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Fingering instability in wildfire fronts
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A two-dimensional model for the evolution of the fire line – the interface between burned
and unburned regions of a wildfire – is formulated. The fire line normal velocity has three
contributions: (i) a constant rate of spread representing convection and radiation effects;
(ii) a curvature term that smooths the fire line; and (iii) a Stefan-like term in the direction
of the oxygen gradient. While the first two effects are geometrical, (iii) is dynamical and
requires the solution of the steady advection–diffusion equation for oxygen, with advection
owing to a self-induced ‘fire wind’, modelled by the gradient of a harmonic potential
field. The conformal invariance of this coupled pair of partial differential equations, which
has the Péclet number Pe as its only parameter, is exploited to compute numerically the
evolution of both radial and infinitely long periodic fire lines. A linear stability analysis
shows that fire line instability is possible, dependent on the ratio of curvature to oxygen
effects. Unstable fire lines develop finger-like protrusions into the unburned region; the
geometry of these fingers is varied and depends on the relative magnitudes of (i)–(iii). It
is argued that for radial fires, the fire wind strength scales with the fire’s effective radius,
meaning that Pe increases in time, so all fire lines eventually become unstable. For periodic
fire lines, Pe remains constant, so fire line stability is possible. The results of this study
provide a possible explanation for the formation of fire fingers observed in wildfires.

Key words: fingering instability, combustion

1. Introduction

Recent years have seen a marked increase in large-scale destructive wildfires in many
regions, including North America, Siberia, Australia and Europe. This is consistent with
the study of Jolly et al. (2015), who use an annual metric measuring ‘fire weather’
season length to show an 18.7 % increase in global mean fire weather season length over
the period 1979 to 2013. The 2021 Intergovernmental Panel on Climate Change (IPCC)
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report (Masson-Delmotte et al. 2021) predicts further increases of fire weather conditions.
Understanding the dynamics of wildfires is therefore becoming increasingly vital. From
a fluid mechanics perspective, wildfires are complex, involving physical, chemical and
thermodynamic processes, and their interaction with environmental factors such as winds,
vegetation and topography. A variety of approaches aimed at understanding wildfires
have been adopted, including empirical, statistical and physical modelling, with methods
spanning experimental, observational, mathematical and computational techniques. Many
of these previous works are summarised in the review articles of Perry (1998), Pastor et al.
(2003), Sullivan (2009a,b,c) and Bakhshaii & Johnson (2019).

Minimising the risks and impacts of wildfires requires predicting the behaviour of the
spreading fire line. In this work, the fire line is taken to be the interface between burned
and unburned regions, and how this interface evolves on a two-dimensional surface – the
land surface – is a key question. Mathematically, the problem is the geometric evolution
of a two-dimensional non-intersecting curve in which the normal velocity at a point on the
curve is either prescribed or needs to be determined according to a physical model for the
fire line evolution.

An essential ingredient to wildfire spread is the availability of oxygen. The processes
and effects in which oxygen additional to that otherwise available in calm conditions is
fed to the fire by fire-induced wind (the ‘fire wind’, also known as pyrogenic wind/flow,
see Hilton et al. 2018) are the subject of this study. Buoyant upflow over the burned region
creates local low pressure, which in turn acts as a sink, drawing in surrounding air in a
shallow ground-level layer and so generating fire wind (Smith, Morton & Leslie 1975).
Beer (1991) presents a stoichiometric argument that the oxygen necessary for combustion
must be supplied by turbulent mixing from an inward horizontal flow. In calm conditions,
this requirement leads to the generation of fire wind. It is interesting to note that Beer
(1991) also shows that when an ambient wind is present (which the present study does
not consider), it will supply the sufficient oxygen needed for combustion, so there is
little reason to expect fire wind in the case of a wind-driven fire. However, fire winds
of velocities up to 3 m s−1 have been observed for even modest-sized (≈ 2 km radius
in the horizontal direction) wildfires (e.g. Lareau & Clements 2017). In their numerical
simulation of the 1991 Oakland Hills fire, Trelles & Pagni (1997) found that the fire wind
rapidly increased from 2.6 m s−1 to 13.0 m s−1 as the fire intensified. Moreover, they
found that the horizontal fire-induced wind was drawn towards the centroid of multiple
fire plumes.

This paper formulates a simple two-dimensional model for the effect of fire wind on
wildfires, which is used to investigate fire line stability and its nonlinear evolution. The
model assumes that the oxygen concentration in the unbounded region exterior to the fire
is governed by the steady advection–diffusion equation, with advective transport effected
by the fire wind. This fire wind, modelled by a two-dimensional potential flow, brings
in oxygen-rich air from infinity for consumption by the fire at the fire line. In response,
the fire line velocity is proportional to the normal gradient of oxygen at the fire line, in the
direction of its outward normal. As such, the fire line is susceptible to the Mullins–Sekerka
instability (Mullins & Sekerka 1964) and, as will be shown, may develop finger-like
protrusions.

The steady two-dimensional advection–diffusion equation and Laplace equation, which
govern the oxygen transport and fluid flow, respectively, are a pair of conformally
invariant partial differential equations (PDEs) (Cummings et al. 1999; Bazant 2004) – a
property that is exploited in the numerical method. The infinite unburned region, with
boundary representing the fire line, is represented as a conformal map from the unit
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disk in some ‘mathematical’ plane. The free-boundary problem for the unknown fire line
then becomes that of determining the conformal map using a Polubarinova–Galin type
equation (Gustafsson & Vasil’ev 2006). Similar approaches have been used in both the
analytical and numerical solutions of Hele-Shaw free-boundary problems (e.g. Howison
1986; Dallaston & McCue 2013; Miranda & Widom 1998) and determining the evolution
of two-dimensional freezing, melting or dissolution of bodies in two-dimensional potential
flows (e.g. Cummings et al. 1999; Rycroft & Bazant 2016; Ladd, Yu & Szymczak 2020).

Fire lines have been observed to develop ‘fingering’ instabilities. Clark et al. (1996a)
discuss the 1985 Onion sage brush fire in Owens Valley, California, where the fire line
developed multiple protrusions spaced about 1 km apart (see their figure 1). Clark et al.
(1996a) used a three-dimensional coupled fire-atmosphere numerical model to attribute
finger formation to feedback between the hot convective plume and the near-surface
convergence at the fire line. However, there is no oxygen effect in their simulations,
and the fingering mechanism is owing to vorticity generation and the breakup of the
buoyancy-driven plume into smaller cells (see also Clark et al. 1996b). Dold, Sivashinsky
& Weber (2005) also propose a dynamic model for fire line instability linked to the
presence of a hot plume over the fire. The plume partially blocks incoming airflow and,
along with a stably stratified atmosphere, the overall effect is to accelerate incoming air in
the direction normal to the fire line. They use a stability analysis to argue that perturbations
to the fire line grow owing to an increased airflow, hence increased burning rate, at the
more advanced parts of the front. Although not mentioned explicitly, the Dold et al. (2005)
assumption that the burn rate, or fire line speed, is proportional to the oncoming airflow
feeding the fire appears analogous to the oxygen effect considered in this paper. Recently,
Quaife & Speer (2021) used a two-dimensional, reduced physics, cellular automata model
of fire-atmosphere interaction incorporating a fire-plume-induced convective sink, and
vorticity sources at the flanks of the fire. Amongst a variety of fire line behaviours observed
in their model was fingering, in the form of the breakup of the fire line into multiple
advancing heads.

Previous works that consider explicitly the effects of oxygen transport in producing
fingering instability in combustion are the experimental investigations by Zik, Olami &
Moses (1998) and Zik & Moses (1999), and the numerical work of Conti & Marconi (2002,
2010). The former describe experiments in which solid fuel in a Hele-Shaw cell is forced
to burn against an oxidising wind. A fingering instability is observed with two decoupled
length scales: the finger width and the inter-finger distance, the latter being determined by
the Péclet number measuring the relative importance of oxygen and diffusion. Motivated
by these experiments, Kagan & Sivashinsky (2008) derive a nonlinear PDE that models
the free boundary between the solid fuel and air, demonstrating that the fingering is similar
to the instability occurring in premixed gas flames. Conti & Marconi (2002, 2010) use a
numerical lattice model to consider the diffusion of both heat and oxygen at advancing
fire fronts. Fingering is observed, with the nonlinear evolution of the front developing into
either a cellular or a dendritic pattern, depending on the parameters chosen, e.g. the initial
oxygen concentration.

The structure of this paper is as follows. In § 2, the simplified model of fire line growth,
incorporating the effects of oxygen advection and diffusion, is formulated for radial fires.
The fire burns on a flat surface with uniform combustible fuel that, typically, is some
form of vegetation, e.g. grass or heathland. The only wind present is the self-induced fire
wind. In addition to the oxygen effect, the fire line velocity is assumed to have two other
contributions. The first is a constant fire line velocity owing to the cumulative effect of
radiation and convection. Determining fire line velocity from these effects alone is in itself

943 A34-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

45
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.452


S.J. Harris and N.R. McDonald

a complex and difficult problem, with the comparative roles of convection and radiation
still an active area of research (e.g. Finney et al. 2015). Here, following e.g. Hilton et al.
(2016, 2018), it is assumed simply that radiation and convection, together with fuel type
and the background level of oxygen, give rise to a constant fire line velocity v0 (the ‘rate
of spread’, or ROS) in a direction normal to the fire line. The second contribution is the
effect of the curvature of the fire line: curvature acts to increase the propagation of concave
regions of the fire line, since more heat is able to be transferred into such unburned
regions. This causes faster ignition of the fuel compared to regions outside of convex
fire line segments, which transfer heat to a wider, and so larger, area of unburned fuel
(Markstein 1951; Sethian 1985; Sharples et al. 2013; Wheeler et al. 2015; Hilton et al.
2016). Consequently, curvature stabilises, or smooths out, perturbations, in this sense
acting in the same way as ‘curve-shortening’ (Gage & Hamilton 1986; Grayson 1987;
Dallaston & McCue 2016).

The linear stability of the fire line is investigated in § 3, quantifying its dependence
on wavenumber, ROS, curvature and the Péclet number. Nonlinear evolution, including
finger formation, of perturbed circular fire lines is then computed numerically using the
conformal mapping approach in § 4, along with a derivation of a law for the rate of change
of area of the burned region, which serves as a useful check on the numerical results.
Periodic planar fire lines are considered in § 5; this is analogous to studying a large wildfire
at a local scale. Finally, § 6 provides a discussion of the results obtained from this paper
and their application to wildfires.

2. Radial fire model

The radial wildfire problem is illustrated in figure 1, where figure 1(a) gives a top-down
(plan) view of the wildfire, and 1(b) gives a side view. Consider a two-dimensional,
non-overlapping, finite curve γ – the fire line – enclosing a region R of burned fuel, where
the unburned region Ω is the (x, y)-plane punctured by R, and the fire line is traversed with
R on the left. It is assumed that a single bone-dry fuel type is used, distributed uniformly on
flat terrain with zero ambient wind; the only wind present is a self-induced ‘pyrogenic (fire)
wind’. Smith et al. (1975) discuss in detail the role of dynamic pressure in generating this
fire wind; using a numerical model, they show that the strong buoyant acceleration over the
fire region generates locally low pressure, leading to a horizontal pressure gradient that in
turn generates the pyrogenic wind (Hilton et al. 2018). This strong inflow is quite different
in nature to the relatively weak, entraining inflows associated commonly with turbulent
plume dynamics, and is best modelled using dynamic pressure, which communicates the
effect of fire-driven buoyant air to the surrounding fluid. Pressure anomalies to model
fire-driven surface winds have been used previously (e.g. Achtemeier 2012). Once the fire
wind reaches the fire line, a proportion of its oxygen is used in combustion (Beer 1991)
before the air enters the burned region and is ejected from the system.

It is assumed that the fire wind is a two-dimensional horizontal flow occurring in a
shallow layer of depth H in the unburned region Ω parallel to the ground surface; see
figure 1(b). The layer depth H is much smaller than the horizontal length scale of the fire.
Defining the Reynolds number Re = UH/D, where U is a typical fire wind velocity at the
fire line and D is the momentum diffusivity for turbulent flow, and using values typical for
a small starting fire – U ∼ 0.025 m s−1, H ∼ 10m and D ∼ 1 m2 s−1 (Bebieva et al. 2020)
– gives Re ≈ 0.25. Thus, to a reasonable approximation, the Stokes flow equations govern
the flow in the shallow layer exterior to the fire. This approximation ‘improves’ further
from the fire where the inflow velocity decreases. However, as the fire intensifies, the
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Figure 1. The radial wildfire model: (a) plan view; (b) side view. The blue arrows represent the direction of
the fire wind governed by the potential φ.

velocity scale U will increase, leading to an increase in Re, but this increase may be offset
due to an expected increase in the diffusion coefficient D, owing to increased turbulent
mixing. Assuming that the approximation remains reasonable, such shallow flows are
analogous to those in a Hele-Shaw cell, and a standard derivation involving integration of
the Stokes equations over the layer depth (see e.g. Gustafsson & Vasil’ev 2006) shows that
u = ∇φ ∼ −∇p, where the velocity potential φ is proportional to the (negative) pressure
p. Note that u is the average fire wind velocity over H. Without loss of generality, in the
present work, the low pressure over the fire is represented by taking φ = 0 over the fire,
and on γ in particular.

The fluid is incompressible and, to good agreement with experimental data (Hilton et al.
2018), the wind can also be treated as irrotational, so φ satisfies the Laplace equation

∇2φ = 0 in Ω. (2.1)

Irrespective of the assumptions made here, modelling the flow exterior to wildfires and
plumes using solutions of the two-dimensional Laplace equation has been used previously
by e.g. Weihs & Small (1986), Maynard, Princevac & Weise (2016), Sharples & Hilton
(2020), Quaife & Speer (2021) and Kaye & Linden (2004).

Further, it is assumed that the fire wind velocity u is much larger than the normal
velocity vn of the fire line, so the system is quasi-steady. The oxygen concentration c thus
satisfies the steady advection–diffusion equation

u · ∇c = D ∇2c in Ω, (2.2)

where D is the diffusivity of c. Equations (2.1) and (2.2) form a coupled system to be
solved, with suitable boundary and far-field conditions needed.

The background oxygen concentration far from the fire, r → ∞, is denoted c = c∞, and
is c = cf on the fire line γ itself. This latter condition results from an assumption that the
fire is uniform in its intensity at points around the fire line, and consumes oxygen to the
same level; the actual value of cf < c∞ is immaterial. Specification of such a Dirichlet
boundary condition on the moving interface for the quantity undergoing advection and
diffusion is used in other moving-boundary problems, e.g. in Cummings et al. (1999) and
Tsai & Wettlaufer (2007).

The low pressure at the fire plume appears as an effective sink in the far field, so the
velocity potential has behaviour φ = −(Q/2π) log r in the far-field, where Q > 0 is the
strength of the sink. Note that as the fire expands and intensifies over time, the ability
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of the fire plume to draw in surrounding air increases, thus the sink strength Q also
increases over time, leading to a larger fire wind flux (Trelles & Pagni 1997). Therefore, let
Q = Q(t) = Q0 q(t), where q(0) = 1, and Q0 is some constant. The implications of this
are considered further throughout this paper. To summarise, the boundary and far-field
conditions for the velocity potential φ and the oxygen concentration c are

c = cf , φ = 0 on γ, (2.3a,b)

c → c∞, φ → −Q(t)
2π

log r as r → ∞. (2.4a,b)

The velocity vn of the fire line γ in the direction of the outward unit normal n̂ is sought.
Markstein (1951) first proposed a simple model for the velocity vn of flame fronts, which
showed qualitatively good agreement with experimental data. The model reads as

vn = v0 − δκ. (2.5)

The constant v0 is the basic rate of spread (ROS), a parameter quantifying the physical
properties of the fuel, e.g. the speed at which fuel ignites under heating, and the heat
transferred by radiation and convection from burning to unburned fuel cells. While there
is ongoing research in quantifying v0 for different fuel types (Sullivan 2009a; Finney
et al. 2015), v0 is treated simply as some constant here. Markstein (1951) found that the
correction term −δκ was needed for better matching with experimental results, where
κ is the (signed) curvature, and δ is a constant, with δ � v0. Note that (2.5) is a type
of curve-shortening (or in this context curve-lengthening) equation (e.g. Grayson 1987;
Dallaston & McCue 2016). Physically, (2.5) acts to smooth out perturbations in the fire
line; concave sections of the fire line grow faster as more heat is transferred to the unburned
regions of fuel that these sections enclose. The geometric wildfire model (2.5) has been
studied previously by e.g. Sethian (1985) and Sharples et al. (2013); the latter simulated
successfully the propagation of fire junctions using the model.

The purely geometric rule (2.5) does not lead to the sometimes observed phenomenon of
wildfire fingering (Clark et al. 1996a,b; Dold et al. 2005). Therefore, a dynamical oxygen
effect is introduced into vn in which the interface velocity is dependent on the gradient
of c in the normal direction, i.e. vn = ∂c/∂n. This additional term simulates the expected
behaviour: the fire grows preferentially in the direction of higher oxygen concentration (the
closer the fire line is to the source of oxygen, the more quickly combustion can occur and
hence the faster the fire line propagates), which can result in fire fingering. In particular,
the equation for vn is written as

vn = v0 − δκ + αn̂ · ∇c on γ, (2.6)

where α is some constant. Whilst v0 is a constant and the curvature κ is a geometrical
property of the fire line, n̂ · ∇c is dynamical and requires the solution for the oxygen
concentration c. This is found by solving the system (2.1)–(2.4a,b).

2.1. Non-dimensionalisation and the Péclet number
The system (2.1)–(2.4a,b) and (2.6) is now non-dimensionalised. First, the length scale L
is chosen to be the initial radius L = R0 of the wildfire. Scalings are then chosen to give
rise to an O(1) oxygen-driven contribution to vn, since oxygen effects are of particular
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interest in this study. Thus the dimensionless (starred) variables are

∇ = 1
L

∇∗, φ = Q
2π

φ∗, c∗ = c − cf

c∞ − cf
, t = L

U Pe0
t∗, U = α(c∞ − cf )

L
,

(2.7a–e)
where Pe0 = Q0/2πD, for Q0 = Q(0), is the constant initial value of the Péclet number.
The non-dimensional system for the wildfire problem, after dropping the stars, is

Pe0 vn = V0 − ε̄κ + n̂ · ∇c on γ, (2.8)

∇2φ = 0 in Ω, (2.9)

Pe u · ∇c = ∇2c in Ω, (2.10)

c = 0, φ = 0 on γ, (2.11a,b)

c → 1, φ → − log r as r → ∞. (2.12a,b)

where the new dimensionless constants V0 and ε̄, representing the ROS and magnitude of
the curvature effect, respectively, are

V0 = Lv0

α(c∞ − cf )
, ε̄ = δ

α(c∞ − cf )
. (2.13a,b)

Note that the non-dimensional time-varying, Péclet number Pe now appears in (2.10)
and is

Pe = Q(t)
2πD

= Q0 q(t)
2πD

= Pe0 q(t). (2.14)

Recall that the plume strength Q(t) = Q0 q(t) is assumed to grow in time as the fire
expands, thus the Péclet number also increases in time. Choosing q(t) ∼ R(t), where R(t)
is the radius of the burned region R, gives

Pe = Pe0

R0
R(t). (2.15)

For all numerical experiments reported here, R0 = 1, so the Péclet number is simply
Pe = Pe0 R(t). Note also that Pe0 has been incorporated in the scale for time t∗ in (2.7a–e).

Finally, note that it is required on physical grounds that the fire always progresses from
the burned region R into the unburned region Ω; this is known as the entropy condition
(Sethian 1985). There is no explicit mechanism in the wildfire model (2.9)–(2.12) to
enforce this entropy condition. This does not affect the linear stability results of § 3, since
the fire line does not move, but such unphysical behaviour is possible in the nonlinear
evolution of the fire line computed in § 4. In practice, this is likely to be rare, since both
the V0 and n̂ · ∇c terms cause the fire line to propagate towards the unburned region, and
ε̄ is taken to be small in comparison since, as you may recall, δ � v0 and hence ε̄ � V0.

3. Stability analysis

The stability of a perturbed curve γ evolving under the system (2.8)–(2.12) is studied.
Such stability is determined by the competing effects of curvature (stabilising) and oxygen
consumption (destabilising), quantified by the parameters ε̄ and Pe, respectively. It is
expected that there is some range of wavenumbers that grow over time, hence are unstable,
for certain choices of ε̄ and Pe.
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First, consider an unperturbed base state γ given by the circle r = R(t), with R(0) = 1,
so that Pe = Pe0 R(t). The solution to (2.9)–(2.12) is

φ(r) = − log
r
R

, c(r) = 1 −
(

R
r

)Pe

. (3.1a,b)

Since the curvature for a circle of radius R is κ = R−1, (2.8) gives the normal velocity
of γ as

Pe0 vn = Pe0 Ṙ = V0 − ε̄

R
+ Pe

R
, (3.2)

where the dot denotes the time derivative. Dividing through by Pe gives the relative growth
of radius R:

Ṙ
R

= V0

Pe0 R
− σ

R
+ 1

R
= 1

R

[
V0

Pe0
− σ + 1

]
, (3.3)

where σ = σ(t) = ε̄/Pe. Therefore, provided that ε̄ < V0 + Pe0 (which is necessarily true
as ε̄ � V0), R(t) and hence also the Péclet number grow in time.

Now consider the perturbed circular fire line

r = rp = R(t) +
∞∑

n=1

δn(t) cos nθ, (3.4)

where δn � 1, for all n. The summation sign is dropped henceforth. Note that the n = 1
mode corresponds to a uniform translation of the fire line (Brower et al. 1984) and is stable,
so only the stability of perturbations n � 2 is considered.

The following expression for φ solves the Laplace equation (2.9) and satisfies the
far-field condition (2.12b):

φ = − log
r
R

+ βn
Rn

rn cos nθ, (3.5)

where βn � 1 is a constant. Equations (3.1a,b) and (3.5) suggest writing

c = 1 −
(

R
r

)Pe

+ γn
Rαn

rαn
cos nθ, (3.6)

where γn � 1 and αn > 0 are constants. Note that (3.6) satisfies the far-field condition
(2.12a). The condition (2.11a,b) gives βn = δn/R and γn = −Peδn/R. Substituting (3.5)
and (3.6) into (2.10), and retaining terms to O(δn), it follows that αn = n + Pe.

The normal velocity (2.8) on r = rp can now be obtained to O(δ2
n). Note that

vn = ∂x
∂t

· n̂ = Ṙ + δ̇n cos nθ + O(δ2
n), (3.7)

κ = 1
R

[
1 + δn(n2 − 1)

R
cos nθ

]
+ O(δ2

n), (3.8)

n̂ · ∇c = ∂c
∂r

+ O(δ2
n) = Pe

R

[
1 + δn(n − 1)

R
cos nθ

]
+ O(δ2

n). (3.9)
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Evaluating (2.8) gives

Pe0
(
Ṙ+δ̇n cos nθ

) = V0+ 1
R

[
−ε̄ + Pe+ δn

R

(
−ε̄(n2 − 1) + Pe(n − 1)

)
cos nθ

]
+O(δ2

n).

(3.10)

The leading-order term of (3.10) is a restatement of (3.3). To O(δn), the growth rate for the
nth mode of perturbation is

δ̇n

δn
= 1

R

[
−σn2 + n + (σ − 1)

]
. (3.11)

The difference between (3.11) and (3.3) gives the growth of perturbations relative to the
overall growth of the wildfire. This is an important distinction to make, as if perturbations
grow slower than the radius R, then the observed behaviour is that of stability (see also
Dallaston & Hewitt 2014). A measure of the relative growth rate is

g(n) = ∂

∂t

(
log

(
δn

R

))
= δ̇n

δn
− Ṙ

R
= 1

R

(
−σn2 + n + 2(σ − 1) − λ

)
, (3.12)

where λ = V0/Pe0. Instability occurs when g(n) > 0. If σ = 0, i.e. ε̄ = 0 (zero curvature
effect), then g(n) = (n − 2 − λ)/R, and all modes n > 2 + λ are unstable. However, if the
initial Péclet number is very small, then σ, λ→ ∞ and g(n) → (σ (2 − n2) − λ)/R, so all
modes n � 2 are stable. This demonstrates that both stable and unstable fire line behaviour
are possible.

The stability of perturbations depends on the sign of the numerator of (3.12),

f (n) = −σn2 + n + 2(σ − 1) − λ, (3.13)

which is such that f (n) > 0 for n− < n < n+, where

n± = 1 ± √
Δ

2σ
, Δ = 8σ 2 − 4σ(2 + λ) + 1. (3.14a,b)

Real roots n± exist when Δ > 0. Note that if Δ = 0, then n− = n+ = n∗ and f (n∗) = 0,
which is stable. The function Δ is positive for σ− > σ and σ+ < σ , where

σ± = 2 + λ± √
λ2 + 4λ+ 2
4

. (3.15)

As λ > 0, these roots always exist, and if σ− � σ � σ+, then all modes are stable. Noting
that σ− > 0, the instability region σ− > σ is observable for σ > 0. However, the limit
σ → ∞ gives n+ < 2, hence the instability region σ > σ+ is generally not observable.
Finally, differentiating (3.12) with respect to n finds the maximum growth rate gmax as

nmax = 1
2σ

, gmax = 1
R

(
1

4σ
+ 2(σ − 1) − λ

)
, (3.16a,b)

where nmax is the mode of perturbation corresponding to gmax. If all modes of perturbation
are stable, then gmax is the slowest rate of decay. In an unstable regime, the fastest
growing mode nmax becomes the dominant perturbation, but as σ decreases in time (since
Pe = Pe0 R(t) increases as the fire expands), the dominant mode nmax also changes. This
behaviour is explored in § 4.
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Figure 2. Parameter space stability diagrams for the perturbed fire line (3.4). Regions of instability are in
blue, regions of stability are in red, and the cross-hatched areas (denoted by the black line in the graph key)
are regions of ‘relative stability’. The points A–H correspond to initial choices of σ and n in figures in § 4 as
follows: A – figure 3; B – figures 4, 5(b), 7(b); C – figure 5(a); D – figure 5(c); E – figure 5(d); F – figure 7(a);
G – figure 7(c); H – figure 7(d).

For a given value of λ = V0/Pe0, a (σ, n) parameter space stability diagram can be
constructed as in figure 2. Regions of instability (g(n) > 0, blue) and stability (g(n) �
0, red) are shaded, along with a cross-hatched area in the red stability region where
perturbations grow but are outpaced by the growing radius of the fire line. Four such
stability diagrams are given in figure 2, the points A–H corresponding to initial σ and n
values for specified numerical results in § 4. It is important to note that as σ decreases over
time, the points A–H will propagate to the left as t increases. This is also discussed in § 4.

4. Numerical simulation of nonlinear evolution

4.1. Conformal mapping method
A numerical method based on conformal mapping is used to compute the nonlinear
evolution of the fire line γ . Let z = f (ζ, t) map the interior of the unit ζ -disk to Ω , with
ζ = 0 mapping to infinity. Conformal invariance of (2.9) and (2.10), along with boundary
conditions φ → log |ζ |, c = 1 as ζ → 0, and φ = 0, c = 0 on |ζ | = 1, enables solutions
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for φ and c to be found in the ζ -plane:

φ(ζ ) = log |ζ |, c(ζ ) = 1 − |ζ |Pe. (4.1a,b)

The numerical task is now to find the conformal map z = f (ζ, t). As in other free-boundary
problems such as Hele-Shaw flow and dissolution of solids in potential flow, the kinematic
condition (2.8) is formulated in terms of the conformal map z = f (ζ, t), yielding an
equation of the Polubarinova–Galin class (e.g. Howison 1986; Ladd et al. 2020).

Write the unknown map as

z = f (ζ, t) = a−1(t) ζ−1 +
∞∑

m=1

am(t) ζ nm−1, (4.2)

where Ω is assumed to have n-fold symmetry, so the am are real, for all m = −1, 1, 2, . . .,
when n � 1. Note that a−1 is the conformal radius and is a measure of the horizontal
length scale of the wild fire, thus is identical to R(t) for a circular fire. Hence the Péclet
number can be written as Pe = Pe0 R(t) = Pe0 a−1(t), where a−1(0) = 1 is chosen in all
numerical tests. The terms in (2.8) can be expressed in terms of the map (4.2). From
Dallaston & McCue (2013),

vn = Re
[

ftζ fζ
]

|fζ | , κ = Re
[
ζ(ζ fζ )ζ ζ fζ

]
|fζ |3 , (4.3a,b)

and the oxygen concentration gradient is

n · ∇c = Re[n ∇̄c] = 2 Re
[

n
∂c
∂z

]
= 2 Re

[
ζ fζ
|fζ |

∂c
∂ζ

1
fζ

]
= − Pe

|fζ | on |ζ | = 1, (4.4)

where ∇̄ = 2∂z = ∂x − i∂y, n = nx + iny is the complex representation of the normal
vector in the z-plane, and fζ = ∂f /∂ζ . Also used is the result n = ζ fζ /|fζ |, and that c
in the ζ -disk is given by (4.1a,b), so ∂c/∂ζ = −Pe/2ζ on |ζ | = 1.

Now, (4.3a,b) and (4.4) can be substituted into (2.8), and multiplying through by |fζ |/Pe0
gives

Re
[

ftζ fζ
] = − V0

Pe0
|fζ | + ε̄

Pe0

Re
[
ζ(ζ fζ )ζ ζ fζ

]
|fζ |2 − a−1(t). (4.5)

Note that choosing V0 = ε̄ = 0 is analogous to the problem of viscous fingering of a fluid
with zero surface tension in a Hele-Shaw cell (e.g. Howison 1986; Mineev-Weinstein 1998;
Gustafsson & Vasil’ev 2006). Omitting the a−1(t) term in (4.5), i.e. when there is no
oxygen effect, gives the wildfire model used in e.g. Markstein (1951) and Sharples et al.
(2013), and is a variant of the curve-shortening problem considered by Dallaston & McCue
(2016), except that, in this case, the sign of V0 is such that the curve lengthens.

Following Dallaston & McCue (2013), the series in (4.2) is truncated at m = N,
giving N + 1 unknown functions in time: a−1, a1, . . . , aN . Consequently, points ζ = ζj,
j = 1, . . . , N + 1, distributed uniformly around the ζ -disk, are chosen, so (4.2) becomes a
system of N + 1 coupled first-order ODEs in t. Here, the MATLAB routine ode15i is used
to solve this system.

4.2. Rate of change of area law
It is useful to find any identities satisfied by (2.8)–(2.12), as these can be used to assess
the accuracy of the above numerical method. Let A(t) be the area enclosed by the fire line
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γ , and denote the length of γ by L(t). The following geometrical properties of a smooth,
non-intersecting, two-dimensional closed curve γ (Brower et al. 1984; Dallaston & McCue
2016) are used:

2π =
∫

γ

κ ds, L(t) =
∫

γ

ds,
dA
dt

=
∫

γ

vn ds. (4.6a–c)

Substituting (2.8) into (4.6c) gives

dA
dt

= V0

Pe0

∫
γ

ds − ε̄

Pe0

∫
γ

κ ds + 1
Pe0

∫
γ

∂c
∂n

ds. (4.7)

The first two terms on the right-hand side of (4.7) can be simplified using (4.6a,b). For
the third term, first transform the integral to the unit ζ -disk ζ = eiθ , where 0 � θ < 2π.
Now use ∂c/∂n = Pe0 a−1(t)/|fζ |, which is similar to (4.4) but necessarily positive as the
normal is directed outwards to γ . Since ds = |fζ | dθ , the rate of change of area law for the
burned region is obtained:

dA
dt

= V0

Pe0
L(t) + 2π

[
a−1(t) − ε̄

Pe0

]
. (4.8)

The relation (4.8) is used to check the accuracy of the numerical results using the relative
error

RE = LHS − RHS
RHS

, (4.9)

where LHS and RHS are the left- and right-hand sides of (4.8), respectively.

4.3. Results

4.3.1. Fire-stars
The nonlinear evolution of a 5-fold symmetric shape (n = 5), or fire-star, is computed.
First, consider the case with zero ROS, V0 = 0, and small curvature effect, ε̄ = 0.1.
The initial Péclet number Pe0 = 2 is chosen, thus λ = V0/Pe0 = 0 and σ0 = ε̄/Pe0 =
0.05, corresponding to point A on the stability diagram figure 2(a). The series (4.2)
is truncated at N = 128 terms, and the fire line evolves to tmax = 1; this evolution is
shown in figure 3(a). Sections of the fire line penetrating the unburned region grow more
quickly, and fingers develop from the tips of the initial perturbations. This behaviour is
in agreement with the stability diagram, in which this evolution begins in the instability
region and remains unstable as σ decreases over time, as a result of an increasing Péclet
number. In addition, instability is also expected owing to the Mullins–Sekerka mechanism
(Mullins & Sekerka 1964; Brower et al. 1984).

The relative error RE (see (4.9)) of the rate of change of area law (4.8) for figure 3(a)
is plotted in figure 3(b). Each of the three plots corresponds to a different value of series
truncation: N = 32, 64 and 128, where the higher the series truncation, the further in time
the fire line can evolve before significant numerical errors appear. The cause of these errors
is likely the lack of resolution in the ‘valleys’ of the fingers, due to a crowding of points at
the ‘finger tips’. While the points in the ζ -plane are distributed uniformly, when mapped
with (4.2) to the z-plane, their distribution becomes non-uniform around the fire line, hence
the crowding. Evolution with larger ε̄ and V0 can be computed accurately for larger times;
the stronger curvature effect means that finger formation, and consequent crowding, take
longer to develop.
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Figure 3. (a) Evolution of fire fingers for a fire-star n = 5 with V0 = 0, ε̄ = 0.1, Pe0 = 2, λ = 0, σ0 = 0.05,
N = 128 and tmax = 1. (b) Relative error of the rate of change of area law (4.8) of plot (a), for varying N.
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Figure 4. (a) Evolution of fire fingers for a fire-star n = 5 with V0 = 1, ε̄ = 0.5, Pe0 = 5, λ = 0.2, σ0 = 0.1,
N = 128 and tmax = 2. (b) Relative error of the rate of change of area law (4.8) of plot (a), for varying N.

Figure 4(a) gives an example of a more stable case; its initial state is the same as that
of figure 3(a), but now with V0 = 1, ε̄ = 0.5, λ = 0.2 and σ0 = 0.1, and evolving up to a
time tmax = 2. The burned area R grows to a larger size due to the non-zero V0, and though
fingers still develop as predicted in the stability diagram figure 2(b) (point B), they are less
pronounced compared with figure 3(a), due to the V0 and increased ε̄ effects. Also, the
relative errors plotted in figure 4(b) are significantly smaller in magnitude than those in
figure 3(b), with RE decreasing as N is increased. Henceforth, all plots will use N = 128,
unless stated otherwise.

The result of increasing the curvature effect is shown in figure 5 for four choices of ε̄.
As expected (Sethian 1985; Hilton et al. 2016), increasing ε̄ smooths the fire line, reducing
the amplitude of the fingers and valleys. The value λ = 0.2 is chosen, hence the stability
diagram figure 2(b) is considered, with figures 5(a–d) corresponding to the points C, B,
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Figure 5. The effect of increasing ε̄: evolution of a fire-star with n = 5, V0 = 1, Pe0 = 5, λ = 0.2, N = 128,
tmax = 2 and: (a) ε̄ = 0.2, σ0 = 0.04; (b) ε̄ = 0.5, σ = 0.1; (c) ε̄ = 0.9, σ = 0.18; (d) ε̄ = 1.2, σ = 0.24.

D and E, respectively. Figures 5(a,b) are unstable, and figure 5(d) is stable, in agreement
with the initial position of each experiment in figure 2(b).

However, in figure 5(c), while perturbations seem to decay at first, eventually the fingers
grow to an amplitude larger than the initial perturbations. Considering figure 2(b), the fire
starts at point D in the stability region, but as σ decreases, the fire enters the instability
regime. This is known as a ‘dormant fire instability’, as the fire fingers appear to recede
before growing again. Eventually, any initially stable fire line will become unstable as Pe
will continue to grow; the physical likelihood of this is discussed in § 6. Figure 6(a) gives
an example of a dormant fire instability of a 7-pointed (n = 7) fire-star. The corresponding
translation of the fire line on the stability diagram is also shown in figure 6(b) as a white
line with markers at each time step of 1.25. The value of λ is zero, and initially, σ =
0.25, so the fire line is stable at t = 0 and perturbations decay. At t = 1.25, perturbations
start to grow, but are slower than the overall growth of the wildfire; the fire line does
not become unstable until around t = 1.8, when σ = 0.106. However, fire fingers do not
become apparent until t = 5.

Finally, the effect of increasing V0 on fire line evolution is shown in figure 7, where
figures 7(a–d) correspond to the points F, B, G and H in figures 2(a–d), respectively.
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Figure 6. (a) The evolution of a dormant fire instability of a 7-pointed star with n = 7, V0 = 0, ε̄ = 0.5,
Pe0 = 2, λ = 0, σ0 = 0.25, N = 128 and tmax = 10. (b) The parameter space stability diagram of (a); each
marker represents a time step of t = 1.25, from t = 0 (furthest right) to t = 6.25 (furthest left).

Increasing V0 in the stability diagrams of figure 2 ‘thins’ and shifts the instability region
such that instability is not achieved until smaller values of σ are reached, and some lower
modes, such as n = 3, may always be relatively stable. In the case of fire-stars (n = 5) with
λ � 2, however, instability is always eventually realised. Note that although figure 7(d)
looks almost circular, distinct valleys are still observed; increasing V0 causes fire fingers
to widen, but not necessarily to flatten.

4.3.2. Fire lines with elliptical starting shapes
In addition to slightly perturbed circular fire lines (as in § 3), for example the fire-stars
previously considered, the numerical method is also able to compute the evolution of
fire lines with non-small initial perturbations. For the sake of illustration, here elliptical
starting shapes are considered, that is, γ is a 2-fold (n = 2) symmetric curve that
corresponds to an ellipse with eccentricity e. As e → 1, the minor axis of the ellipse
approaches 0, so the ellipse tends towards a slit. Choosing an eccentricity close to 1
provides an approximation of the evolution of a one-dimensional fire line segment. As
perturbations are non-small, the stability analysis of § 3 is not relevant in this case.

Figure 8 shows a series of results for initial ellipses with e = 0.9986, all of which use
N = 128, tmax = 9 and Pe0 = 2. The effect of increasing V0 is shown in figures 8(a–c).
As in figure 7 for a fire-star, the fires grow to a larger conformal radius as V0 increases, as
noted by the axis scales in each figure. There is also evidence of finger widening; however,
as there are only two fingers, this is seen as the valley between the fingers decreasing in
depth and width, but still the valley is preserved. Flattening of the fingers is achieved by
increasing the curvature effect, as seen in figure 8(d), where ε̄ has increased to 0.9, as
opposed to 0.5 for the other plots in figure 8. Finally, numerical instabilities are visible in
figure 8(a) at around t = 7, due to the high curvature of the developing valleys. The model
fails when the fire line begins to intersect previous iterations of itself from t = 8 onwards.
This violates the entropy condition (Sethian 1985), hence the results are unphysical from
this time; results are displayed up to tmax = 9 to show the self-intersection of the fire line
more clearly.
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Figure 7. The effect of increasing V0: evolution of a fire-star with ε̄ = 0.5, Pe0 = 5, N = 128, tmax = 2 and:
(a) V0 = 0, λ = 0; (b) V0 = 1, λ = 0.2; (c) V0 = 5, λ = 1,; (d) V0 = 10, λ = 2.

4.3.3. Emergence of a dominant mode
So far, only one mode of perturbation has been induced on a circular fire line; for fire-stars,
this was the mode n = 5 (or n = 7 for a 7-pointed star), and for an ellipse it was n = 2.
Now, multiple modes of (small) perturbation will be imposed at once, and the resulting
evolution explored. To allow many (co-prime) modes to be added, only 1-fold symmetry
(n = 1) is assumed; this means that the coefficients of (4.2) are still real and hence solvable
in the current numerical method. It is expected that one mode will eventually dominate, for
example the mode n = nmax (see § 3) that has the highest growth rate gmax of all possible
modes for a given σ . In general, the mode with the highest growth rate of all excited modes
will dominate. Since the Péclet number is increasing, and so σ is decreasing, this dominant
mode changes over time, as noted in § 3.

First consider the case where Pe is a constant in time; this differs from the radial fire
model but means that the values of σ , and hence nmax, are unchanging. Much of the
working remains the same as in § 3, with σ = ε̄/Pe = const., and the only difference to
the governing equation (4.5) is a −1 term rather than −a−1(t). Perturbations incorporating
n = 3, 5 and 7 modes are induced, each of small and equal amplitude, to an initially
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Figure 8. Evolution of an initially elliptical fire line with Pe0 = 2, N = 128, tmax = 9, e = 0.9986 and: (a)
V0 = 0, ε̄ = 0.5, σ0 = 0.25; (b) V0 = 1, ε̄ = 0.5, σ0 = 0.25; (c) V0 = 5, ε̄ = 0.5, σ0 = 0.25; (d) V0 = 1,
ε̄ = 0.9, σ0 = 0.45.

circular fire line. Fire line evolution is computed up to tmax = 9 with zero ROS (V0 = 0)
and a series truncation N = 128. Figures 9(a–c) show the results for the different choices
of σ = 0.08, 0.1 and 0.14, respectively. In each plot, a different dominant mode emerges:
when σ = 0.08 (figure 9a), the 7th mode dominates; for σ = 0.1 (figure 9b), it is the 5th
mode; and (c) for σ = 0.14 (figure 9c), it is the 3rd mode. This agrees with the stability
diagram in figure 9(d); for each choice of σ , the positions of the 3rd-, 5th- and 7th-order
perturbations are plotted as nodes. For σ = 0.1, n = 5 is exactly nmax. For σ = 0.08, n = 7
has the highest growth rate of the three perturbations and hence dominates; and similarly
for n = 3 in the σ = 0.14 case.

Now consider when Pe = Pe0 a−1(t). As σ decreases, the value of nmax (see (3.16a))
increases, so it is expected that the highest numbered excited mode will dominate
eventually – though it should be cautioned that once perturbations grow sufficiently large,
they are no longer ‘small’ and so the stability analysis of § 3 can no longer be expected to
hold. Numerical experiments in figure 10 show the evolution of the same initial fire line
as in figure 9, with the same initial conditions V0 = 0 and N = 128, but with different
choices of σ0. The value of tmax in each experiment corresponds to the maximum time
possible before the simulation fails.
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Figure 9. (a–c) Evolution of a fire line with 3rd-, 5th- and 7th-order perturbations and Pe constant. Here,
V0 = 0, Pe0 = 5, λ = 0, tmax = 9, N = 128, and (a) σ = 0.08, (b) σ = 0.1, (c) σ = 0.14. (d) Stability diagram;
each vertical, dashed line represents the σ value for results in (a–c) (from left to right), and each node on these
vertical lines represents the 3rd-, 5th- and 7th-order perturbation terms.

There is immediately a difference compared to the constant Pe case. Figure 10(a) has
the same starting value σ0 = 0.14 as in figure 9(c), yet now the 7th-order perturbation
dominates, not the 3rd, with the final value of σ as σf = 0.04. The fire fingers grow faster
too, achieving a similar result to figure 9(a) but at a quicker time t = 2.5. Any lower initial
values of σ0 also result in the 7th-order perturbation dominating. In figure 10(b), σ0 = 0.2,
and it is the 5th-order perturbation that dominates, with the simulation terminating at
tmax = 5.2 when σf = 0.033. The fact that this mode dominates over the higher n = 7
mode seems to contradict what is expected, though it is likely that the numerical method
ended before the n = 7 mode could begin to grow sufficiently. Close inspection of
figure 10(b) suggests that there are in fact seven fingers growing, not five.

5. Periodic infinite fire lines

Infinite fire lines are now considered, and this can be thought of as studying a
sufficiently large wildfire at a local scale. In particular, a periodic curve γL is considered
over one period [−Lπ, Lπ], with L a characteristic length scale used to convert to
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Figure 10. Evolution of the initial fire line in figure 9 for a time-dependent Pe, with V0 = 0 and N = 128: (a)
σ0 = 0.14, σf = 0.04, tmax = 2.5; (b) σ0 = 0.02, σf = 0.033, tmax = 5.2.

Unburned

c → 1,

c = 0,
φ  = 0 on γL

v → –1 as y → ∞

Ω vn
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Fire wind
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y

x

n̂
γL

– π π

Figure 11. The dimensionless wildfire problem for a periodic infinite fire line.

non-dimensional quantities. The dimensionless system (2.8)–(2.12) used for radial fire
lines also holds in the periodic infinite case, but with two main changes. First, as a local
scale is considered, it is assumed that the strength Q of the fire plume remains constant
over time as the fire line propagates forward. Therefore, the Péclet number is also constant,
hence Pe = Pe0 always. Second, the far-field condition (2.12b) is now that of a uniform
flow in the negative ŷ direction, as the effective oxygen sink is now on the line y = R(t),
which draws in oxygen-rich air from the unburned region at y → +∞. Note that R(t) is
not a radius; rather, it is the horizontal line y = R(t).

The non-dimensional system for periodic infinite fire lines is thus

Pe vn = V0 − ε̄κ + n̂ · ∇c on γL, (5.1)

∇2φ = 0 in Ω, (5.2)

Pe u · ∇c = ∇2c in Ω, (5.3)

c = 0, φ = 0 on γL, (5.4a,b)

c → 1, v → −1 as y → ∞. (5.5a,b)

The problem is shown diagrammatically in figure 11.
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5.1. Stability analysis
As in § 3, consider first an unperturbed base case y = R(t). Assuming that φ and c are
independent of x, the following solve (5.1)–(5.5a,b):

φ( y) = R(t) − y, c( y) = 1 − exp(Pe (R(t) − y)). (5.6a,b)

Next, perturbations y = yp = R(t) + δn cos nx are added, where the summation sign
has been dropped and δn � 1, for all n = 1, 2, 3, . . .. Note that n = 1 is not a simple
translation as in the radial case, hence perturbations n � 1 are retained here. The following
solutions for φ and c are assumed:

φ(x, y) = R(t) − y + βn exp(n(R(t) − y)) cos nx,

c(x, y) = 1 − exp(Pe (R(t) − y)) + γn exp(αn(R(t) − y)) cos nx,

}
(5.7)

with constants βn, γn � 1 and αn. Substitution of (5.7) into (5.3) and (5.4a,b) gives βn =
δn, γn = −Pe δn and αn = n + Pe.

The normal velocity (2.8) can be written in terms of yp as

Pe (Ṙ + δ̇n cos nx) = V0 − ε̄n2δn cos nx + Pe [1 + nδn cos nx]. (5.8)

Extracting the first-order terms gives

Pe Ṙ = V0 + Pe, (5.9)

and an exact solution for R can be found:

R(t) = (λ+ 1)t, (5.10)

where λ = V0/Pe and the condition R(0) = 0 has been imposed. The relative growth of
the fire line is therefore

Ṙ
R

= 1
R

(λ+ 1) = 1
t
, (5.11)

which eliminates the parameter λ, and thus V0, from the stability analysis. Next, the O(δn)
terms from (5.8) are taken, giving

Pe δ̇n = −ε̄n2δn + n Pe δn, (5.12)

thus

δ̇n

δn
= n(1 − σn), (5.13)

where σ = ε̄/Pe is a constant in time.
Therefore the relative growth rate is

g(n) = ∂

∂t

(
log

(
δn

R

))
= δ̇n

δn
− Ṙ

R
= n(1 − σn) − 1

t
. (5.14)

As in § 3, g(n) > 0 is unstable behaviour, g(n) � 0 implies stability, and ‘relative stability’
is when δ̇n/δn > 0 but g(n) � 0. Care must also be taken at t = 0, though it is only the
sign of (5.14) that is important, so state simply that g < 0 at t = 0, for all n. Whereas the
growth rate of radial fires (3.11) was variable in n and σ , with σ decreasing over time,
now σ is a constant and the growth rate for periodic infinite fire lines (5.14) is explicitly
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Figure 12. Parameter space stability diagrams for the perturbed periodic infinite fire line. The cross-hatched
areas (denoted by the black line in the graph key) are regions of ‘relative stability’. The lines A–D represent
upcoming numerical results, which run from t = 0 to t = 5, as follows: A – figure 13(a); B – figures 13(b)
and 14; C – figure 13(c); D – figure 13(d).

time-dependent, approaching the standard growth rate (5.13) as t increases. Therefore, the
resulting stability diagrams, as given in figure 12, have axes n versus t, rather than n versus
σ , with a constant value of σ chosen for each plot. The maximum growth rate gmax and its
corresponding mode nmax are also found as

nmax = 1
2σ

, gmax = 1
4σ

− 1
t
. (5.15a,b)

The lines A–D identified in figure 12 correspond to upcoming numerical results that all
run from t = 0 to t = 5, i.e. tracing from left to right on the stability diagram.

5.2. Numerical results
The conformal mapping method from § 4.1 is used again to produce numerical results. For
one period of a periodic infinite fire line, the following conformal map from the interior of
the unit ζ -disk to the unburned region Ω is used:

z = f (ζ, t) = −i log ζ + i a0(t) + i
∞∑

m=1

am(t) ζm. (5.16)
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Figure 13. The effect of increasing ε̄: evolution of a periodic infinite fire line with V0 = 1, Pe = 2, N = 128,
tmax = 5 and: (a) ε̄ = 0.2, σ = 0.1; (b) ε̄ = 0.5, σ = 0.25; (c) ε̄ = 1.5, σ = 0.75; (d) ε̄ = 2.5, σ = 1.25.

Symmetry about the y-axis is assumed, so the unknowns am are real.
The normal velocity vn (see (5.1)) is evaluated as in § 4 to give

Re
[

ftζ fζ
] = −V0

Pe
|fζ | + ε̄

Pe
Re

[
ζ(ζ fζ )ζ ζ fζ

]
|fζ |2 − 1, (5.17)

with the −1 term rather than the a−1(t) in (4.5), as Pe is now not scaled in time. For all
upcoming results, the initial fire line is a straight-line segment with a simple ‘bump’, i.e. a
perturbation of n = 1. Also, the axes have been inverted (y is the horizontal) to show the
evolution more clearly.

Figure 13 shows the effect of increasing the curvature by comparing the values ε̄ =
0.2, 0.5, 1.5 and 2.5, with Pe = 2, V0 = 1, N = 128 and tmax = 5 for all plots. Similar
to radial fire line evolution, such as in figures 13(a,b), as the curvature effect increases,
the finger grows more slowly until eventually the curvature is strong enough to stop finger
growth altogether as in figure 13(d). Note also that for small curvature, e.g. in figure 13(a)
(ε̄ = 0.2), numerical instabilities appear eventually. This is again likely due to crowding.
Considering stability, figures 13(a–d) correspond to the lines A, B, C and D across the
stability diagrams figures 12(a–d), respectively. The only stable solution is in figure 13(d),
where ε̄ = 2.5; this is in agreement with figure 12, as line D is the only experiment never
to enter the instability region for 0 � t � 5.

Figure 14 shows the effect of increasing the ROS, comparing the values V0 = 0, 1, 2, 5,
with Pe = 2, ε̄ = 0.5, σ = 0.25, N = 128 and tmax = 5 for all plots. All figures correspond
to and agree with the line B in the stability diagram figure 12(b), showing that each result
is unstable after the first few time steps. Increasing V0 causes the fire line to propagate
faster and the finger to widen; the finger in figure 14(d) covers almost the entire period.
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Figure 14. The effect of increasing V0: evolution of a periodic infinite fire line with ε̄ = 0.5, Pe = 2,
σ = 0.25, N = 128, tmax = 5, and (a) V0 = 0, (b) V0 = 1, (c) V0 = 2, (d) V0 = 5.

6. Discussion

The stability and nonlinear evolution of radial and infinite fire lines have been considered
using a two-dimensional model incorporating both geometric and dynamic effects.
Fingering instabilities are possible for certain values of σ , the ratio between curvature ε̄

(stabilising) and oxygen Pe (destabilising) effects, and numerical results demonstrate both
stable and unstable fire line growth. A third type of behaviour was also found: ‘dormant
fire’ behaviour, where fire finger growth would change from stable to unstable over time.
This was a consequence of an increasing Péclet number in the radial case. In cases where
multiple modes of perturbation were excited, the mode with the highest growth rate would
dominate eventually. Consequently, geometrically identical initial fire lines evolve into
different fire finger patterns, depending on the value of σ .

Using L ≈ 20 m for the initial size of a radial fire that generates a fire wind of
0.025 m s−1 gives an initial estimate Q = 2π × 0.5 m2 s−1. These values are consistent
with large-scale experimental grass fires reported in Hilton et al. (2018). Bebieva et al.
(2020) estimate that within 1 m of ground level, the horizontal diffusivity D in fire
conditions is O(1) m2 s−1, although the actual value will depend on vegetation type,
among other factors. Hence Pe0 = Q/2πD ≈ 0.5. The value of ε̄ is more difficult to
estimate. In the combustion wind tunnel experiments discussed by Hilton et al. (2016) (see
e.g. their figure 6), fires typically have length scale 0.5 m, and they found by comparison
with their numerical experiments (which included curvature) that dimensionally, the
curvature term’s contribution to the normal velocity is ≈ 2 × 10−4 m s−1. In the same
experiments, a typical fire line velocity in the absence of wind was 3 × 10−3 m s−1,
so ε̄ ≈ 0.1. Thus choosing this value as being representative of larger scale fire, it
follows that σ0 = ε̄/Pe0 ≈ 0.2. With caveats about applying these estimates to larger-scale
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fires and questions about how different fuel types and vegetation affect wildfires, the
estimate for σ0 suggests that fingering owing to the oxygen effect is a possibility in actual
wildfires.

The fire line normal velocities (2.8) and (5.1) are extensions of the curvature flow
models used by e.g. Sharples et al. (2013) and Sethian (1985), with the added term n̂ · ∇c
modelling the effect of additional oxygen supplied to the fire by advection and diffusion.
While the diffusion and advection of oxygen concentration in relation to fires has been
acknowledged (Zik et al. 1998; Conti & Marconi 2002), and the phenomenon of fire wind
is well known (Smith et al. 1975; Beer 1991; Hilton et al. 2018), the explicit inclusion
of the oxygen term in the normal velocity of the fire line is new. Mathematically, the
model combines aspects of curve-shortening flow (Dallaston & McCue 2016), fingering
in a Hele-Shaw cell in the absence of surface tension (Howison 1986; Mineev-Weinstein
1998; Gustafsson & Vasil’ev 2006), and two-dimensional melting/freezing free-boundary
problems featuring the advection–diffusion equation (2.10) (e.g. Cummings et al. 1999;
Rycroft & Bazant 2016; Ladd et al. 2020).

Several extensions to the model are of interest. Wildfires are affected strongly by
ambient winds, and their inclusion would give rise to two effects. The first is a contribution
to the ROS, taking the form V · n̂, where V is the ambient wind, while taking care to ensure
that the fire line does not turn back on itself towards the burned region (e.g. Hilton et al.
2018). The second effect is the ability of an ambient wind to transport additional oxygen
to the fire line. Interestingly, Beer (1991) argues that in the presence of an ambient wind,
the fire wind generated by the rising hot air over the burned region is reduced, and in turn,
so is the instability mechanism of enhanced oxygen at the fire front. Depending on their
direction, ambient winds may also transport oxygen from the burned regions to the fire
line. This provides a stabilising effect since now the finger tips receive comparatively less
oxygen than the valleys between fingers.

Other effects that are possible to incorporate into the model include the variance of
ROS depending on whether the fire is propagating upslope or downslope, and the effect
of inhomogeneous fuel and firebreaks. All these effects can be modelled by spatially
dependent normal velocities, and are relatively straightforward to include in the numerical
technique. To enable accurate computation of fire line evolution over longer times, an
approach based on approximating the fire line as a many-sided polygon in which nodes
can be added (or subtracted) according to local curvature, and in which fire lines can
merge, is being developed presently. Consideration of the fire line as a polygon means that
it can be mapped numerically to a canonical domain in order to facilitate the calculation
of the oxygen diffusion and advection effect.

In real wildfires, fire fingers are only occasionally observed, despite the prediction
here that all radial fires must eventually become unstable as Pe increases with fire size.
In reality, it seems likely that the strength of the fire wind cannot grow indefinitely
and that there is a bound on Pe, meaning that a fire may remain stable. Moreover,
inclusion of additional factors affecting fire spread, such as ambient winds, topography,
natural and artificial fire breaks, fuel type and fire spotting, may inhibit or mask finger
formation.
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