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SYSTEMS OF MAGIC LATIN k-CUBES 

JOSEPH ARKIN, VERNER E. HOGGATT, JR. AND E. G. STRAUS 

1. I n t r o d u c t i o n . A Lat in &-cube A of order n is a ^-dimensional array 

A = ((ini2...ik)y 0 ^ ij S n — 1 w h e r e 

u>u...ik G {0, 1, . . . , n - 1} a n d an...ir-ljir+l...ik 

runs through the distinct elements 0, 1, ..., n — 1 as j runs from 0 to n — 1. 
A &-tuple of Latin &-cubes, A{1), A{2), ..., A(k) is orthogonal if, upon super

position, the ^-tuples of entries (a^v ...ik, Û Û ( 2 ) . . . Ù , ..., chi{k) ...He) r u n through 
all ordered &-tuples (0, ..., 0) to (k — 1, ..., k — 1). A system of r ^ k Latin 
k-cubes is orthogonal if every & of its cubes are orthogonal. A major diagonal of 
a &-cube of order n are the entries a^...^ where r of the indices run simultane
ously from 0 to n — 1 while the remaining k — r indices run from n — 1 to 0. 
There are thus 2]c~1 major diagonals. A minor diagonal is obtained by holding 
m indice^ fixed (0 < m < k) while letting the other indices run simultaneously 
from 0 to n — 1 or n — 1 to 0. 

A Latin &-cube is magic if the sum of the elements in each major diagonal 
equals the sum, n(n — l ) / 2 , of the elements of a row in each of the directions 
of the cube. In particular, if all the entries in the major diagonals are distinct, 
a case which we shall call strongly Latin, then the &-cube is magic. However it is 
easy to construct magic k-cubes which are not strongly Latin. If we have an 
orthogonal system of k magic Latin &-cubes and consider the ordered ^-tuples 
of their superposition as integers expressed in base n, then this superposition 
yields a &-cube whose entries are the integers from 0 to nk — 1 so tha t the sums 
in all the rows, in all the coordinated directions, and in all the major diagonals 
are the same, n(nk — l ) / 2 . We also consider the concept of strongly magic 
Latin &-cubes as magic cubes where the sums of the elements in the minor 
diagonals are equal to the row sums and the major diagonal sums. We define 
a &-cube as completely Latin if the elements in all diagonals are distinct Such 
completely Latin cubes are obviously strongly magic. The superposition of a 
system of k orthogonal strongly magic &-cubes with the interpretat ion of the 
entries as integers from 0 to nk — 1 leads to a &-cube in which the sum in all 
rows and in all diagonals is n{nk — l ) / 2 . 

Many of the ideas in this paper occur in various forms in the mathematical 
l i terature. The construction of magic squares by the use of Latin squares can 
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be found in [2]. Completely Latin &-cubes are discussed in [4] and systems of 
mutual ly orthogonal Lat in fe-cubes are considered in [3]. 

In §2 we discuss maximal systems of orthogonal magic Lat in squares. In §3 
we extend the construction of §2 and [1] to systems of orthogonal magic Latin 
&-cubes with k > 2. In §4 we consider some examples. 

2. O r t h o g o n a l m a g i c L a t i n squares . If n is a power of a prime then we 
can use finite fields to construct maximal systems of n — 1 mutual ly orthogonal 
Latin squares of order n. We now extend this to maximal systems of orthogonal 
magic squares of order n. 

2.1 T H E O R E M . If n is a power of an odd prime then there exists a system of n — 1 
mutually orthogonal magic Latin squares of order n so that n — 3 of those squares 
are strongly Latin. 

Proof. Let F = {x0, ..., xw_i} be the Galois field with n elements ordered so 
t ha t Xi = — xw_i_i for i = 0, 1, ..., n — 1. We construct a system of n — 1 
orthogonal Lat in squares A(t) = ( a * / 0 ) , whose entries are the elements of F 
by sett ing a o

( 0 = xt + txj, where t ranges through F*, the non-zero elements 
of F. T h e orthogonali ty of the system is immediate , since for any two dist inct 
elements s, t £ F* and any pair (y, z) Ç F2 there is a unique solution xu Xj to 
the simultaneous equations xt + sXj — y, xt + tx} = z. For t ^ ± 1 the 
diagonal elements are distinct and thus we get a system of n — 3 orthogonal 
strongly Lat in squares of order n. For t = ± 1 one of the diagonals has all its 
elements 0 while the other diagonal has dist inct elements. We complete the 
construction by replacing the field elements by the integers 0, 1, ..., n — 1: 
with 0 replaced by (n — l ) / 2 ; so tha t the sums of all diagonals become 
n{n - l ) / 2 . 

If n is even then (n — l ) / 2 is not an integer and thus the above construction 
is not available. However there is a compensating feature in the fact tha t in 
fields of characteristic 2 we have 1 = — 1. 

2.2. T H E O R E M . / / n is a power of 2 then there exists a system n — 2 orthogonal 
strongly Latin squares of order n. 

Proof. We use the same construction as in Theorem 2.1, this t ime sett ing 
xt = xn-i-i + 1. Then the Lat in squares A(t) = ( a * / 0 ) with (iij(t) = xt + tXj\ 
t 7^ 0, 1 have the desired property. 

Kronecker products of strongly Latin squares are obviously strongly Lat in . 
T o show tha t we can always associate a magic Lat in square of order mn with 
the Kronecker product of two magic Lat in squares of order m and n respec
tively, write A = {atj)\ i, j = 1, ..., m; B = (bkr); k, r = 0, ..., n — 1 and 
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C = A X B = {{aij} bkr)) -» (cin+kijn+r) where cin+kljn+T = a,;-w + &*,. Then 
for example 

mn m n 

S c*« = ^2 S ûii + m J2 bkk = w2w(m - l ) / 2 + m«(« - l ) / 2 
5=1 i=i *=i 

= mn(mn — l ) / 2 . 

We have thus proved the following: 

2.3. COROLLARY. If n = pidlp2d2 ... £//"* ^ ^ J/kere existe a system ofq mutually 
orthogonal magic Latin squares of order n of which s are strongly Latin. Here 

q = min [pdi — 1}, s = q — 2 when 2 j£ pi < . . . < £m . 
z = l , . ..,m 

q = mm{2dl -2,p2
d2 - 1, . . . , ^ - 1}, 

^ = min {2dl - 2, pd2 - 3, . . . £m"m - 3} when 2 = px < . . . < pm. 

3. Orthogona l m a g i c k -cubes . For k > 2 we get an improvement on the 
results s tated in [1] and we can even insist on obtaining magic cubes. 

3.1 T H E O R E M . / / n is a power of an odd prime and n ^ k > 2 then there exists 
a system of n + 1 orthogonal magic Latin k-cubes of order n of which at least 
n — (k — 1)2*_1 are strongly Latin. 

Proof. We first note tha t for any &-tuple C = (ci, ..., ck) of nonzero elements 
of the finite field F = jx0, x1} ..., xn_i}, the &-cube Ac = {aix ... t) with 

ai\ -•• ik ~ clxii + ••• H~ Ck%ik 

is a Lat in &-cube of order n. 
If C ( 1 ) , ..., C(k) are linearly independent vectors with components in F* then 

the cubes Ak
(i) = Acb), i = 1, ..., k form an orthogonal fe-tuple. More gen

erally, if any k of the vectors C ( 1 ) , . . . ,C ( r ) , r ^ k with components in F* are 
linearly independent, then the cubes A(l), ..., A{T) form an orthogonal system. 

In order to construct the system C(i) ; i = 1, ..., n + 1, we use the same 
ordering of F t ha t we used in the proof of Theorem 2.1. Next we find a poly
nomial f(x) = xk~l + aixk~2 + ••• + ak-i £ F[x] with nonzero coefficients 
a\} ..., ak-\ and no zeros in F. To construct such a polynomial we can s ta r t for 
example with g(x) = xk~l + xk~2 + ... + x2. Since k — 1 < n there must be 
some xt £ F* for which g(xt) 9e 0. Now pick a^_2 = — g(xt)/Xi so tha t the 
polynomial h(x) = g(x) + aA;_2x has two zeros x = 0, xt in F. Thus there is 
some value — ak_i £ .F* which is not at tained by h{xf) for any Xj £ T7 and 
/ ( x ) = A(x) + a^-i has the desired property. 

Now pick any k distinct values yu ..., yk £ F* and let ft(x) = yi~kf(ytx); 
i = 1, ..., k. The n + 1 vectors C('> = ( / i ( 0 , . . . , / * ( 0 ) ; / G ^ and C<°°> = 
(1, ..., 1) have the property tha t any k are linearly independent. 
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We need to show tha t every k X k submatr ix of 

| / l ( X i ) . . . / i ( * „ ) 1 

IkipCi) ...fk(pCn) 1 
ak iji-k+l ak-2yrk+2..- aiyr1 l 

a>k-iyk-k+l a>k-2yrk+2 .. (iiyk-

1 ... 1 

X fC 1 / y K 1 1 

is of the rank k. This follows from the fact t ha t the first matr ix on the right is a 
regular k X k matrix, essentially a Vandermonde matrix, while any k X k 
submatr ix of the second matr ix is a Vandermonde. 

The elements in the main diagonals of A(t) are 

{(/i(/) ± / 2 ( 0 ± ... ± / * ( * ) ) xM = 0, ..., n - 1} for / Ç F and 

{(1 ± 1 ± 1 ... ± l)xt\i = 1, ..., w} if ^ = oo. 

In either case the elements are either all dist inct or they are all 0. T h u s all 
&-cubes will become magic if we replace the field elements by the numbers 
0, 1, ..., n — 1 where the field element 0 is replaced by the number (n — 1 ) /2 . 

If t is chosen so tha t none of the 2k~l polynomials fi(t) ± f2(t) =1= ... =b fk(t) 
vanishes then A{t) is strongly Lat in. Since none of these polynomials vanishes 
identically, none has more than k — 1 zeros in F there must be a t least n — 
(k — 1)2* - 1 orthogonal strongly Lat in &-cubes of order n. 

T h e case in which w is a power of 2 leads to an interesting ramification. 

3.2. T H E O R E M . Let n ^ 4 be a power of 2. Then there exists a system of n + 2 
orthogonal Latin cubes (S-cubes) of which at least n are strongly Latin. 

Proof. Let F be the field of n elements ordered as in the proof Theorem 2.2. 
L e t / ( x ) = x2 + ax + b, ab 9e 0, be an irreducible polynomial in F[x] and pick 
three distinct elements yu y2, yz, Ç F*. Define ft(x) = y~2 f{yix)\ i = 1, 2, 3 
and construct the set of n + 2 Lat in cubes of order n with entries from F corre
sponding to the vectors C ^ = {fx{t), f2(t), / 3 ( / ) ) ; t G F, C<œ) = (1, 1, 1), 

C = (yr\ yr\ ^s"1). 
T o prove tha t these n + 2 cubes form an orthogonal system it again suffices 
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to show tha t all 3 X 3 submatrices of the matr ix 

fi(pd) . . . / i ( x j 1 yr1 

/ 2 ( * i ) . . . / 2 ( * » ) 1 y*~l 

Jz{xi) ...MxH) 1 y3
_1J 

by i 
by2 

L^3 

ayr1 

r 
ay2~

l i 
ciyi~l i_ 

i . .. 1 0 0 
X\ .. xn 0 a-1 

Xi2 . X 2 1 0 

are regular. This is easily seen since ab 9* 0 and all the 3 X 3 submatrices on 
the ring are Vandermonde. Perhaps we should justify the inclusion of the 
(n + 2) — nd cube A' by showing explicitly tha t 

1 
X i 

Xf2 

0 

0 

1 1 
= a~l(Xi + Xj)2 7^ 0 

for all 1 ^ i < j ^ n. 
The elements in the main diagonals of A{t) are 

\{fi(t) +Mt) +h(t))xt + e2/2(/) + e3f3(t)\i = 1, ..., n\ 

where e2, e% are 0 or 1. Thus A(t) is strongly Latin provided 

/i(0 +/2(/) +/8(0 ^o . 

If ^4 ( 0 is not strongly Latin then each main diagonal of A{1) consists of n equal 
elements. 

T h e elements in the main diagonals of A(CO) are {xt\i = 1, ..., n) and 
{Xf + 1| i = 1, ..., n] so tha t ^4(°°) is strongly Latin. Finally the elements in 
the main diagonals of A' are 

i (ji~l + J2~l + yz~l)Xi + e2y2~
l + ezyz-

l\i = 1, ..., w} 

where ^2, 3̂ = 0 or 1. Thus either A' is strongly Latin or all its main diagonals 
consist of n equal elements. Thus , if there exist two cubes which are not 
strongly Latin, then by the orthogonality of the system the other n cubes must 
be strongly Latin. 

3.3. T H E O R E M . Let n }t k be a power of 2. Then there exists an orthogonal 
system of n + 1 Latin k-cubes of order n of which at least n + 2 — k are strongly 
Latin. 

Proof. We make a construction which is completely analogous to t ha t made 
in the proof of the preceding theorem except tha t we no longer get an analog 
to A'. The resulting &-cubes are either strongly Latin or have all the main 
diagonals consisting of n equal elements. If there are k — 1 of the cubes which 
are not strongly Latin, then by the orthogonality of the system the remaining 
cubes are all strongly Latin. 

Using Kronecker products we get results for n which are not powers of 
primes. 
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3.4. COROLLARY. Let n = pi1 ... pm
dm. Then there exists an orthogonal system 

of q magic Latin k-cubes of order n of which r are strongly Latin. Here 

q = min \Pidl + 1\, r = q - 1 - (k - l)2k~l 

z = l , . . . ,m 

if2<p,< ... < pm; 

q = mm{2d\p2
d> + 1, ..., pj™ + 1} 

r = min [2d\ p2
d2 - 8, ..., pm

d™ - 8} 

if 2 = p, < ... < pn;k = 3 ; 

q = min {2rfl + 2 - k, p2
d2 + 1, ..., £w

dm + 1} 

r = min {2dl + 2 - k, p2
d* - (k - 1)2*-1, ..., £m

d* - (fe - 1)2*-M 

if2 = pi< ... < ^m,fe > 3. 

Since the polynomials chosen in the proofs of Theorems 3.1, 3.2, and 3.3 are 
linearly independent, it follows tha t for any given k and any sufficiently large 
power of a prime n we get a system of orthogonal completely Lat in &-cubes of 
order n. T h e superposition of any k of these cubes leads to a large number of 
completely magic &-cubes in the sense tha t the integers from 0 to nk — 1 are 
placed in the cubes so tha t the sums in all s t raight lines which pass through n 
entries are the same number n(nk — l ) / 2 . 

3.5. T H E O R E M . If n is a power of an odd prime and 

n ^ g(k) + k = i ( 3 * - l)(fe - 1) - k(k - 2) 

then there exists a system of n — g(k) orthogonal completely Latin k-cubes of 
order n. 

Proof. We use the same constructions as in the proofs of Theorems 3.1 and 
3.3 but , for odd n, we have to exclude all values of / for which any of the sums 

(3.6) ftl(t)±ftl(t)±...fu(t) = 0 

where 

1 ^ ii < ii < ... < is ^ k (1 < s S k). 

T h e number of such choices is (3* — 1 — 2&)/2 since for each /* we either fail 
to include it or include ft or — ft in the sum (3.6). This would give 3* choices. 
However we must include a t least two /* so this decreases the number of choices 
by 1 (choice of none) + 2k(choice of one) . Finally we pick the sign of ftl to be 
+ and thus divide the number of terms by 2. No polynomial in (3.6) has more 
than k — 1 zeros in F and thus the number of &-cubes A(t) in Theorem 3.1 
which are completely magic is a t least n — (k — l)(3k — 1 — 2&)/2 = 
n - g(k). 

If n is a power of 2 then we need only exclude those values of / for which 

ftl(t) + ... + / , . ( / ) = 0 1 g n < ... < ts S k, 1 < ^ g k. 
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This leads to the exclusion of a t most (k — 1) (2* — 1 — k) values of t and thus 
the number of fe-cubes A{t) in Theorem 3.3 which are completely magic is a t 
least n — h(k). 

For sufficiently large prime powers n it is possible to select polynomials ft(t) 
with care so tha t we get systems (with n + 1 or n + 2 elements) of orthogonal 
completely Latin &-cubes of order n. We illustrate this here for the case k = 3, 
n = 2m. 

3.7. LEMMA. Let F be a finite field with 2m elements considered as an m dimen
sional vector space over the prime field F{) = {0, 1}. Then for each quadratic poly
nomial g(t) = at2 + bt G F [t] with ab 9e 0 the values attained by g(t), t £ F 
form an (m — 1)-dimensional hyper plane Hg over FQ. 

The hyper plane Hg is uniquely determined by the ratio a/b2 = c and 

(3.8) Hg = H c = {ct2 + t\t G F\ 

is the set of solutions of the equation 

(3.9) Tv(cx) = ex + (ex)2 + ... + (cx)2m~l = 0. 

Since there are 2m — 1 distinct equations (3,9) it follows that every (m — 1)-
dimensional subspace of F has the form Hg for a suitable g. 

Proof. Since (h + t2)
2 = tx

2 + t2
2 for tu h G F we have g(h + t2) = g(h) + 

g(t2) so tha t Hg is a linear manifold over F0. Since g(t{) = g(t2) if and only if 
h = t2 or ti = t2 -{- b/a it follows tha t H0 has 2 m _ 1 elements and is a hyper-
plane. For any s G F* the polynomial h(t) = g(st) a t ta ins the same values 
over F as the polynomial g(t). Thus Hh = Hg. The choice s = 1/b yields 

H g = Hct2+t = Hc. 

For x = et2 + t we have 

ex = (ct)2 + ct and Tr(cx) = Tr (ct) + T r ( ( c t ) 2 ) = 2Tr(ct) = 0. 

The last s ta tement of the lemma follows from the fact tha t there are 2m — 1 
(m — 1)-dimensional subspaces of F. 

3.8. COLLARY. The intersection of k hyper planes Hcl, ..., Hck defined in Lemma 
3.7 is the set of elements x G F which satisfy Tr(cx) = 0 for all c in the linear 
subspace of F spanned by Ci, ..., ck over F0. 

3.9. T H E O R E M . If m ^ 11 then there exists a system ofn-\-2 orthogonal com
pletely Latin cubes of order n = 2m. 

Proof. In the field of order n there is an element e of order m ^ 11 we now 
consider the 7 polynomials g\ = e2t2 + /, g2 = et2 + et, g3 = t2 + e2t, g4 = 
gi + g2, gb = gi + gz, ge = g2 + g3, gi = gi + g2 + gs and the corresponding 7 
hyperplanes Ht = JYM. where Wi = e2, ^2 = 1/tf, ^3 = 1/e4, ^4 = e / ( l + e), 
^ 5 = 1/(1 + e)2, u& = l/(e + e2)2, and zi7 = 1/(1 + e + e2). These 7 values 
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u are linearly independent over FQ and the 7 hyperplanes Ht are therefore in 
general position. 

We now complete the choice of po lynomia l / i = gi + Ci, f2 = gi + c2, ft = 
gz + Cz where the ct are determined successively so as to make the 7 poly
nomials / i , / 2 , / 3 / i + / 2 , / i + / 3 , /2 + / s , / i + /2 + f's irreducible over F and 
so t ha t 

\ e2 e 1 

1 e e2 ^ 0. 

Cl Co Cz I 

We first pick c\ d H01. This gives us n/2 possible choices for c\. Once we have 
chosen c\ we pick c2 so tha t c2 (f_ H021 c2 (f_ Ci -\- Hgi. This gives us n / 4 possible 
choices for c2- Having chosen c2 we pick c3 so t ha t c% (f_ Hg^, c3 (f c\ + i ^ 5 , 
Cs € c2 + i ^ 6 , Cz (? Ci + c2 + fl^, and 

^ 0. 

This gives us a t least w/16 — 1 choices for c3. Once these choices have been 
made we get w + 2 orthogonal completely Lat in cubes 

A tJk< '> = /, ( / )* i : + /2(t)Xj + /, (/>,, / (/ /-'; 
-< t i j/c == 6 X i ~\~ €X ; ~T~ X/- J 

^4*#' = x* + ex j + e2xk; 

where F = {x0, ..., xn-i) is arranged as in the proof of Theorem 3.2. 

e2 e 1 
1 e e2 

C\ c2 cz 

4. E x a m p l e s . W7e can use the results of Section 3 to construct strongly 
magic cubes of every prime power order q ^ 7 and hence, by Kronecker prod
ucts, for every order n whose least pr imary divisor is no less than 7. 

We need only show tha t there exist triples of linearly independent vectors 
C ( 1 ) , C ( 2 ) , C ( 3 ) over finite fields of order g ^ 7 with the properties Cj(i) ^ 0, 
Cj{l) 9^ Ick

(i) for j -^ k. For q a power of 2 we also need the proper ty C\{i) + 

C2(i) _|_ Cdd) ^ o. The vectors (1, t, t2) with / ^ 0, ± 1 have the desired prop
erties for odd q and so for odd q ^ 7 there are a t least 4 Latin cubes so tha t the 
superposition of any 3 yields a strongly magic cube. For q a power of 4 we also 
have to rule out the two values of t for which t2 + / + 1 = 0 . T h u s for even q 
there are a t least 5 Lat in cubes so tha t the superposition of any 3 yields a 
strongly magic cube. 

Choosing the values t = ± 2, 3 for q = 7 we get the 3 cubes A(t) whose 
entries are 

ciijk{t) = i + tj + t2k - 3(/ + t2) (mod 7) 

i,j, k = 0, ..., 6. Their superposition yields a strongly magic cube with entries 
expressed in base 7. For 4-dimensional cubes our construction yields strongly 
magical yields strongly magical cubes of every pr imary order q ^ 17. 
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