions and varia-
tions of this problem have been studied by different groups of mathematicians (see
2, 3, 4,9, 10, 11, 14, 16, 18]).

In 2009 Shalev [18] proved that given a word w # 1, every element in any finite
non-abelian simple group G of sufficiently high order can be written as the product
of three elements from w(G), the image of the word map induced by w. In 2011
Larsen, Shalev, and Tiep [14] proved that, under the same assumptions, every
element in G is the product of two elements from w(G), which gave a definitive
solution of the Waring problem for finite simple groups.

Let n > 2 be an integer. Let K be a field and let K(X) be the free associa-
tive algebra over K, freely generated by the countable set X = {x1,zq,...} of
noncommutative variables. We refer to the elements of K (X) as polynomials.

Let p(x1,...,zm) € K(X). Let A be an algebra over K. The set

p(A) = {p(ai,...,am) | a1,...,am € A}

is called the image of p (on A).

In 2020 Bresar [2] initiated the study of various Waring’s problems for matrix
algebras. He proved that if A = M, (K), where n > 2 and K is an algebraically
closed field with characteristic 0, and f is a noncommutative polynomial which is
neither an identity nor a central polynomial of A, then every trace zero matrix
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2 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

in A is a sum of four matrices from f(A) — f(A) [2, Corollary 3.19]. In 2023
Bresar and Semrl [3] proved that any traceless matrix can be written as sum of two
matrices from f(M,(C)) — f(M,(C)), where C is the complex field and f is neither
an identity nor a central polynomial for M,,(C). Recently, they [4] have proved that
if @y, 9,3 € C\ {0} and a1 + as + ag = 0, then any traceless matrix over C can
be written as a; A1 + asAs + azAsz, where A; € f(M,(C)).

By T, (K) we denote the set of all n x n upper triangular matrices over K. By
T.(K )(0) we denote the set of all n x n strictly upper triangular matrices over
K. More generally, if t > 0, the set of all upper triangular matrices whose entries
(i,7) are zero, for j —i < t, will be denoted by T}, (K)®. It is easy to check that
Jt = T, (K)* Y, where ¢t > 1 and J is the Jacobson radical of T, (K) (see [1,
Example 5.58]).

Let p(x1, ..., Zm) be a noncommutative polynomial with zero constant term over
K. We define its order as the least positive integer r such that p(T,.(K)) = {0}
but p(T,+1(K)) # {0}. Note that T3(K) = K. We say that p has order 0 if
p(K) # {0}. We denote the order of p by ord(p). For a detailed introduction of
the order of polynomials we refer the reader to the book [7, Chapter 5].

In 2023 Panja and Prasad [16] discussed the image of polynomials with zero
constant term and Waring type problems on upper triangular matrix algebras over
an algebraically closed field, which generalized two results in [6, 19]. More precisely,
they obtained the following main result:

Theorem 1.1. [16, Theorem 5.18] Letn > 2 andm > 1 be integers. Let p(x1,...,Tm)
be a polynomial with zero constant term in non-commutative variables over an al-
gebraically closed field K. Set r =ord(p). Then one of the following statements
holds.

(i) Suppose that r = 0. We have that p(T,(K)) is a dense subset of T,,(K)
(with respect to the Zariski topology);

(ii) Suppose that r = 1. We have that p(T, (K)) = T,,(K)©);

(iii) Suppose that 1 < r < n — 1. We have that p(T,(K)) C T, (K)"~V, and
equality might not hold in general. Furthermore, for every m and r there
exists d such that each element of T,(K)"=) can be written as a sum of d
many elements from p(T,,(K));

(iv) Suppose that r =n — 1. We have that p(T,,(K)) = T,,(K)"~2);

(v) Suppose that r > n. We have that p(T,(K)) = {0}.

They proposed the following conjecture:

Conjecture 1.1. [16, Conjecture] Let p(x1,...,Zm) be a polynomial with zero
constant term in mon-commutative variables over an algebraically closed field K.
Suppose ord(p) = r, where 1 < r < n—1. Then p(Ty(K))4+p(T,(K)) = T, (K)=1.

We note that if p is a multilinear polynomial and K is an infinite field, then
P(Th(K)) = T, (K)"=1 (see [8, 12, 15]).

In the present paper, we shall prove the following main result of the paper, which
gives a complete solution of Conjecture 1.1.

Theorem 1.2. Letn > 2 and m > 1 be integers. Let p(x1,...,xy,) be a polynomial
with zero constant term in non-commutative variables over an infinite field K.
Suppose ord(p) = r, where 1 < r <mn —1. We have that p(T,,(K)) + p(T,,(K)) =
T, (K)"=Y . Furthermore, if r = n — 2, we have that p(T,(K)) = T,,(K)"=3).
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We organize the paper as follows: In Section 2 we shall give some preliminaries.
We shall modify some results in [5, 8, 13], which will be used in the proof of
Theorem 1.2. In Section 3 we shall give the proof of Theorem 1.2 by using some
new arguments (for example, compatible variables in polynomials and recursive
polynomials).

2. PRELIMINARIES

Let A be the set of all positive integers. Let m € N. Let K be a field. Set
K* =K\ {0}. For any k € N we set

TE = {(i1,....ix) EN* | 1 <idq, ... i, <m}.

Let p(x1,...,2m) be a polynomial with zero constant term in non-commutative
variables over K. We can write
d

p(atl,...,xm) = Z Z )‘i1i2---ikxi1xi2 s Ty, s (1)

k=1 \(i1,i2,...,ix ) ETE,

where A i,...;, € K and d is the degree of p.
We begin with the following result, which is slightly different from [5, Lemma
3.2]. We give its proof for completeness.

Lemma 2.1. For any u; = (aglk)) el (K),i=1,...,m, we set
_ 1 m
ajj = (ag-j)7 .. .,ag-j )),

where j = 1,...,n. We have that

p(ai)  pi2 <. Din
0 p(a22) R D2an
p(Uty ..y Um) = : : ) . . (2)
0 0 coo P(@nn)
where
S () .. (i)
_ _ i 1k
Pst = Z Z Diy iy (a’jljl yree 7a’jk+1jk+1)a’j11jg T aj,ckj,c+1
k=1 | s=j1<j2<--<jr+1=t
(i17"‘7ik)€T7,fL
for all 1 < s <t < n, where pi,. i, (21,5 Zmesn))s, 1 < i1y, 00 < m,
k=1,....,n—1, is a polynomial in commutative variables over K.

Proof. Let u; = (ayk)) € T,,(K), where i = 1,...,m. For any 1 < iy,...,ix < m,
we easily check that

mi1 M2 oo Man
0 Mmoo B 1177
Ugy * v Ugy, = . )
0 0 Myn
where
_ (i1) (ix)
Mst = Z @51 js Qi

s=j1 <2< <jpr1=t
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4 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

for all 1 <s <t <mn. It follows from (1) that

d
p(ul,...,um)zz

Z )\il...ikuil . 'Uik
k=1 \(i1,...,ir)ETE
mi1 Mmi2
d 0 moo
=31 HED SE
k=1 (il,...,’ik)ET,r’fl
0 0
P11 P12 Pin
0 pa D2an
0 0 Dnn
where
d
Pst = Z Z )\i1~~-ikm8t
k=1 (ilr"vik)eTwa
: (i1)
(2
2 D1 U0 DIERVE (D DI R

k=1 \(i1,...,ix) €T

m

s=j1 <2< <jrp+1=t

(i)

JkJk+1

(i1)
> Aivigi Gy o °

s=j1<j2 < <jry1=t
(6150v) ETY,

ea

where 1 < s <t < n. In particular

)

d

=3[ X Ml el
k=1 \(i1,...,ix)€TE
:p(ass)

foralls=1,...,n, and

d
_ E § o () (i)
Pst = Alll?"'zkajljz JkJk+1
k=1 \ s=j1<j2<-<jr41=t
(7;17'“71.16)6,1—'7’1
t—s
= § Piyip--viy, (a.jljl?‘ .- 7a’jk+1jk+1)a
k=1 | s=j1<j2<--<jr+1=t

(i15e-rin)ETE

m

foralll <s <t <mn,wherep;, i (#1,...
variables over K. This proves the result.

(i)

172

Man

mTLTL

(i)

JkJk+1

a(ik)

JkIk+1

s Zm(k+1)) 18 @ polynomial in commutative

O

The following result will be used in the proof of our main result.
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Lemma 2.2. Let m > 1 be an integer. Let p(x1,...,xy) be a polynomial with zero
constant term in non-commutative variables over K. Let p;,. . 4. (21,..., z7n(k+1))
be a polynomial in commutative variables over K in (2), where 1 <iy,... i < m,

1<k <n-—1. Suppose that ord(p) =r, 1 <r <n—1. We have that
(i) p(K) = {0};
(i) piy,..in (K) =40} for all1 <iq,...,ix <m, wherek=1,...,r —1;
(iil) pir,...i (K) # {0} for some 1 < i, ... i <m.
Proof. The statement (i) is clear. We now claim that the statement (ii) holds true.
Suppose on the contrary that

pi-.ir, (K) # {0}

s

for some 1 <id},...,i, <m, where 1 < s <r—1. Then there exist l_)j € K™, where
7 =1,...,5+ 1 such that

pilll/g (51, N ,l_)erl) 7é 0.
We take u; = (agzk)) €Te11(K),i=1,...,m, where
&jj:Bj’ j=1...,8+1;

ag’;&rlzl, k=1,...,s;

a;g =0, otherwise.
It follows from (2) that

Prs+1 = Difeir (b1, .. bsy1) # 0.
This implies that p(Ts41(K)) # {0}, a contradiction. This proves the statement
(ii).
We finally claim that the statement (iii) holds true. Note that p(T14.(K)) # {0}.
Thus, we have that there exist u; = (alg.l)) €T (K),i=1,...,m, such that

plut, ... um) = (pst) # 0.
In view of the statement (ii) we get that
Pir4+1 = Z Pivig--in (a’jlj17 R djr+1jr+1)a§111j)2 T a;’irj)r+1 7& 0.

1=71<j2<--<Jr41=r+1
(3150eustr)ET,

This implies that py i (K) # {0} for some 1 < df,... 4, < m. This proves the
statement (iii). The proof of the result is complete. O

The following well-known result will be used in the proof of the rest results.

Lemma 2.3. [13, Theorem 2.19] Let K be an infinite field. Let f(x1,...,%m) be a
nonzero polynomial in commutative variables over K. Then there exist ay,...,ay, €
K such that f(ay,...,am) #0.

Lemma 2.4. Let n,s be integers with 1 < s < n. Let p(z1,...,2zs) be a nonzero
polynomial in commutative variables over an infinite field K. We have that there
erist ay,...,an € K such that

P(@iyy..yai,) #0
foralll <iy <---<iz <n.
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6 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

Proof. We set

flz, ... zn) = H P(Tiyy ey i)

1<ii < <is<n

It is clear that f # 0. In view of Lemma 2.3 we have that there exist ay,...,a, € K
such that

flay,...,a,) #0.
This implies that
Py, .. yai,) #0
forall 1 <i; < --- <ig <n. This proves the result. U

The following technical result is a generalized form of [8, Lemma 2.11], which
discusses compatible variables in polynomials.

Lemma 2.5. Lett > 1. LetU; = {i1,...,is} CN,i=1,...,t. Let pj(xiy,...,2;,)
be a nonzero polynomial in commutative variables over an infinite field K, where
i=1,...,t. Then there exist a € K with k € U§:1 U; such that

pi(ail,...,ais) 750
foralli=1,...t.

Proof. Without loss of generality we assume that

{1.2,....n} = J Ui

i=1
We set
t
f(ml, ce 7xn) = Hpi(xilv s 71'1'5)'
i=1
It is clear that f # 0. In view of Lemma 2.3 we have that there exist ay,...,a, € K
such that

flay,...,a,) #0.
This implies that
pi(ai,,...,a;,) #0
for all i =1,...,t. This proves the result. (I

The following technical result will be used in the proof of the main result of the

paper.
Lemma 2.6. Let s > 1 and t > 2 be integers. Let K be an infinite field. Let
a;; € K, where 1 < i <t, 1< 5 < s witha € K* and b € K*. For any
2 < i <t, there exists a nonzero element in {a;1,...,a;s}. Then there exist ¢; € K,
i=1,...,s, such that

ajrcy + -+ ascs = b

aj1c1 + -+ aiscs # 0
foralli=2,...,t.

https://doi.org/10.4153/S0008414X24000385 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000385

THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS 7

Proof. Suppose first that s = 1. Note that a;; € K*,i=1,...,t. Take ¢ = al_llb.

It is clear
{ ayic, = b;
a;icy # 0

Suppose next that s > 2. Suppose first that a;; # 0 for all

for all 2 <3 < t.
.,t. We define the following polynomials.

i=2,...,t. Wi

filza, ...,z
fi((EQ, ey Lg
for all 2 < ¢ < t. Since b,a;1 € K*, i = 1,...,t, we note that f; # 0 for all
i=1,...,t. In view of Lemma 2.5 we get that there exist cs,...,cs € K such that

fi(c27 N ,Cs) 7é 0
for all i = 1,...,t. This implies that
{ b—ajaca — -+ —aiscs # 0;

=b—a12m3 — -+ — A15Ts;

~— ~—

1 1 -1
= ajnap; b+ (@2 — ai1a77 a12)x2 + - - + (a5 — a41077 G15)Ts

aira'b + (aiz — apayare)es + - + (ais — ajragtars)es # 0
for all 2 <17 <t. We set
c = al_ll(b — 120y — *+ — G15Cs)-
It follows from (3) that
ajicy + -+ + aiscs = b
a;161 4+ ascs £ 0

for all 2 <4 <t, as desired.
Suppose next that a;; = 0,7 = 2,...,t. Note that a;;;) # 0, for some 2 < (i) < s
for all : = 2,...,t. We define the following polynomials:

fi(xa,...,x5) = a1222 + -+ + a15%s — b
fi(za, ..., 2s) = @ioxa + -+ + aiss

for all 2 <4 <t. Note that f; #0 for alli=1,...,¢. In view of Lemma 2.5 we get
that there exist ¢; € K, 1 =2,...,s, such that

fi(CQ,...,CS) #0
forallt=1,...,t. That is

a12¢c2 + -+ ascs — b # 0;
ai2Ca + -+ aiscs # 0

for all 2 <4 <t. Since a1 # 0 we get that there exists ¢; € K such that
a11c1 = b—aiacy — -+ — a15Cs.

This implies that
aj1c1+aiacy + -+ aiscs = b;
{ AiaCp + -+ + ai5Cs # 0
for all 2 <14 < t, as desired.
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8 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

We finally assume that there exist a;1 # 0 and aj; = 0 for some 4,5 € {2,...,t}.
Without loss of generality we assume that a;; # 0 for all i =2,...t; and a;; =0
for all i =t; +1,...,t. We define the following polynomials:

f1(332, e ,Jz’s) =b—a12T2 — - — Q15T
fi(@a, ..., xs) = apna'b+ (a2 — ajajai2)s + - + (a5 — ajnajy ais)ws;
fi(za,...,xs) = ajoxa + - - + a;sxs

forall 2 <i<t;and t; +1 < j <t Notethat ba;; € K*,i=1,..., 1y, aji(s) #0
where 2 < [(j) < sforall j =t +1,...t. It is clear that f; #0 for alli=1,...,¢.
In view of Lemma 2.5 we get that there exist ¢; € K, 1 =2,...,s, such that
filca, ... cs) £ 0,
where ¢ = 1,...,t. This implies that
b—ajaco — - —aiscs # 05
ainay'b+ (a2 — ainaii ara)cs + - + (ais — aagy‘ars)es # 0; (4)
ajoc2 + -+ ajscs # 0
forall2<i¢<t;andt; +1<j <t Weset
¢ = al_ll(b — 120y — *+ — G15Cs)-
It follows from (4) that
ajicy + -+ +aiscs = b
apcr + -+ agscs # 05
ajica + -+ ajcs #0

forall 2 <i <t and t; +1 < j < t, as desired. The proof of the result is now
complete. O

3. THE PROOF OF THEOREM 1.2

Let n > 2 and m > 1 be integers. Let p(z1,...,z,,) be a polynomial with zero
constant term in non-commutative variables over an infinite field K. Suppose that

1 <r<n-—1, where r = ord(p).

Take any u; = (ayk)) € Th(K),i=1,...,m. In view of both Lemma 2.1 and

Lemma 2.2 we have that

p(u, ..oy Um) = (pS,r+s+t) (5)
where

r+t

— i (5, Qs )a(il).”a(ik)
Psrs+t = Piyvig \Qgygrs - o5 Qg1 jrg J1J2 JkIk+1
k=r | s=j1<---<jJry1=r+s+t

(il ..... Zk)ET:;
foralll1<s<r+s+t<nand
pi;..ir (K) # {0}

for some 1 < #},...,i < m. It follows from Lemma 2.4 that there exist ¢,...,&, €
K™ such that

pz/li’T (Ejl PO ?Ejr+1) 7£ 0 (6)
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fora111§j1<...<j,«+1§n. We set

ajj:Ej, ]:1,,n,
(k) _ (k) . _ .
Qi1 = Qi1 i=1,....,r—land k=1,...,m;
a(i;“) —x(i;) 1<s<r+s+t<n k=1 r;
r+s—1,r+s+t = Yr+s—1,r+s+t? — — ' A A

az(-;-c) =0, otherwise.
Forany 1 <s<r+4+s+t<n, weset

. (i%,) .
U377’+S+t = {(7’ +u— 17 r+u+w, Zk) | xriufl,r+u+w m pS,T’JrSth}

and
Uspistt ={(r+u—1Lr+uiy) | (r+u—1,r+u,i}) € Uspisit})-
We define an order on the set
{(s,r+s+t)|1<s<r+s+t<n}
as follows:
(i) (s,r+s+t) <(s1,r+s1+1t1)ift <ty;
(i) (s,r+s+t) <(si,r+s1+1t1)ift =1 and s < s7.

That is
Lr+l)<---<(n—rn)<(Lir+2)<---<(n—r—1n)<---<(Ln). (7)
Forany 1 <s<r+s+t<n, weset

W rtstt = U Uirtitss
(1,r+1) < (4,r+it7) < (s,r+5+1)

and o -
W rtstt = U Uirtitj-
(1,r4+1)<(3,r+i+7)<(s,r+s+t)
We begin with the following lemmas, which will be used in the proof of our main
result.

Lemma 3.1. Let 1 < s <r+s <n. Suppose that (s,r+s) # (1,r+1). We claim
that

WS’TJrS \N{r+s—1,74s,0) | 1<k<r}=W, 1,1 (8)
Proof. We first claim that

Ws,r+s \ {(T +s— 1,7‘ + 872,;4:) | ]- S k S T} g Ws—l,r+s—1-

Take any (r+i— 1,7 +1i,i}) € We,is \{(r+s—1,7r+s,i}) | 1 <k <r}. We
have that -
(r+i—1,7+14,i)) € Usy ris,
for some (1,7 + 1) < (s2,7 + s2) < (s,7 + s). This implies that
r+1<r+s <r+s.
We get that i < s. Suppose that i = s. It follows that
(r+i—1,r+ii,) €{(r+s—1,r+s,4) | 1<k <r},

a contradiction. Hence ¢ < s — 1. It is clear that

(r+i—1,r+4,4,) € Ui rri,
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where (1,7 +1) < (4,7 +14) < (s — 1,7+ s — 1). It follows that
(r+i—1,7+14,i) € W_1rqs-1.

We obtain that

Werrs \{(r+s—1Lr+s,i) | 1<k<r}C Ws—1,r+s—17
as desired. We next claim that

Wetriso1 CWerps \{(r+s—1,r+s,4) | 1<k <r}.
If (r+s—1,7+s,i}) € Ws_1,4s-1 for 1 <k <r, we have that

r+s<r4+s—1,
a contradiction. Hence
{r+s—1,r+s,i) | 1<k < r}mWS_l,rJrs_l =0.

Since Ws,l,TJrs,l - WS,HS we get that

Wetris—1 CWerps \{(r+s—1,r+s,4) | 1 <k <r},
as desired. We obtain that

Wetris1=Werps \{(r+s—1,r+s,i}) | 1<k <r}.
This proves the result. O

Lemma 3.2. Let 1 < s<r+s+t<n. Suppose that t > 0. We claim that

Wi rtsitts = Wertstts
where
(s1,7+s1+t1) =maz{(i,r+i+j) | (LLr+1)<(i,r+i+j)<(s,r+s+1t)}.
Proof. We first claim that

Ws,r—i—s—i—t = Wn—r,n-
Since t > 0, we note that
(s,r+s+t)>(n—rmn).
This implies that W ys1t 2 Wyorp. Take any (r +u— 1,7 +u, i) € W pisiee
It is clear that
(r+u—1714+u,1) € Upriu CWorn.
This implies that Ws,r+s+t - anr,n- Hence, WS’HSH = anr,n as desired.
Since (n —7,n) < (s,7+ s +t) we get that
(n—mr,n) < (s1,r+s1+t1) <(s,r+s+1).

This implies that
an'r,n g Wsl,rJrlertl g Ws,r+s+t-

Since WS,TJFSH = anr,n we obtain that W51,r+51+t1 = WS,HSH. This proves
the result. 0O

The following technical result will be used in the proof of the next result.

Lemma 3.3. Let 1 <s<r+s+t<n. If(r+i—1,r+i+j,4,) € Usrpste, we
have that 7 < t.
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(i%)

Proof. Suppose that (r+i—1,7+i+j,i;) € Usrpsye. Thatis, x5 | 1, - appears
in psrtste- In view of (5) we note that every monomial in ps 454+ is made up of
at least r elements multiplied together. This implies that

(r+s+t)—s)—(r+i+j)—(r+i-1)>r—1

We obtain that 7 < t. This proves the result. 0
Lemma 3.4. Letl <s<r+s+t<nandt>0. We claim that

Wi rgsidts = Wergspt \{(r+s—1Lr+s+t4,) | 1<k <r},
where

(s1,7+s1+t1) =maz{(i,r+i+j) | (Lr+1) < (G, r+i+j)<(s,r+s+1t)}.

Proof. We first claim that

W, rtsyitts © Wergsit \{(r+s—1r+s+ti,) |1 <k<r}
If (r+s—1,r+s+t,i)) € Ws, ris4¢, for some 1 <k <r, we get that

(T"'_s_ 177ﬂ+s+tai;€) € USQ,T+S2+t2 (9)
for some (1,7 + 1) < (s2,7 + 52 +t2) < (s1,7 + 1 + t1). It is clear that
ta <t1 <t

In view of Lemma 3.3 we get that t < t5. It follows that
t1 =ty =t.
Since (s1,7 + s1 +t1) < (8,7 + s +t) we get that s; < s. Since (sg,r + s2 + t2) <
(s1,7 4+ s1 + t1) we get that so < s7. Thus, we obtain that sy < s. It follows from
(9) that
r+s+1t <1+ s+ o.
This implies that s < so, a contradiction. Hence, we have that
(r+s—1,7r+s+1,0) € Werisi+t

for all 1 <k <r. It is clear that Wy, r4s,+t, © W rystt. We obtain that

Wy rtsitty © Wergsit \{(r +s = 1L,r+s+t,0;) | 1<k <r},
as desired. We next claim that

Wirtset \{(r+s—1r+s+t,0) [ 1<k <1} CWorpsi 4t

Forany (r+i—1,r+i+j,i}) € We st \{(r+s—1r+s+t1) |1 <k <r},
we have

(’I‘ +Z* 1,T+i+j, Z%) S U527r+52+t2
for some (1,7 + 1) < (82,7 4 s2 +t2) < (s, + s+ ¢). This implies that t5 < t. In

view of Lemma 3.3 we note that j < ts. We have that j <. It is clear that
(r+i—1,7r+i+7,1;) € Uirtit;
where (1,7 4+ 1) < (i,7 + ¢+ j) < (s,7 + s+ t). Note that
(r+i—1,r+i+j,i) €{(r+s—1r+s+ti,) | 1<k<r}

We get that
(i, +i+7)# (s;r+s+1).
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12 THE WARING PROBLEM FOR UPPER TRIANGULAR MATRIX ALGEBRAS

This implies that

(Lr+1) <(@i,r+i+7) <(s1,r+s +1t1) <(s,7+s+1).

It follows that U; r1i4+5 C W, rqs,4¢,- We have that

(T +1— 17T +1 +]a Z;c) S W917T+31+t1'

We obtain that

Werispe \{(r+s—=1Lr+s54+1,0,) | 1<k <7} C Wy rysiitr

as desired. Thus, we obtain that

Wy risitts = Wergspe \{(r+s—1Lr+s+1t,0;) [ 1 <k <r}.

This proves the result.

We set

Cst = (65, Es-‘rla B Er-l—s—ly Er+s+t)-

It follows from (6) that
pifl.‘.z';‘ (és,t) 7£ 0.
Forany 1 <s<r+4+s<nands<r—1, weset

(10)

— A (il) (ir—s)
fsﬂ‘ = E : pil"'i7‘7si;‘75+1"'i,’,.(Csyt)ab‘,S-‘rl gy

(i1 yeeesir— s ) ETH

We set

Vsp ={(,i+1,k) |i=s,....,7—=1, k=1,...,m},

where 1 < s <r+s<mnands <r—1. Itisclear that f;, is a polynomial on

commutative variables indexed by elements from V ;.
Forany 1 <s<r+s<mnands>r, weset

Jsr= Pbiy -, (és,t)~

We claim that f, -(K) # {0} for all 1 < s < r+s < n. In view of (10), it suffices
to prove that fs,(K)#0, where 1 <s<r+s<nands<r-—1.

We take al(.ﬁ)Jrl € K, (1,1 +1,k) € V5, such that

(i541) .
Ugiisrit1 =1 1=0,...,r—s—1;
k) _ :
a; ;1 =0 otherwise.

It follows from (10) that

fs,r(aﬁﬁ-ll) = Dif i, (és,t) #0,

as desired. In view of Lemma 2.5 we get that there exist a

Yrimin=rr=1 . such that

k
f377“(az(’,i)+1)7é0
foralll1<s<r+s<nands<r-—1.
For any 2 < s < r 4+ s < n, we define

(i1)

fS,’I’JrSf’L- = E pi1-~~irfi7i;_i+l-~i’r (Cs,t)as,erl ’

(i1,eemsiri ) ETH "
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for all 1 < ¢ < min{s — 1,7 — 1}. It is clear that f,,1s_; is a polynomial over
K on commutative variables indexed by elements from Ws,i’ﬂrs,i, where 1 <1 <
min{s —1,r — 1}.

The following result implies that fs ,4+s—;, where 1 <i <min{s—1,7r—1},is a
recursive polynomial.

Lemma 3.5. For any 2 < s <r+ s <n, we claim that

(i) 2 : (i%)
f577‘+5—i = fS,T‘FS—i_lxqusfifl,rJrsfi + Qs,rts—i—1,kLrys—i—1 r+s—i
1<k<Zr
A

for alll <i < min{s—1,r—1}, where both fs,ys—i—1 and as ,1s—i—1,% are polyno-
mials over K on commutative variables indexed by elements from Ws,i,lwrs,i,l,

Proof. We get from (11) that

_ Z 5y, (1) (ir—i—1) (i7—4)
fS,T-‘rS—i - pil"'ir—i—li,’,.,i"‘i;,(C37t)as,s+1 O i 2 rts—i—1 | Trds—i—1,r+s—i
(i1sryir—im1)ETm "1
(12)
§ : § : S (i1) (tr—i—1) (i)
+ pil"'irfifli;gilr_i.;.f”i;« (cs’t)a’s,&%l T ar+s—i—2,r+s—i—1 ‘rr+s—i—1,r+s—i
ISEST \ (41,0nyin—i—1)€TH 71
et

for all 1 <i < min{s—1,r —1}. It follows from (11) that

_ A (41) (ir—i—1)
fs,r+s—i—1 = § pi1--~ir471i;7i---i§.(Cs,t)as,s-i-l Oy 2 rts—i—1-
(i1 yeeyir—i—1)ETm 71
We set
_ > NN (ir—i-1)
Qs ris—i—1,k = pi1~-~ir7i71i;ci,',.,i+1"'%(Csyt)as,s+1 O s 2 s—i—1

(i1 yeemyir—i—1)ETm 71

forall 1 <i <min{s—1,r—1} and k = 1,...,r. It follows from both (11) and

(12) that
(i7_3) (%)
fs,r-i—s—i = fS,T‘FS—i—lxrisiifl,rJrsfi + E a57T+S—i—1ak$r+ksfi71,r+sfi
1<k<r
et

for all 1 <17 < min{s — 1,7 — 1}. It is clear that both fs,ys—;—1 and o r4s—i—1k
are polynomials over K on commutative variables indexed by elements from

Weeirrs—i \{(r+s—i—1r+s—ijiy) | k=1,...r}
In view of Lemma 3.1 we note that
stifl,rJrsfifl = sti,rJrsfi \ {(T +s—i— 17T +s5— ia Z;g) | k= ]-7 . ‘T}‘

We have that both fs,1s—;—1 and as,ys—;—1, are polynomials over K on com-
mutative variables indexed by elements from W,_;_1 ,4s—s—1. This proves the
result. [l
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Lemma 3.6. For any 1 < s <r+ s <n, we have that

_ (i) 2 : (i%)
Psr4st+t = fs,r+sflxr+571’r+s+t + Bs,r+sfl,kx1~+571’r+s+t + 5s,r+s+tv
1<k<r
i,

where fl,r S K*; Bl,r,k € K; k = 13"'7T with Z;{; 7é Z;”, fs,r—i—s—laﬂs,r—o—s—l,k; S Z
2, 1 < k < r with Z;f # 4!, are polynomials on some commutative variables in
WS1,T+S1+t1 and Bsr4+s+t, Wheret > 0, is a polynomial over K in some commutative
variables in W, r4s,4+1,, where

(s1,7+s1+t1) =maz{(i,r+i+j) | (L,r+1) < (i,r+i+j) <(s,r+s+1t)}.
Moreover, B ,+s = 0.

Proof. Tt follows from (5) that

_ 2 : 5 (i1) (ir—1) (i)
DPsr4s+t = Piyeevip_qil, (Cs7t)as,s+1 e ar+s—2,r+s—1 mr+s—1,r+s+t
(8150 sir—1)ETH
2 : 2 : S (i1) (ir—1) (i)
+ pil"'ir—li;c (cs’t)a’s,s+1 T ar+572,7‘+sfl xr+sfl,r+s+t
1<E<r \(iy,...,ir_1)eTH !
P (i1 1)ET (13)
r+t
2 : E : - - (i1) (ix)
+ Piy--viy, (leﬂ EERE cjk+1)a‘j1j2 T ajkijrl
k=r s=j1<-<jry1=r+s+t
(Fr>drt1)A(r+s—1,r+s+t)
(i1,ik) €T,
It follows from (11) that
_ § ' A (i1) (ir—1)
fs,r+s—1 = Piy-ip_qil, (Cs7t)as,3+1 oy 2 rps—1-
(1 yeeesir—1)ETm "
We set
_ E N (1) (ir—1)
BS”"+S*1JC - Piyvin_qd), (Csit)a5,5+1 Gy 2 pys—1
(i1yenesip—1 ) ETH "
. . .
for k=1,...,r with ¢} #4,., and
r+t
_ 2 : 2 : - - (i1) (ix)
ﬂs,rJrert = Piq-ig (cjl yoe e 7cjk+1)aj1j2 e ajkjk+1

k=r s=j1<-<jrt1=r+s+t
(Jrsdr+1)Z(r+s—1,r+s+t)
(i15e-rin)ETE

It follows from (13) that

(i) } : (i%)
Ps,rts+t = fS,T+S*1x7'+s—1,T'+s+t + ﬁsyT‘f‘S—kar-ﬁs—l,r—i—s-{-t + ﬁS;T+S+t’ (14)
1<k<r
o)
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where fi1, € K*,B1,, € K, k=1,...,r with ¢}, # i/, fsr+s—1,8sr+s+tk, Where
s > 2,1 <k <r with ¢ # 4., are polynomials on some commutative variables
indexed by elements from

Werisit \{(r+s—1,7r+s+tiy), k=1,...,r} (15)
and fBs r4s4+¢, where t > 0, is a polynomial over K in some commutative variables
indexed by elements from

Wsrisit \{(r+s—1r+s+ti,), k=1,...,r}. (16)
Suppose first that ¢t = 0. In view of Lemma 3.1 we note that
Ws—l,r+s—1 == Ws,r+s+t \ {(7‘ + 55— 1; r—+ Svi;c)a k = ]-a e 7T.} .

We get from (15) that fs ,4s-1,8s,rts+t.k, where s > 2, 1 < k < r with ¢}, # 4/, are
polynomials on some commutative variables indexed by elements from Ws_1 ,4s_1.
It is clear that 5,45 = 0. Suppose next that ¢ > 0. In view of Lemma 3.2 we note
that

Wi rtsidts = Wrgstt:

We get from (15) that fs ,4s—1,Bsrtstt.k, Where s > 2, 1 <k <r Witkﬁ;c £ 14!, are
polynomials on some commutative variables indexed by elements from W, rys 4+¢,-
In view of Lemma 3.4 we note that

Wsl,'r’+51+t1 = WS,'I”+S+t \ {(’I" + s — ].,’I" + s+ t72;€>, k= 1, N ,T} .

We get from (16) that 85,454+ is a polynomial over K in some commutative vari-
ables indexed by elements from W, s, 4+, . This proves the result. O

The following result is crucial for the proof of the main result.

Lemma 3.7. Let p(x1,...,%m) be a polynomial with zero constant term in non-
commutative variables over an infinite field K. Suppose ord(p) = r, where 1 <
r<mn-—1. Forany A" = (a},,.,) € Tu(K)"™V, where a},,, # 0 for all

1<s<r+s+t<n, we have that A’ € p(T,(K)).

Proof. Take any A’ = (a), ;) € Tn(K)"Y, where @), , #0forall 1 < s <
r+s <n. Forany 1 < s < r+s+t < n, we claim that there exist c%i_l,7.+u+w cK
with

(r+u—Lr4+u+twk) e Wsrpsre
such that

pi,T+i+j(cf‘ﬁli'L—1,r+u+w) = Giyrtity
forall (1,r+1) < (i,r+i+j) < (s,r+s+1t) and

fs’,r+s’fv(cfffifl,r+u) 7& 0

for all f 45—, On commutative variables in W&HSH, where s’ > 2 and 1 <v <
min{s' —1,r — 1}.

We prove the claim by induction on (s, r+s+t). Suppose first that (s, r+s+t) =
(1,7 4+ 1). Note that

W177~+1 = Wl,r+1 = {(7“,7” + 1,1;6) | ]f = 1, e ,7"}.
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In view of Lemma 3.6 we get that

(i) (i%)
Piry1 = flﬂ“xr,rJrl + Z 61,7“7er,£+17 (17)
1<k<r
in i
where f1, € K*, 1, € K, k=1,...,r with ¢ # /.
Take any fs yys—y ON xff’;)ﬂ, where k=1,...,7, 8 >2,and 1 <v < min{s’ —

1,7 — 1}, we get from Lemma 3.5 that
r+s —v—1=r

and so v = s’ — 1. It follows that

(3.
Jstrtsi—v = fS’,Txr,Tr-',-vl + E , Qg Ter r+1 (18)
1<k<r
i;c;éi:‘—'u

Note that fy, € K* and ay . € K, k = 1,...,7r with i} # i,_,. Note that
ay .11 € K*. In view of Lemma 2.6, we get from both (17) and (18) that there

exist cff’;)ﬂ € K,k=1,...,r, such that

(i%) .
pl,r+1(0r 7If+1) = a/l 1)
fs',r-t,-s/—v( rr+l) 7£ 0

where 2 < s’ <r and v = s’ — 1, as desired.
Suppose next that (s,7 +s+1t) # (1,7 + 1). We rewrite (7) as follows.

(Lr+1)<---<(s1,r+s1+t) <(s,7r+s+1) <---<(1,n),

where

(s1,7+ 81 +t1) =maz{(i,r+i+j) | (Lr+1) < (G,r+i+j)<(s,r+s+1t)}.
By induction on (si,7 + s1 + t1) we have that there exist Cgﬁiflﬂww € K with

(r+u—Lr+u+w,k) €W ris 46,
such that )
pi T+i+j(cii-t7)1‘—1,r+u+w) = a;,r—&-i—i-j

for all (1,r+1) < (i,r+i+j) < (s1,r +s1+t1) and

fs’,r+8’—v( §~+u 1 r+u) 7& 0

for any fs r4s—o with commutative variables in WSl,T+81+t17 where s’ > 2, and
1 <v<min{s’ — 1,7 — 1}. We now divide the proof into the following two cases.
Suppose first that ¢ = 0. Note that

(s1,r+s1+t1)=(s—1,r+s—1).

That is, s1 = s — 1 and ¢t; = 0. In view of Lemma 3.6 we get that

(&) (i%)
DPs,r+s = fs,?"-‘rs—lxr_i,_s_l,r_l,_s + Z Bs,r-&-s—l,er-ﬁs—l,r-&-sa (19)
1<k<r
i Fi
where fs,4+s-1,08sr+s—1,k, where k = 1,...,r with i) # i/, are polynomials in

commutative variables in W, ,+s,. By induction hypothesis we get that fs 51 €
K* and ﬁs,r—!—s—l,k € K.
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Take any fo r4s—» On commutative variables indexed by elements from Wsﬂurs,
where s' > 2 and 1 < v < min{s’ —1,r — 1}. Suppose first that fs 4oy is
a polynomial on commutative variables indexed by elements from Wy, ,1s,. By
induction hypothesis we have that fe .1, € K*. Suppose next that fo 1o,
is not a polynomial on commutative variables indexed by elements from W, 4, .
In view of Lemma 3.1 we note that

Weris \ Wsotpps—1={(r+s—1,r+s,i}) | k=1,...,7}.
This implies that fﬂifl,ws appears in fo ,4s—p for k = 1,...,7. In view of
Lemma 3.5 we get that

(r+s—v—1r+s—-v)=r+s—1r+s)

and so v = s’ — 5. We get that

(ir—v) } : (i%)
fS’J”JrS'*’U = fsl”"+8/*v*1xr+sfl,r+s + as"T+S’*U*1,erisfl,r+sﬂ (20)
1<k<r
i;c;‘éi;‘—v
where fo r4s—y—1 and oy pps—p—1k, k=1,...,7 with 4}, ﬂ;._v, are polynomials

over K on commutative variables indexed by elements from W, ,4s,. By induction
hypothesis we have that fy ,4s—v—1 € K* and oy rys—y—1,5 € K, where k =
1,...,r with ¢} # 1

Note that af ., € K*. In view of Lemma 2.6, we get from both (19) and (20)
that there exist cﬁ%ifl’rﬁ € K,k=1,...,r, such that

(i%) o .
ps>r+S(CT+871,T‘+S) - as,r+s’

i)
.fs/,T-l-s’—U(CE“:’is—l,r-&-s) 7& 0,

as desired.
Suppose next that ¢ > 0. It follows from Lemma 3.6 that

(i7.) (i%)
DPsr+s+t = fSyT+S—1xr+sfl,r+s+t + Z ﬂ577’+8—1,erisfl,r+s+t + 6577’+S+t7 (21)
1<k<r
i A
where fs,ys—1,08sr+s—1,k; where k = 1,...,r with z%i i!., are polynomials over
K in commutative variables indexed by elements from W, s, 44, and s rys4¢ is a
polynomial over K in commutative variables indexed by elements from W, rys, 4+¢,-
By induction hypothesis we have that f; ,4s—1 € K*, Bsrys—1,x € K for all k =
1, Lo, T with Z;c 7é Z,/,, and Bs7r+s+t e K.

Take Cv(”iJ;;ifl,quert € K, where k =1,...,r in (21) such that

iji)sfl,r+s+t = fsjr1+sf1(a/s,r+s+t — Bsrtstt);
) =0 forall 1<k <7 with i} # .
We get that
pS,T+S+t(C7(”l;%?qfl,r+s+t) = a;,r+s+t'
Take any fs rts— On commutative variables indexed by elements from WS,HSH,
where s’ > 2 and 1 <v < min{s’ — 1,7 — 1}. In view of Lemma 3.2 we note that

Ws,r+s+t == Wsl,r+sl+t1 .
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This implies that fy r4e—, is a commutative polynomial over K on some commu-
tative variables indexed by elements from W, ;15,4 . By induction hypothesis
we get that

fstrpsr—0v € K*

where s’ > 2 and 1 < v < min{s’ — 1,r — 1}, as desired. This proves the claim.

Let (s,7 4+ s+ t) = (1,n). We have that there exist c%i_177.+u+w € K, k=
1,...,r, with

(r+u—Lr+u+wk) €Wy,
such that /
Pirtiti (Ot ) = Chrgin (22)

for all (1,r+1) < (i,r+i+j) < (1,n) and

fs’,r+s’fv(cfffifl,r+u) 7& 0

for all fy 45—, on commutative variables indexed by elements from Wy ,,, where
s >2and 1 <v<min{s’ —1,r — 1}. It follows from both (5) and (22) that

P(uts .o um) = (Dsrtstt) = (a;,r+s+t) = A
This implies that A" € p(T,,(K)). The proof of the result is complete. O
Lemma 3.8. Let n >4 and m > 1 be integers. Let p(x1,..., %) be a polynomial

with zero constant term in non-commutative variables over an infinite field K.
Suppose that ord(p) =n — 2. We have that p(T,,(K)) = T,,(K)™=3).

Proof. In view of Lemma 2.2(ii) we note that p(T;,(K)) C T,,(K)™3). Tt suffices
to prove that T,,(K)"=3) C p(T,(K)).

For any u; = (agzk)) eT,(K),i=1,...,m, in view of Lemma 2.2(ii) we get from
(2) that
0 0 ... prn-1 DPin
plur, ... Upm) = . . : ) (23)
0 0 ... 0 0
where
Piai= D D a(@ G a1)aly) a5
(i1,eerin_2)ETH 2
Pon = Z pi1~~in,2(a227 s 7dn,n)agl31) e CLSZI?T)L,
(15 ensin—2) €ETH 2
Din = Z Piyori 1 (@11, - - - ,&nn)a%) e aﬁfi{},ﬁ
(15 emsin—1) €T}
+ Z . . (a/ . Q. . )a(il) . a/(infz)
pll"'ln—Z 91310 ) PIn—1In—-1/"j172 Jn—2in—1"

1=j1<-<jJpn—1=n
(i1,0yin—2)ETR™?

In view of Lemma 2.2(iii) we have that

pi;,..i,i’n,Q(K) # {0},
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for some i,...,4, 5 € {1,...,m}. It follows from Lemma 2.4 that there exist
bi,...,b, € K™ such that

piﬁ,---,iiL,Q(b]’u ) l_)jn—l) #0

forall 1 <j; <+ < jno1 <n.
For any A’ = (a%,,_24544) € T, (K)"=3) where 1 < s <n—2+s+t <n, we

claim that there exist u; = (ayk)) €T, (K),i=1,...,m, such that

plut, ..oy Um) = (Psn—24st) = A

That is
Pin—1= a/1,n71;
Pon = al2n;
Pin = al1n~

We prove the claim by the following two cases:

Case 1. Suppose that a) ,,_; # 0. We take

d]—j:l—)j, forall j=1,...,n;

(@) _ .G,
Ao = T2

*) —0 forallk=1,...,m with k # i/;

19 =
(i;fz) _ (i/n72).
n—1l,n = “n—1n’
afﬁ)m =0 forallk=1,...,m with k # i), _,;
(i,_5) _ (in_3).
n—2n = Yn—2,n
a;f;H =0 forall1 <i<m,3<j+2<nwith (j,j+2,9) # (n—2,n,i5,_5).

It follows from (23) that

= E b 5 (i2) (in—2) (34).
Pin-1= p¢/1¢2...in_2(b1, ey bn_l)a23 s an72)n71 Ti9";
(iQ,...,in_2)€T7:’73
— Z 7 7y, (i) (in—3) (in—2),
Pon = pi1~~in,3i;l72 (627 DR} bn)a23 e ani2,n—1 xnil,n’
(ilv--~7in,73)ET:173
_ 7 T\ (i) (i (&) (#h_s)
Pin = Z Ditigein_oil_, (bh e ,bn)a23 e anfz,n_l Tiq xnzl,n
(i27"‘7i1L72)6T7’;’;73
7 7 7y, (i2) (in—3) (i), (i _2)
§ , pi’lizmin_si;,z(blv oy b, bp)agg” - “Ap_3n—2 | T12 Tp_2n-
(is-nrin—g) €T

(24)
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We set
frin= Z pi'li2"'in—2(517" '7l_)n—1)a(2132) "'affzizﬂ

(’LQ ..... ’Ln_Q)GT;nl’73

f2n - Z pil---in_;;ilniz (627 .. al_)n)ag;) e asii’gn)lfl (25)
(i1,eeey ang)GT::L73

fn= 30 Pt (Or o Baa Bu)ag - agng)
(’i2,m7in—3)€T,Z_4

and

Vino1={(i,i+1,k)|i=2,....n—2k=1,... m}
‘/anvl,n—l;
Vin={(i,i+1,k) |i=2,....n—3,k=1,...,m}.

Note that fi -1, fon, fin are polynomials over K on commutative variables in-
dexed by elements from Vi ,,_1, Vay, Vi, respectively.

We claim that fi,-1, fon, fin # 0. Indeed, we take aﬁ) € K, (j,k,i) € Vipnoa
such that

aii;)ﬂ =1 foralls=2,. -2

glk) =0 otherwise.

It follows from (25) that
Frns @) = pigis(Brr Bus) #0
as desired. Next, we take a(k) € K, (j,k,i) € Vo, such that
o) =1 foralls=2,...,n—2
ag-k =0 otherwise.
It follows from (25) that
fzn( ) Pit.ar (52, - -,En) #0
as desired. Finally, we take a(z) € K, (j,k,i) € V1, such that
agig)ﬂ =1 foralls=2,...,n—3;
Q)

ap = 0 otherwise.

It follows from (25) that
fln( ) pzl A, (bl?"- n— 27 )7&0

as desired. In view of Lemma 2.5 we get that there exist ayk) € K, where (j,k,1) €
Vin—1 U Va, UViy, such that

fl,n_l(agik)) #0;
Fan(al)) #0;
fln(agzk)) # 0.
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We set

_ 7 7y, (i2) (in—2)
o= ) Pityinerin i,y (015 bn)asg” - a,"5% .
(t2,--yin—2)€Th_3

It follows from (24) that
— (1),
Pin—1 = fin—1219";

in_2)

Pan = f2n‘rn—1,n7

_ (i1) ) (in—2) (@) (n_2)
Pin = flnxl? Tn—2.n + g, Ln—1mn-

We take
(i) _ p—1 / .
Tyg *fl,n—lal,n—b
(i’/n72) _ =17
n—1ln — J2n A2ns

(in_2) -1 / —1 (s -1 —1./
‘rni272n = fln flvﬂfl(al,nfl) (aln - afl,n—lal,nflan a’2n) .
It follows from (26) that
Pin-1= (lll,nq;
DP2n = a/2n;
Pin = a/1n7

as desired.
Case 2. Suppose that a} ,,_; = 0. We take

@jj:Bj, forall j=1,...,n;
a§’§)=0 forall k=1,...,m;

(i) _ @),
Qo3 = Loz

aé? =0 forall k=1,...,m with k # 4;
i1) (i1).

(i1) _
Q13" = T13°5

a),, =0 foralll<j<j+2<nwith (jj+2k) # (13,).

It follows from (23) that
P1n—1 = 0;

Pon = Z Pitigein_s (527 R Bn)a;(;f) e aﬁfﬁ]iﬂ 96;131);

(i2’-~~,in—2)€T:f;_3

(ig,...,in_g)ET,Z/ig
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We set
- o b b (12)  (in-2),
gon = Z pz’lzzu-znfz( 250y n)a34 Ap—1,n>
i2yeeesin—2) €T3
(12 T 2) o B (Z ) (1 ) (28)
n—2
Gin = > Diinerin 5 (01,03, bp)ags” a7
(i27~~-7i7L72)€T:r173
and

V={(i,i+1,k)|i=3,....n—1k=1,...,m}.

Note that both go, and g1, are polynomials over K on some commutative vari-
ables indexed by elements from V. We claim that g2, g1n # 0. Indeed, we take
ag-lk) € K, (j,k,i) € V such that

(ie1) _
s,s+1

aﬁ) =0 otherwise.

1 foralls=3,...,n—1;

It follows from (28) that

9on = pvz'lmz';kz(gm e »Z_’n) # 0;
9in = pi/l-~-i;72 (517 637 AR Bn) 7é 0.
as desired. It follows from (27) that

P1n—1=0;
_ (i1).
Pon = ganTaoz (29)
Pin = glnx%l)~
We take
i1) —1
xégl = Yan a/2n;
. .
',I"gl?}) = gln a’lln'

It follows from (29) that

P1n-1=0;
Pon = 5
Pin = Gy,
as desired. We obtain that
p(ut, .. Um) = (Psn—2+4stt) = (als,n,erert) = A
This implies that T}, (K)™3) C p(T(K)). Hence p(T,(K)) = T, (K)"=3), 0

We are ready to give the proof of the main result of the paper.
The proof of Theorem 1.2. For any A = (as rts+t) € T, (K)™Y | we set

{ fs,r—&-s(xs,r—&-s) == as,r+s — Ts,r+s;

9s,r+s (xs,r+s) = Ts,r+s
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forall 1 < s < r+s < n Itisclear that both f,,;s and g,,+s are nonzero
polynomials in commutative variables over K, where 1 < s < r + s < n. It follows
from Lemma 2.5 that there exist b, .45 € K, 1 < s <r+ s <mn, such that

fsrts(bsrts) # 0;
{ 9s,r+s (bS,T+S) 7é 0
forall1 <s<r+s<mn. That is
Qs rts — bsrrs #0;
{ bsrts #0
forall 1 <s<r+s<n. We set

bs7r+s+t = Qs,r4s+t
foralll1<s<r+s+t<nandt¢t>0and
Csrqs = Qspys —bsrps foralll <s<r+4s<mn;
{csﬂ.+s+t=0 foralll<s<r+s+t<nandt>0.
We set
B = (bsrts+t) and C = (Csptstt)-
It is clear that

A=B+C
where B,C € Tn(K)(Tfl) with bsyqs,Csrqps € K* forall 1 <s<r+4+s<n. In
view of Lemma 3.7, we get that there exist u;,v; € T,,(K), ¢ = 1,...,m, such that

p(ur,...,um) =B and p(vi,...,v,) =C.
It follows that
p(ur, . Um) +p(V1, .. V) = Al
This implies that
Tu(K) ™Y € p(To(K) + p(Tu ()
In view of Lemma 2.2(ii) we note that p(T,,(K)) C T, (K)" 1. Since T}, (K)"—Y
is a subspace of T, (K) we get that
P(To(K)) + p(T(K)) € T, (K)T Y.
We obtain that
P(To(K)) + p(T(K)) = T, (K)" Y.
In particular, if r = n — 2 we get from Lemma 3.8 that
p(To(K)) = T (K) "
The proof of the result is complete. O

We conclude the paper with following example.

Example 3.1. Letn >5 and 1 < r < n—2 be integers. Let K be an infinite field.
Let

p(.’IJ, y) = [x’y]r.
We have that ord(p) = r and p(T,(K)) # T,,(K)"—Y.
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Proof. Tt is easy to check that p(T.(K)) = {0}. Set
f@,y) = [, y].

Note that f is a multilinear polynomial over K. It is clear that ord(f) = 1. In view
of [12, Theorem 4.3] or [15, Theorem 1.1] we have that

[T (K)) = TT+I(K>(O)~

It implies that there exist A, B € T,;1(K) such that

[A,Bl=e1a+ex+ - +errp1.
We get that

p(A,B) = [AvB}T = €1,r+1 # 0.
This implies that p(T;11(K)) # {0}. We obtain that ord(p) =

Suppose on contrary that p(T;,(K)) = T,,(K)"1) for some n > 5 and 1 < r <
n —2. For e .41 +e3,43 € Tn(K)(“l), we get that there exists B,C € T,,(K)
such that
p(B,C) = [B,C]" = e1 41+ €343

It is clear that [B,C] € T,,(K)®. We set

[B,C] = (as1+s+t)-
It follows that
[B,C]" = e1,r41 + €3,r+3.
We get from the last relation that
(012023 ce ar,r+1)€1 r4+1 = €1,r+1;
(a23G34 - - - Apy1r42)€2 42 = 0;

(Cl346l45 c 42, 7+3) +3 = €3,r+3-

es,r
This is a contradiction. We obtain that p(T,(K)) # T,,(K)"~Y for all n > 5 and
1 < r <n — 2. This proves the result. ([l

We remark that [16, Example 5.7] is a special case of Example 3.1 (r = 2 and
n =25).
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