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Abstract Let ϕ(·) be the Euler function and let σ(·) be the sum-of-divisors function. In this note, we
bound the number of positive integers n � x with the property that s(n) = σ(n) − n divides ϕ(n).
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1. Introduction

Let ϕ(·) be the Euler function:

ϕ(n) = #(Z/nZ)∗ = n
∏
p|n

(1 − 1/p), n � 1.

Let σ(·) be the sum-of-divisors function,

σ(n) =
∑
d|n

d, n � 1,

and let s(n) = σ(n) − n be the sum of the aliquot divisors of n � 1. The function s(n)
and related arithmetic functions (such as f(n) = n−ϕ(n)) have been previously studied
in the literature (see, for example, [1,2,5–8]).

In this note, we study the set of positive integers n with the property that s(n)|ϕ(n).
Note that if n is prime, then s(n) = 1, and therefore s(n)|ϕ(n); hence, we restrict our
attention to composite integers n with this property. Let

B = {n composite : s(n)|ϕ(n)}.

Our main result is an unconditional upper bound for the counting function #B(x) of the
set B, where B(x) = B ∩ [1, x].
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Theorem 1.1. The following estimate holds as x → ∞:

#B(x) � x exp(−( 1
3 (log 8)1/3 + o(1))(log x)1/3(log log x)2/3).

We cannot show that B is an infinite set. However, if m is a positive integer such that
p = 5m+1 and q = 20m+13 are both primes, then for n = pq we have s(n) = 25m+15
and ϕ(n) = 4m(25m+15), and therefore n ∈ B. We recall that Dickson’s prime k-tuplets
conjecture [4] asserts that there are infinitely many examples of such pairs of primes p

and q. Thus, it is reasonable to expect that #B = ∞.

1.1. Notation

Throughout the paper, the letters p and q (with or without subscripts) are used to
denote prime numbers, and the letter n is used to denote a positive integer. As usual,
we denote by: P (n) the largest prime factor of n; ω(n) the number of distinct prime
factors of n; Ω(n) the number of prime factors of n, counted with multiplicity; τ(n) the
number of positive integer divisors of n; ordq(n) the order at which the prime q divides n

(ordq(n) = α if and only if qα‖n).
For any set A of positive integers and a positive real number x, we put A(x) = A∩[1, x].

We also put log x = max{lnx, 1}, where ln(·) is the natural logarithm, and we use logk(·)
to denote the kth iterate of log(·). Finally, we use the Vinogradov symbols � and �, as
well as the Landau symbols O and o, with their usual meanings.

2. The proof of Theorem 1.1

Let x be a large real number, let y = y(x) be a function of x to be determined later, and
put

u = u(x) =
log x

log y
. (2.1)

In what follows, we assume that y and u tend to infinity with x.
Let us consider the following sets:

B1(x) = {n ∈ B(x) : P (n) � y},

B2(x) = {n ∈ B(x) \ B1(x) : P (n)2|n},

B3(x) =
{

n ∈ B(x)\
( 2⋃

j=1

Bj(x)
)

: ω(n) > u

}
,

B4(x) =
{

n ∈ B(x)\
( 3⋃

j=1

Bj(x)
)

: max
q|n

{ordq(n)} > u(log u)/ log 2
}

,

B5(x) =
{

n ∈ B(x)\
( 4⋃

j=1

Bj(x)
)

: ω(p − 1) > u for some prime p|n
}

,
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B6(x) =
{

n ∈ B(x)\
( 5⋃

j=1

Bj(x)
)

: max
p|n, q|p−1

{ordq(p − 1)} > u(log u)/ log 2
}

,

B7(x) = B(x)\
( 6⋃

j=1

Bj(x)
)

.

Since B(x) is the union of the sets Bj(x), j = 1, . . . , 7, it suffices to find an appropriate
bound on the cardinality of each set Bj(x).

We begin with the following well-known estimate of Canfield et al . [3] for the number
of y-smooth numbers n � x (see also [9]):

Ψ(x, y) = #{n � x : P (n) � y} = xu−u+o(u), u → ∞,

which holds uniformly in the range

(log x)1+ε � y � x1/3 (2.2)

for every fixed ε > 0. From now on, we assume that (2.2) holds, and thus we have the
bound

#B1(x) � x exp(−(1 + o(1))u log u). (2.3)

Next, let n ∈ B2(x), and write n = p2m, where p = P (n) > y and P (m) � p. For each
prime p that arises in this way, the number of such integers n ∈ B2(x) does not exceed
�x/p2	; therefore,

#B2(x) �
∑
p>y

x

p2 � x
∑
k>y

1
k2 � x

y
. (2.4)

Put K = �u	. For every n ∈ B3(x), there exist primes p1 < · · · < pK such that
p1 · · · pK |n. For every sequence of primes p1 < · · · < pK arising in this way, the number
of such integers n ∈ B3(x) does not exceed �x/(p1 · · · pK)	; consequently,

#B3(x) �
∑

p1···pK�x,
p1<···<pK

x

p1 · · · pK
� x

K!

( ∑
p�x

1
p

)K

.

Using Stirling’s formula together with Mertens’s estimate

∑
p�x

1
p

= log2 x + O(1), (2.5)

we see that the bound

#B3(x) � x

(
e log2 x + O(1)

�u	

)�u�
= x exp(−(1 + o(1))u log u) (2.6)

holds, provided that
log3 x = o(log u). (2.7)

From now on, we assume that (2.7) is satisfied.
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Let L = �u(log u)/ log 2	. For every n ∈ B4(x), there exists a prime q such that qL|n.
Since the number of n ∈ B4(x) divisible by qL does not exceed �x/qL	, we have

#B4(x) �
∑
q�x

x

qL
� x

∑
k�2

1
kL

.

Since ∑
k�2

1
kL

�
∫ ∞

2

dt

tL
� 1

2L
= exp(−(1 + o(1))u log u), (2.8)

we derive the bound
#B4(x) � x exp(−(1 + o(1))u log u). (2.9)

Let K = �u	 as before. For every n ∈ B5(x), there exists a sequence of primes
p1 < · · · < pK and a prime p|n such that p1 · · · pK |p − 1. Write p − 1 = p1 · · · pK	, where
	 � 1; then the number of n ∈ B5(x) divisible by p is at most

⌊
x

p

⌋
� x

p
<

x

p − 1
=

x

p1 · · · pK	
.

Summing over the possible choices of the primes p1 < · · · < pK and the integer 	, and
applying Stirling’s formula together with (2.5), we obtain

#B5(x) �
∑

p1···pK��x,
p1<···<pK

x

p1 · · · pK	

� x

( ∑
p1···pK�x,
p1<···<pK

1
p1 · · · pK

)( ∑
��x

1
	

)

� x log x

K!

( ∑
p�x

1
p

)K

� x log x

(
e log2 x + O(1)

�u	

)�u�

= x exp(−(1 + o(1))u log u), (2.10)

where we have used (2.7) in the last step.
Let L = �u(log u)/ log 2	 as before. For every n ∈ B6(x), there exists a prime p|n and a

prime q such that qL|p−1. Write p − 1 = qL	, where 	 � 1; then the number of n ∈ B6(x)
divisible by p is at most ⌊

x

p

⌋
� x

p
<

x

p − 1
=

x

qL	
.

Summing over the possible choices of the prime q and the integer 	, we derive that

#B6(x) �
∑

qL��x

x

qL	
� x

( ∑
qL�x

1
qL

)( ∑
��x

1
	

)
� x log x

∑
k�2

1
kL

.
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Using (2.8) together with (2.7), we derive the bound

#B6(x) � x exp(−(1 + o(1))u log u). (2.11)

Finally, we come to the set B7(x). Every integer n ∈ B7(x) can be uniquely expressed
in the form n = pm, where p = P (n), y < p � x/m, and P (m) < y. Thus,

#B7(x) =
∑

m<x/y

#Pm, (2.12)

where
Pm = {p : pm ∈ B7(x) and p > P (m)}, m < x/y.

Let m < x/y be fixed in what follows, and suppose that p ∈ Pm. We have

s(pm) = σ(pm) − pm = p(σ(m) − m) + σ(m). (2.13)

Since pm is not prime (as it is an element of B), m 
= 1, and hence σ(m) − m > 0;
therefore, the number s(pm) determines p uniquely. As s(pm) is a divisor of ϕ(pm) =
(p−1)ϕ(m), we can write s(pm) = d1d2 for some divisors d1|p−1 and d2|ϕ(m). Reducing
the identity (2.13) modulo d1, it follows that 2σ(m)−m ≡ 0 (mod d1) and, consequently,

s(pm)|(2σ(m) − m)ϕ(m).

In particular, for each p ∈ Pm, all of the prime factors of the number s(pm) lie in the set

Qm = {q : q|(2σ(m) − m)ϕ(m)}.

Using standard estimates, we have

#Qm = ω((2σ(m) − m)ϕ(m)) � �log x	

if x is sufficiently large (in fact, #Qm � (log x)/ log2 x). On the other hand, for each
p ∈ Pm,

ω(s(pm)) � ω((p − 1)ϕ(m)) � ω(p − 1) + ω(m) +
∑
q|m

ω(q − 1)

� 2K +
∑
q|m

L � 2K + KL,

where K = �u	 and L = �u(log u)/ log 2	 as before. Let γ(k) =
∏

q|k q denote the square-
free kernel of the integer k. Then the preceding argument shows that, as p varies over
the set Pm, the number γ(s(pm)) takes at most

(
�log x	

2K + KL

)
�

(
log x

2K + KL

)2K+KL
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possible values. Since the order at which any prime q divides s(pm) is bounded by

ordq(s(pm)) � ordq((p − 1)ϕ(m))

� ordq(p − 1) + ordq(m) +
∑
q′|m

ordq(q′ − 1)

� 2L +
∑
q′|m

L � 2L + KL,

we see that the total number of possibilities for the number s(pm), as p varies over the
set Pm, does not exceed

(
log x

2K + KL

)2K+KL

(2L + KL)2K+KL.

Since the number s(pm) determines p uniquely, we therefore obtain the bound

#Pm �
(

log x

2K + KL

)2K+KL

(2L + KL)2K+KL

= exp((2K + KL)(log2 x − log(2K + KL) + log(2L + KL)))

= exp
(

(1 + o(1))
u2 log u

log 2
log2 x

)
,

where we have substituted the predefined values of K and L and used the fact that

log(2L + KL) − log(2K + KL) = log
(

2L + KL

2K + KL

)
= log(1 + o(1)) = o(1)

as x → ∞. Using the previous estimate in (2.12), we deduce that

#B7(x) =
x

y
exp

(
(1 + o(1))

u2 log u

log 2
log2 x

)
. (2.14)

Combining the estimates (2.3), (2.4), (2.6), (2.9)–(2.11) and (2.14), we have

#B(x) � x exp(−(1 + o(1))u log u) +
x

y
exp

(
(1 + o(1))

u2 log u

log 2
log2 x

)
.

To optimize this estimate, we balance the two expressions by choosing the value of u for
which

u2 log u

log 2
log2 x − log y = −u log u.

In view of (2.1), this is equivalent to

u3 log u

log 2
log2 x + u2 log u = log x.

For such u, we have

u = (1 + o(1))
(

(log 8)
log x

log2 x

)1/3
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and
y = exp(((log 8)−1/3 + o(1))(log x)2/3(log2 x)1/3);

thus, y and u tend to infinity with x, and the required conditions (2.2) and (2.7) are
clearly satisfied. With the above choice of u, we have

#B(x) � x exp(−(1 + o(1))u log u),

and the theorem follows.
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