Cambridge Core

The new home of Cambridge Journals

cambridge.org/core

Cambridge Core
Cambridge is a world leading publisher in pure and applied mathematics, with an extensive programme of high quality books and journals that reaches into every corner of the subject.

Our catalogue reflects not only the breadth of mathematics but also its depth, with titles for undergraduate students, for graduate students, for researchers and for users of mathematics.

We are proud to include world class researchers and influential educators amongst our authors, and also to publish in partnership with leading mathematical societies.

For further details visit: cambridge.org/core-mathematics
SUBSCRIPTIONS
The Journal of Fluid Mechanics (ISSN 0022-1120) is published semimonthly in 24 volumes each year by Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS, UK/Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. The subscription price (excluding VAT but including postage) for volumes 834–857, 2018, is £4372 or $8070 (online and print) and £3924 or $6875 (online only) for institutions; £1211 or $2244 (online and print) and £1219 or $2002 (online only) for individuals. The print-only price available to institutional subscribers is £4217 (US $7422 in USA, Canada and Mexico). Single volumes cost £202 (US $356) in the USA, Canada and Mexico plus postage. Orders, which must be accompanied by payment, should be sent to any bookseller or subscription agent, or direct to the publisher: Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Fulfillment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country’s rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions are available from Kinokuniya Company Ltd, PO Box 55, Chitose, Tokyo 156, Japan. Prices include delivery by air. Copies of the Journal for subscribers in the USA, Canada and Mexico are sent by air to New York. Periodicals postage is paid at New York, NY, and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to Journal of Fluid Mechanics, Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Claims for missing issues can only be considered if made immediately upon receipt of the subsequent issue. Copies of back numbers are available from Cambridge University Press.

COPYING
The Journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Organizations in the USA which are also registered with CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment to CCC of the per-copy fee of $16.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022-1120/2018/$16.00. ISI Tear Sheet Service, 3501 Market Street, Philadelphia, PA 19104, USA is authorized to supply single copies of separate articles for private use only. Organizations authorized by the Copyright Licensing Agency may copy material subject to the usual conditions.

For all other use of material from the Journal permission should be sought from Cambridge or the American Branch of Cambridge University Press.

Information on Journal of Fluid Mechanics is available on cambridge.org/FLM. For further information on other Press titles access cambridge.org.

Readers should note that where reference is made to a Web site for additional material relating to an article published in Journal of Fluid Mechanics this material has not been refereed and the Editors and Cambridge University Press have no responsibility for its content.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the World’s forests. Please see www.fsc.org for information.

Printed in the UK by Bell & Bain Ltd.

The picture on the cover is based on figure 5(b) of ‘Early azimuthal instability during drop impact’, by E. Q. Li, M.-J. Thoraval, J. O. Marston & S. T. Thoroddsen. © Cambridge University Press 2018

592 Parametric study and scaling of jet manipulation using an unsteady minijet
A. K. Perumal & Y. Zhou
631 Transition to turbulence in the rotating disk boundary layer of a rotor-stator cavity
E. Yim, J.-M. Chomaz, D. Martinand & E. Serre
648 Two-scalar turbulent Rayleigh–Bénard convection: numerical simulations and unifying theory
Y. Yang, R. Verzicco & D. Lohse
660 Spatial distribution of pressure resonance in compressible cavity flow
676 'Unforced' Navier–Stokes solutions derived from convection in a curved channel
696 Clustering and increased settling speed of oblate particles at finite Reynolds number
W. Formari, M. N. Ardekani & L. Brandt
722 A multiscale model for the rupture of linear polymers in strong flows
E. Rognia, N. Willis-Fox, T. A. Aljahani & R. Daly
743 Viscous superlayer in a reacting compressible turbulent mixing layer
R. Jahanbakhshi & C. K. Madnia
756 Steady small-disturbance transonic dense gas flow past two-dimensional compression/expansion ramps
A. Klouwè & E. A. Cox
788 Weakly sheared turbulent flows generated by multiscale inhomogeneous grids
S. Zheng, P. J. K. Bruce, J. M. R. Graham & J. C. Vassilicos
821 Early azimuthal instability during drop impact
E. Q. Li, M.-J. Thoraval, J. O. Marston & S. T. Thoroddsen
836 The kinematics of bidisperse granular roll waves
876 The Schur decomposition of the velocity gradient tensor for turbulent flows
C. J. Keylock
906 Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers
L. Tadriti, J.-B. Shim, T. Gilet & P. Schlagheck
946 Unsteady sheet fragmentation: droplet sizes and speeds
Y. Wang & L. Bourouiba
968 An information-theoretic approach to study fluid–structure interactions
P. Zhang, M. Rosen, S. D. Peterson & M. Porfiri
987 Analytical solution for two-phase flow within and outside a sphere under pure shear
S. Hiré-Majumder
1013 Numerical simulation of flow past two circular cylinders in cruciform arrangement
M. Zhao & L. Lu
1040 Axisial flow in a two-dimensional microchannel induced by a travelling temperature wave imposed at the bottom wall
C. Zhang, H. Wong & K. Nandakumar
1073 On shearing of solitary waves
J. Knobles & H. Yeh
1098 Onset of convection in a near-critical binary fluid mixture driven by concentration gradient
Z.-C. Hu & X.-R. Zhang
1127 Fluid–structure coupling mechanism and its aerodynamic effect on membrane aerolfoils
S. Serrano-Galiano, N. D. Sandham & R. D. Sandberg
1157 Control of circular cylinder flow using distributed passive jets
B. L. Clapperton & P. W. Bearman

JFM Rapids (online only)
S 1 Rayleigh–Taylor stability in an evaporating binary mixture
D. S. Pillai & R. Narayanan
S 2 Predicting the breaking strength of gravity water waves in deep and intermediate depth
M. Derakhht, M. L. Banner & J. T. Kirby
S indicates supplementary data or movies available online.

https://doi.org/10.1017/jfm.2018.485
1 Polymer turbulence with Reynolds and Riemann
M. D. Graham
5 Hampering Görtler vortices via optimal control in the framework of nonlinear boundary region equations
A. Sescu & M. Z. Afsar
42 An experimental decomposition of nonlinear forces on a surface-piercing column: Stokes-type expansions of the force harmonics
78 Spatially localized multi-scale energy transfer in turbulent premixed combustion
J. Kim, M. Basenne, C. A. Z. Towery, P. E. Hamlington, A. Y. Poludnenko & J. Urzay
117 On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics
N. Reinke, A. Fuchs, D. Nickelsh & J. Pi"enke
154 Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness
D. Estruch-Samper & G. Chandola
193 Analysis of the flame–wall interaction in premixed turbulent combustion
P. Zhao, L. Wang & N. Chakrabarti
219 A hydrodynamic analysis of self-similar radiative ablation flows
J.-M. Clarisse, J.-L. Pfister, S. Ganghier & C. Boudnouque-Dubois
256 Experimental study of the stability and dynamics of a two-dimensional ideal vortex under external strain
N. C. Hurst, J. R. Danielson, D. H. E. Dubin & C. M. Surko
288 Contribution of large-scale motions to the skin friction in a moderate adverse pressure gradient turbulent boundary layer
M. Yoon, J. Hwang & H. J. Sung

Contents continued on inside back cover.