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Abstract  Let ¢(-) be the Euler function and let o(-) be the sum-of-divisors function. In this note, we
bound the number of positive integers n < x with the property that s(n) = o(n) — n divides ¢(n).
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1. Introduction
Let ¢(-) be the Fuler function:
o(n) = #(Z/nZ)* = nH(l —-1/p), n=1
pln

Let o(-) be the sum-of-divisors function,

o(n) = Zd, n>l1,
d|n

and let s(n) = o(n) — n be the sum of the aliquot divisors of n > 1. The function s(n)
and related arithmetic functions (such as f(n) = n — ¢(n)) have been previously studied
in the literature (see, for example, [1,2,5-8]).

In this note, we study the set of positive integers n with the property that s(n)|p(n).
Note that if n is prime, then s(n) = 1, and therefore s(n)|¢(n); hence, we restrict our
attention to composite integers n with this property. Let

B = {n composite : s(n)|p(n)}.

Our main result is an unconditional upper bound for the counting function #8(x) of the
set B, where B(z) = BN [1, z].
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Theorem 1.1. The following estimate holds as x — 0o:
4B(x) < wexp(—(L(log8)'/* + o(1))(log 2)/* log log 2)2/%).

We cannot show that B is an infinite set. However, if m is a positive integer such that
p=5m+1 and ¢ = 20m + 13 are both primes, then for n = pg we have s(n) = 25m+ 15
and p(n) = 4m(25m+15), and therefore n € B. We recall that Dickson’s prime k-tuplets
congecture [4] asserts that there are infinitely many examples of such pairs of primes p
and ¢. Thus, it is reasonable to expect that #B = co.

1.1. Notation

Throughout the paper, the letters p and ¢ (with or without subscripts) are used to
denote prime numbers, and the letter n is used to denote a positive integer. As usual,
we denote by: P(n) the largest prime factor of n; w(n) the number of distinct prime
factors of m; £2(n) the number of prime factors of n, counted with multiplicity; 7(n) the
number of positive integer divisors of n; ord,(n) the order at which the prime ¢ divides n
(ordg(n) = a if and only if ¢®||n).

For any set A of positive integers and a positive real number z, we put A(x) = AN[1, z].
We also put log z = max{lnx, 1}, where In(+) is the natural logarithm, and we use log,(+)
to denote the kth iterate of log(+). Finally, we use the Vinogradov symbols > and <, as
well as the Landau symbols O and o, with their usual meanings.

2. The proof of Theorem 1.1

Let x be a large real number, let y = y(z) be a function of  to be determined later, and
put

log x
logy

In what follows, we assume that y and v tend to infinity with x.

u=u(zr) =

(2.1)

Let us consider the following sets:

Bi(z) = {n € B(z) : P(n) <y},

Ba(z) = {n € B(z) \ Bi(x) : P(n)*In},

Bs(z) = {n € B(z) )
O B;(x ) max{ord, (n)} > u(log u)/ log 2}
)

=
Ny

&

—

3

Mm
E

/\/\/-\m

w(p — 1) > u for some prime p|n}
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pln, qlp—1

Bg(z) = {n € B(x)\( Q@@)) : max {ord,(p—1)} > u(logu)/log2},

Bita) = 5\ ( Qsm).

Since B(x) is the union of the sets B;(z), j = 1,...,7, it suffices to find an appropriate
bound on the cardinality of each set B;(x).

We begin with the following well-known estimate of Canfield et al. [3] for the number
of y-smooth numbers n < x (see also [9]):

U(z,y) =#{n<z: Pln) <y} = zu” vy o oo,
which holds uniformly in the range
(logx)“”f <y < /3 (2.2)

for every fixed € > 0. From now on, we assume that (2.2) holds, and thus we have the
bound
#B1(x) < zexp(—(1+ o(1))ulog u). (2.3)

Next, let n € Bz(z), and write n = p*m, where p = P(n) >y and P(m) < p. For each
prime p that arises in this way, the number of such integers n € By (z) does not exceed

|z/p?]; therefore,
x

#By () <2%<z2%<<—. (2.4)

P>y k>y y

Put K = |u]. For every n € Bs(x), there exist primes p; < --- < pg such that
p1 - - pi|n. For every sequence of primes p; < -+ < pg arising in this way, the number
of such integers n € Bs(z) does not exceed |x/(p1 - - pk)]; consequently,

K
x T 1
o) cn(zh).
R s 1 O3F
P1'PK ST, p<T
p1<--<pK

Using Stirling’s formula together with Mertens’s estimate

1
Zi =log, z + O(1), (2.5)
p<zT p
we see that the bound
1 o)\
#5a(a) < o “ELLEOUN T poxp(-(1+ o()ulogu) 26)
holds, provided that
logs x = o(log u). (2.7)

From now on, we assume that (2.7) is satisfied.
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Let L = |u(logu)/log?2|. For every n € By(x), there exists a prime ¢ such that ¢%|n.
Since the number of n € By(z) divisible by ¢* does not exceed |x/q” |, we have

#B4(x) <Zq% <xzk%

qsz k=2

Since
1 o dt 1
> 7 < |z < g =exp(—(L+o(1)ulogu), (2.8)
E>2 2
we derive the bound
#B4(x) < zexp(—(14 o(1))ulogu). (2.9)
Let K = |u] as before. For every n € Bs(x), there exists a sequence of primes

p1 < --- < pg and a prime p|n such that p; - - pg|p — 1. Write p — 1 = p; - - - px{, where
¢ > 1; then the number of n € Bs(x) divisible by p is at most

x x x x
<t
pl p p-1 pi---prt
Summing over the possible choices of the primes p; < --+ < px and the integer ¢, and
applying Stirling’s formula together with (2.5), we obtain

e R e

1 prl
p1-pr <z, b
p1<--<pK

< ¥ 5m)(Z3)

p1-PK KT, (<x
p1<---<pK

zlogx 1\*
< (Z)

p<T p

elogy x + O(l))LuJ
Lu)
= zexp(—(1+o(1))ulogu), (2.10)

< xlogm(

where we have used (2.7) in the last step.

Let L = |u(logu)/log2] as before. For every n € Bg(x), there exists a prime p|n and a
prime ¢ such that ¢%|p—1. Write p — 1 = ¢4, where £ > 1; then the number of n € Bs(x)

divisible by p is at most
H <o T _ T
p] “p p-1 ¢
Summing over the possible choices of the prime ¢ and the integer ¢, we derive that

#Bo(x) < D % ga:( > ;)(ZD <<:rlogxzkiL.

qli<z gl <z (< k>2
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Using (2.8) together with (2.7), we derive the bound
#Bs(x) < zexp(—(1+ o(1))ulog u). (2.11)

Finally, we come to the set By(z). Every integer n € B7(x) can be uniquely expressed
in the form n = pm, where p = P(n), y < p < &/m, and P(m) < y. Thus,

#Br(x) = > #Pm, (2.12)

m<z/y

where
P ={p:pm € By(x) and p > P(m)}, m < z/y.

Let m < z/y be fixed in what follows, and suppose that p € P,,,. We have
s(pm) = o(pm) — pm = p(o(m) —m) + o (m). (2.13)

Since pm is not prime (as it is an element of B), m # 1, and hence o(m) — m > 0;
therefore, the number s(pm) determines p uniquely. As s(pm) is a divisor of p(pm) =
(p—1)p(m), we can write s(pm) = dyds for some divisors dy [p—1 and ds|p(m). Reducing
the identity (2.13) modulo dy, it follows that 20(m)—m = 0 (mod d;) and, consequently,

s(pm)|(20(m) —m)e(m).
In particular, for each p € P,,, all of the prime factors of the number s(pm) lie in the set
Qm = {q: 4l(20(m) —m)p(m)}.
Using standard estimates, we have
#Qm = w((20(m) —m)p(m)) < [logz|

if = is sufficiently large (in fact, #Q,, < (logz)/log, ). On the other hand, for each
P € Prm,

w(s(pm)) <w((p = Dep(m)) < wlp = 1) +wim) + Y wlg—1)

qlm

<2K+» L<2K+KIL,

qlm

where K = |u] and L = |u(log u)/log 2| as before. Let (k) =[], ;, ¢ denote the square-
free kernel of the integer k. Then the preceding argument shows that, as p varies over
the set P, the number y(s(pm)) takes at most

|log x| o logz YHHEF
2K+ KL) ~ \2K+ KL
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possible values. Since the order at which any prime ¢ divides s(pm) is bounded by

ordg(s(pm)) < ordg((p — 1)¢(m))
<ordy(p— 1) + ordy(m) + Z ordy(¢' — 1)

q'|lm
<2L+ZL<2L+KL,

q’'Im

we see that the total number of possibilities for the number s(pm), as p varies over the
set P, does not exceed

IOgJE 2K+KL
Yo 2L KL 2K+KL.
(2K+KL) (L +KL)

Since the number s(pm) determines p uniquely, we therefore obtain the bound

log x
< -2
#Pm < (2K + KL
= exp((2K + KL)(logy x —log(2K + KL) + log(2L + KL)))

1
— exp ((1 +o(1) 1 g, x)

2K+KL

where we have substituted the predefined values of K and L and used the fact that

2L+ KL

log(2L + KL) —log(2K + KL) = log (2K+KL

) =log(1+ o(1)) = o(1)

as  — 00. Using the previous estimate in (2.12), we deduce that

T u?logu
#B7(x) = " exp ((1 +0(1)) og log, :c) (2.14)

Combining the estimates (2.3), (2.4), (2.6), (2.9)—(2.11) and (2.14), we have

#B(z) < zexp(—(1+o(1))ulogu) + gexp ((1 + 0(1))u (}ggu log, x)

To optimize this estimate, we balance the two expressions by choosing the value of u for

which
u?logu 1 1 1
ogy x —logy = —ulogu.
log 2 g2 gy g
In view of (2.1), this is equivalent to
31
U osu log, = 4+ u? logu = log z.
log 2
For such u, we have
log 1/3
=(1 1 log 8
=1+ o) (106 3) 20 )
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and
y = exp(((log8)~Y/* + o(1)) (log 2)*/° (log, 2)/%);

thus, y and u tend to infinity with z, and the required conditions (2.2) and (2.7) are
clearly satisfied. With the above choice of u, we have

#B(z) < zexp(—(1 + o(1))ulogu),

and the theorem follows.
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