SYSTEMS OF MAGIC LATIN k-CUBES

JOSEPH ARKIN, VERNER E. HOGGATT, JR. AND E. G. STRAUS

1. Introduction. A Latin k-cube A of order n is a k-dimensional array $A=\left(a_{i_{1} i_{2} \ldots i_{k}}\right), 0 \leqq i_{j} \leqq n-1$ where

$$
a_{i_{1} \ldots i_{k}} \in\{0,1, \ldots, n-1\} \text { and } a_{i_{1} \ldots i_{r-1} j i_{r}+\ldots i_{k}}
$$

runs through the distinct elements $0,1, \ldots, n-1$ as j runs from 0 to $n-1$.
A k-tuple of Latin k-cubes, $A^{(1)}, A^{(2)}, \ldots, A^{(k)}$ is orthogonal if, upon superposition, the k-tuples of entries ($a_{i_{1}}{ }^{(1)} \ldots i_{k}, a_{i_{1}}{ }^{(2)} \ldots i_{k}, \ldots, a_{i_{1}}{ }^{(k)} \ldots i_{k}$) run through all ordered k-tuples $(0, \ldots, 0)$ to $(k-1, \ldots, k-1)$. A system of $r \geqq k$ Latin k-cubes is orthogonal if every k of its cubes are orthogonal. A major diagonal of a k-cube of order n are the entries $a_{i_{1} \ldots i_{k}}$ where r of the indices run simultaneously from 0 to $n-1$ while the remaining $k-r$ indices run from $n-1$ to 0 . There are thus 2^{k-1} major diagonals. A minor diagonal is obtained by holding m indice : fixed $(0<m<k)$ while letting the other indices run simultaneously from 0 to $n-1$ or $n-1$ to 0 .

A Latin k-cube is magic if the sum of the elements in each major diagonal equals the sum, $n(n-1) / 2$, of the elements of a row in each of the directions of the cube. In particular, if all the entries in the major diagonals are distinct, a case which we shall call strongly Latin, then the k-cube is magic. However it is easy to construct magic k -cubes which are not strongly Latin. If we have an orthogonal system of k magic Latin k-cubes and consider the ordered k-tuples of their superposition as integers expressed in base n, then this superposition yields a k-cube whose entries are the integers from 0 to $n^{k}-1$ so that the sums in all the rows, in all the coordinated directions, and in all the major diagonals are the same, $n\left(n^{k}-1\right) / 2$. We also consider the concept of strongly magic Latin k-cubes as magic cubes where the sums of the elements in the minor diagonals are equal to the row sums and the major diagonal sums. We define a k-cube as completely Latin if the elements in all diagonals are distinct Such completely Latin cubes are obviously strongly magic. The superposition of a system of k orthogonal strongly magic k-cubes with the interpretation of the entries as integers from 0 to $n^{k}-1$ leads to a k-cube in which the sum in all rows and in all diagonals is $n\left(n^{k}-1\right) / 2$.

Many of the ideas in this paper occur in various forms in the mathematical literature. The construction of magic squares by the use of Latin squares can

[^0]be found in [2]. Completely Latin k-cubes are discussed in [4] and systems of mutually orthogonal Latin k-cubes are considered in [3].

In §2 we discuss maximal systems of orthogonal magic Latin squares. In §.3 we extend the construction of $\S 2$ and [1] to systems of orthogonal magic Latin k-cubes with $k>2$. In $\S 4$ we consider some examples.
2. Orthogonal magic Latin squares. If n is a power of a prime then we can use finite fields to construct maximal systems of $n-1$ mutually orthogonal Latin squares of order n. We now extend this to maximal systems of orthogonal magic squares of order n.
2.1 Theorem. If n is a power of an odd prime then there exists a system of $n-1$ mutually orthogonal magic Latin squares of order n so that $n-3$ of those squares are strongly Latin.

Proof. Let $F=\left\{x_{0}, \ldots, x_{n-1}\right\}$ be the Galois field with n elements ordered so that $x_{i}=-x_{n-1-i}$ for $i=0,1, \ldots, n-1$. We construct a system of $n-1$ orthogonal Latin squares $A^{(t)}=\left(a_{i j}{ }^{(t)}\right)$, whose entries are the elements of F by setting $a_{i j}{ }^{(t)}=x_{i}+t x_{j}$, where t ranges through F^{*}, the non-zero elements of F. The orthogonality of the system is immediate, since for any two distinct elements $s, t \in F^{*}$ and any pair $(y, z) \in F^{2}$ there is a unique solution x_{i}, x_{j} to the simultaneous equations $x_{i}+s x_{j}=y, x_{i}+t x_{j}=z$. For $t \neq \pm 1$ the diagonal elements are distinct and thus we get a system of $n-3$ orthogonal strongly Latin squares of order n. For $t= \pm 1$ one of the diagonals has all its elements 0 while the other diagonal has distinct elements. We complete the construction by replacing the field elements by the integers $0,1, \ldots, n-1$: with 0 replaced by $(n-1) / 2$; so that the sums of all diagonals become $n(n-1) / 2$.

If n is even then $(n-1) / 2$ is not an integer and thus the above construction is not available. However there is a compensating feature in the fact that in fields of characteristic 2 we have $1=-1$.
2.2. Theorem. If n is a power of 2 then there exists a system $n-2$ orthogonal strongly Latin squares of order n.

Proof. We use the same construction as in Theorem 2.1, this time setting $x_{i}=x_{n-1-i}+1$. Then the Latin squares $A^{(t)}=\left(a_{i j}{ }^{(t)}\right)$ with $a_{i j}{ }^{(t)}=x_{i}+t x_{j}$; $t \neq 0,1$ have the desired property.

Kronecker products of strongly Latin squares are obviously strongly Latin. To show that we can always associate a magic Latin square of order $m n$ with the Kronecker product of two magic Latin squares of order m and n respectively, write $A=\left(a_{i j}\right) ; i, j=1, \ldots, m ; B=\left(b_{k r}\right) ; k, r=0, \ldots, n-1$ and
$C=A \times B=\left(\left(a_{i j}, b_{k r}\right)\right) \rightarrow\left(c_{i n+k, j n+r}\right)$ where $c_{i n+k, j n+r}=a_{i j} n+b_{k r}$. Then for example

$$
\begin{aligned}
\sum_{s=1}^{m n} c_{s s}=n^{2} \sum_{i=1}^{m} a_{i i}+m \sum_{k=1}^{n} b_{k k}=n^{2} m(m-1) / 2 & +m n(n-1) / 2 \\
& =m n(m n-1) / 2
\end{aligned}
$$

We have thus proved the following:
2.3. Corollary. If $n=p_{1}{ }_{1}^{d_{1}} p_{2}{ }^{d_{2}} \ldots p_{m}{ }^{d_{m}}$ then there exists a system of q mutually orthogonal magic Latin squares of order n of which sare strongly Latin. Here

$$
\begin{aligned}
q & =\min _{i=1, \ldots, m}\left\{p_{i}^{d_{i}}-1\right\}, \quad s=q-2 \text { when } 2 \neq p_{1}<\ldots<p_{m} . \\
q & =\min \left\{2^{d_{1}}-2, p_{2}^{d_{2}}-1, \ldots, p_{m}^{d_{m}}-1\right\} \\
s & =\min \left\{2^{d_{1}}-2, p_{2}^{d_{2}}-3, \ldots p_{m}^{d_{m}}-3\right\} \text { when } 2=p_{1}<\ldots<p_{m} .
\end{aligned}
$$

3. Orthogonal magic k-cubes. For $k>2$ we get an improvement on the results stated in [1] and we can even insist on obtaining magic cubes.
3.1 Theorem. If n is a power of an odd prime and $n \geqq k>2$ then there exists a system of $n+1$ orthogonal magic Latin k-cubes of order n of which at least $n-(k-1) 2^{k-1}$ are strongly Latin.

Proof. We first note that for any k-tuple $\mathbf{C}=\left(c_{1}, \ldots, c_{k}\right)$ of nonzero elements of the finite field $F=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, the k-cube $A_{\mathbf{C}}=\left(a_{i_{1}} \ldots i_{k}\right)$ with

$$
a_{i_{1}} \ldots i_{k}=c_{1} x_{i_{1}}+\ldots+c_{k} x_{i_{k}}
$$

is a Latin k-cube of order n.
If $\mathbf{C}^{(1)}, \ldots, \mathbf{C}^{(k)}$ are linearly independent vectors with components in F^{*} then the cubes $A_{k}{ }^{(i)}=A_{\mathbf{C}^{(i)}}, i=1, \ldots, k$ form an orthogonal k-tuple. More generally, if any k of the vectors $\mathbf{C}^{(1)}, \ldots, \mathbf{C}^{(r)}, r \geqq k$ with components in F^{*} are linearly independent, then the cubes $A^{(1)}, \ldots, A^{(r)}$ form an orthogonal system.

In order to construct the system $\mathbf{C}^{(i)} ; i=1, \ldots, n+1$, we use the same ordering of F that we used in the proof of Theorem 2.1. Next we find a polynomial $f(x)=x^{k-1}+a_{1} x^{k-2}+\ldots+a_{k-1} \in F[x]$ with nonzero coefficients a_{1}, \ldots, a_{k-1} and no zeros in F. To construct such a polynomial we can start for example with $g(x)=x^{k-1}+x^{k-2}+\ldots+x^{2}$. Since $k-1<n$ there must be some $x_{i} \in F^{*}$ for which $g\left(x_{i}\right) \neq 0$. Now pick $a_{k-2}=-g\left(x_{i}\right) / x_{i}$ so that the polynomial $h(x)=g(x)+a_{k-2} x$ has two zeros $x=0, x_{i}$ in F. Thus there is some value $-a_{k-1} \in F^{*}$ which is not attained by $h\left(x_{j}\right)$ for any $x_{j} \in F$ and $f(x)=h(x)+a_{k-1}$ has the desired property.

Now pick any k distinct values $y_{1}, \ldots, y_{k} \in F^{*}$ and let $f_{i}(x)=y_{i}{ }^{-k} f\left(y_{i} x\right)$; $i=1, \ldots, k$. The $n+1$ vectors $\mathbf{C}^{(t)}=\left(f_{1}(t), \ldots, f_{k}(t)\right) ; t \in F$ and $\mathbf{C}^{(\infty)}=$ $(1, \ldots, 1)$ have the property that any k are linearly independent.

We need to show that every $\mathrm{k} \times k$ submatrix of

$$
\begin{gathered}
{\left[\begin{array}{cccc}
f_{1}\left(x_{1}\right) & \ldots & f_{1}\left(x_{n}\right) & 1 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
f_{k}\left(x_{1}\right) & \ldots & f_{k}\left(x_{n}\right) & 1
\end{array}\right]} \\
=\left[\begin{array}{llll}
a_{k-1} y_{1}{ }^{-k+1} & a_{k-2} y_{1}{ }^{-k+2} \ldots a_{1} y_{1}{ }^{-1} & 1 \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & & \cdot \\
a_{k-1} y_{k}{ }^{-k+1} & a_{k-2} y_{k}{ }^{-k+2} \ldots a_{1} y_{k}{ }^{-1} & 1
\end{array}\right]\left[\begin{array}{lll}
1 & \ldots & 0 \\
x_{1} & x_{n} & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
x_{1}{ }^{k-1} \ldots x_{n}{ }^{k-1} & 1
\end{array}\right]
\end{gathered}
$$

is of the rank k. This follows from the fact that the first matrix on the right is a regular $k \times k$ matrix, essentially a Vandermonde matrix, while any $k \times k$ submatrix of the second matrix is a Vandermonde.

The elements in the main diagonals of $A^{(t)}$ are

$$
\begin{aligned}
& \left\{\left(f_{1}(t) \pm f_{2}(t) \pm \ldots \pm f_{k}(t)\right) x_{i} \mid i=0, \ldots, n-1\right\} \quad \text { for } t \in F \text { and } \\
& \qquad\left\{(1 \pm 1 \pm 1 \ldots \pm 1) x_{i} \mid i=1, \ldots, n\right\} \text { if } t=\infty .
\end{aligned}
$$

In either case the elements are either all distinct or they are all 0 . Thus all k-cubes will become magic if we replace the field elements by the numbers $0,1, \ldots, n-1$ where the field element 0 is replaced by the number $(n-1) / 2$.

If t is chosen so that none of the 2^{k-1} polynomials $f_{1}(t) \pm f_{2}(t) \pm \ldots \pm f_{k}(t)$ vanishes then $A^{(t)}$ is strongly Latin. Since none of these polynomials vanishes identically, none has more than $k-1$ zeros in F there must be at least $n-$ $(k-1) 2^{k-1}$ orthogonal strongly Latin k-cubes of order n.

The case in which n is a power of 2 leads to an interesting ramification.
3.2. Theorem. Let $n \geqq 4$ be a power of 2 . Then there exists a system of $n+2$ orthogonal Latin cubes (3-cubes) of which at least n are strongly Latin.

Proof. Let F be the field of n elements ordered as in the proof Theorem 2.2. Let $f(x)=x^{2}+a x+b, a b \neq 0$, be an irreducible polynomial in $F[x]$ and pick three distinct elements $y_{1}, y_{2}, y_{3}, \in F^{*}$. Define $f_{i}(x)=y_{i}{ }^{-2} f\left(y_{i} x\right) ; i=1,2,3$ and construct the set of $n+2$ Latin cubes of order n with entries from F corresponding to the vectors $\mathbf{C}^{(t)}=\left(f_{1}(t), f_{2}(t), f_{3}(t)\right) ; t \in \mathrm{~F}, \mathbf{C}^{(\infty)}=(1,1,1)$, $C^{\prime}=\left(y_{1}^{-1}, y_{2}{ }^{-1}, y_{3}^{-1}\right)$.

To prove that these $n+2$ cubes form an orthogonal system it again suffices
to show that all 3×3 submatrices of the matrix

$$
\left[\begin{array}{llll}
f_{1}\left(x_{1}\right) & \ldots & f_{1}\left(x_{n}\right) & 1 \\
y_{1}-1 \\
f_{2}\left(x_{1}\right) & \ldots & f_{2}\left(x_{n}\right) & 1
\end{array} y_{2}{ }^{-1}\left(\begin{array}{lll}
b y_{1}{ }^{-2} & a y_{1}{ }^{-1} & 1 \\
f_{3}\left(x_{1}\right) \ldots f_{3}\left(x_{n}\right) & 1 & y_{3}{ }^{-1}
\end{array}\right]=\left[\begin{array}{llll}
1 & \ldots & 1 & 0 \\
0 \\
x_{1} & \ldots & x_{n} & 0 \\
y_{2}{ }^{-2} & a y_{2}{ }^{-1} & 1 \\
b y_{3}{ }^{-2} & a y_{3}{ }^{-1} & 1
\end{array}\right]\right.
$$

are regular. This is easily seen since $a b \neq 0$ and all the 3×3 submatrices on the ring are Vandermonde. Perhaps we should justify the inclusion of the $(n+2)-n d$ cube A^{\prime} by showing explicitly that

$$
\left|\begin{array}{lll}
1 & 1 & 0 \\
x_{i} & x_{j} & a^{-1} \\
x_{i}{ }^{2} & x_{j}{ }^{2} & 0
\end{array}\right|=a^{-1}\left|\begin{array}{ll}
1 & 1 \\
x_{i}{ }^{2} & x_{j}{ }^{2}
\end{array}\right|=a^{-1}\left(x_{i}+x_{j}\right)^{2} \neq 0
$$

for all $1 \leqq i<j \leqq n$.
The elements in the main diagonals of $A^{(t)}$ are

$$
\left\{\left(f_{1}(t)+f_{2}(t)+f_{3}(t)\right) x_{i}+e_{2} f_{2}(t)+e_{3} f_{3}(t) \mid i=1, \ldots, n\right\}
$$

where e_{2}, e_{3} are 0 or 1 . Thus $A^{(t)}$ is strongly Latin provided

$$
f_{1}(t)+f_{2}(t)+f_{3}(t) \neq 0
$$

If $A^{(t)}$ is not strongly Latin then each main diagonal of $A^{(t)}$ consists of n equal elements.

The elements in the main diagonals of $A^{(\infty)}$ are $\left\{x_{i} \mid i=1, \ldots, n\right\}$ and $\left\{x_{i}+1 \mid i=1, \ldots, n\right\}$ so that $A^{(\infty)}$ is strongly Latin. Finally the elements in the main diagonals of A^{\prime} are

$$
\left\{\left(y_{1}^{-1}+y_{2}^{-1}+y_{3}^{-1}\right) x_{i}+e_{2} y_{2}^{-1}+e_{3} y_{3}^{-1} \mid i=1, \ldots, n\right\}
$$

where $e_{2}, e_{3}=0$ or 1 . Thus either A^{\prime} is strongly Latin or all its main diagonals consist of n equal elements. Thus, if there exist two cubes which are not strongly Latin, then by the orthogonality of the system the other n cubes must be strongly Latin.
3.3. Theorem. Let $n \geqq k$ be a power of 2 . Then there exists an orthogonal system of $n+1$ Latin k-cubes of order n of which at least $n+2-k$ are strongly Latin.

Proof. We make a construction which is completely analogous to that made in the proof of the preceding theorem except that we no longer get an analog to A^{\prime}. The resulting k-cubes are either strongly Latin or have all the main diagonals consisting of n equal elements. If there are $k-1$ of the cubes which are not strongly Latin, then by the orthogonality of the system the remaining cubes are all strongly Latin.

Using Kronecker products we get results for n which are not powers of primes.
3.4. Corollary. Let $n=p_{1}^{d_{1}} \ldots p_{m}{ }^{d_{m}}$. Then there exists an orthogonal system of q magic Latin k-cubes of order n of which r are strongly Latin. Here

$$
q=\min _{i=1, \ldots, m}\left\{p_{1}^{d_{1}}+1\right\}, \quad r=q-1-(k-1) 2^{k-1}
$$

if $2<p_{1}<\ldots<p_{m}$;

$$
\begin{aligned}
q & =\min \left\{2^{d_{1}}, p_{2}^{d_{2}}+1, \ldots, p_{m}{ }^{d_{m}}+1\right\} \\
r & =\min \left\{2^{d_{1}}, p_{2}^{d_{2}}-8, \ldots, p_{m}{ }^{d_{m}}-8\right\}
\end{aligned}
$$

if $2=p_{1}<\ldots<p_{m} ; k=3$;
$q=\min \left\{2^{d_{1}}+2-k, p_{2}{ }^{d_{2}}+1, \ldots, p_{m}^{a_{m}}+1\right\}$
$r=\min \left\{2^{d_{1}}+2-k, p_{2}{ }^{d_{2}}-(k-1) 2^{k-1}, \ldots, p_{m}^{d_{m}}-(k-1) 2^{k-1}\right\}$
if $2=p_{1}<\ldots<p_{m}, k>3$.
Since the polynomials chosen in the proofs of Theorems 3.1, 3.2, and 3.3 are linearly independent, it follows that for any given k and any sufficiently large power of a prime n we get a system of orthogonal completely Latin k-cubes of order n. The superposition of any k of these cubes leads to a large number of completely magic k-cubes in the sense that the integers from 0 to $n^{k}-1$ are placed in the cubes so that the sums in all straight lines which pass through n entries are the same number $n\left(n^{k}-1\right) / 2$.
3.5. Theorem. If n is a power of an odd prime and

$$
n \geqq g(k)+k=\frac{1}{2}\left(3^{k}-1\right)(k-1)-k(k-2)
$$

then there exists a system of $n-g(k)$ orthogonal completely Latin k-cubes of order n.

Proof. We use the same constructions as in the proofs of Theorems 3.1 and 3.3 but, for odd n, we have to exclude all values of t for which any of the sums

$$
\begin{equation*}
f_{i_{1}}(t) \pm f_{i_{2}}(t) \pm \ldots f_{i_{s}}(t)=0 \tag{3.6}
\end{equation*}
$$

where

$$
1 \leqq i_{1}<i_{2}<\ldots<i_{s} \leqq k \quad(1<s \leqq k)
$$

The number of such choices is $\left(3^{k}-1-2 k\right) / 2$ since for each f_{i} we either fail to include it or include f_{i} or $-f_{i}$ in the sum (3.6). This would give 3^{k} choices. However we must include at least two f_{i} so this decreases the number of choices by 1 (choice of none) $+2 k$ (choice of one). Finally we pick the sign of $f_{i_{1}}$ to be + and thus divide the number of terms by 2 . No polynomial in (3.6) has more than $k-1$ zeros in F and thus the number of k-cubes $A^{(t)}$ in Theorem 3.1 which are completely magic is at least $n-(k-1)\left(3^{k}-1-2 k\right) / 2=$ $n-g(k)$.

If n is a power of 2 then we need only exclude those values of t for which

$$
f_{i_{1}}(t)+\ldots+f_{i_{s}}(t)=0 \quad 1 \leqq i_{1}<\ldots<i_{s} \leqq k, 1<s \leqq k .
$$

This leads to the exclusion of at most $(k-1)\left(2^{k}-1-k\right)$ values of t and thus the number of k-cubes $A^{(t)}$ in Theorem 3.3 which are completely magic is at least $n-h(k)$.

For sufficiently large prime powers n it is possible to select polynomials $f_{i}(t)$ with care so that we get systems (with $n+1$ or $n+2$ elements) of orthogonal completely Latin k-cubes of order n. We illustrate this here for the case $k=3$, $n=2^{m}$.
3.7. Lemma. Let F be a finite field with 2^{m} elements considered as an m dimensional vector space over the prime field $F_{0}=\{0,1\}$. Then for each quadratic polynomial $g(t)=a t^{2}+b t \in F[t]$ with $a b \neq 0$ the values attained by $g(t), t \in F$ form an ($m-1$)-dimensional hyperplane H_{0} over F_{0}.

The hyperplane H_{g} is uniquely determined by the ratio $a / b^{2}=c$ and

$$
\begin{equation*}
H_{o}=\mathrm{H}_{c}=\left\{c t^{2}+t \mid t \in F\right\} \tag{3.8}
\end{equation*}
$$

is the set of solutions of the equation

$$
\begin{equation*}
\operatorname{Tr}(c x)=c x+(c x)^{2}+\ldots+(c x)^{2^{m-1}}=0 \tag{3.9}
\end{equation*}
$$

Since there are $2^{m}-1$ distinct equations (3.9) it follows that every $(m-1)$ dimensional subspace of F has the form H_{g} for a suitable g.

Proof. Since $\left(t_{1}+t_{2}\right)^{2}=t_{1}{ }^{2}+t_{2}{ }^{2}$ for $t_{1}, t_{2} \in F$ we have $g\left(t_{1}+t_{2}\right)=g\left(t_{1}\right)+$ $g\left(t_{2}\right)$ so that H_{g} is a linear manifold over F_{0}. Since $g\left(t_{1}\right)=g\left(t_{2}\right)$ if and only if $t_{1}=t_{2}$ or $t_{1}=t_{2}+b / a$ it follows that H_{g} has 2^{m-1} elements and is a hyperplane. For any $s \in F^{*}$ the polynomial $h(t)=g(s t)$ attains the same values over F as the polynomial $g(t)$. Thus $H_{h}=H_{g}$. The choice $s=1 / b$ yields

$$
H_{o}=H_{c t 2+t}=H_{c} .
$$

For $x=c t^{2}+t$ we have

$$
c x=(c t)^{2}+c t \quad \text { and } \quad \operatorname{Tr}(c x)=\operatorname{Tr}(c t)+\operatorname{Tr}\left((c t)^{2}\right)=2 \operatorname{Tr}(c t)=0
$$

The last statement of the lemma follows from the fact that there are $2^{m}-1$ ($m-1$)-dimensional subspaces of F.
3.8. Collary. The intersection of k hyperplanes $H_{c 1}, \ldots, H_{c k}$ defined in Lemma 3.7 is the set of elements $x \in F$ which satisfy $\operatorname{Tr}(c x)=0$ for all c in the linear subspace of F spanned by c_{1}, \ldots, c_{k} over F_{0}.
3.9. Theorem. If $m \geqq 11$ then there exists a system of $n+2$ orthogonal completely Latin cubes of order $n=2^{m}$.

Proof. In the field of order n there is an element e of order $m \geqq 11$ we now consider the 7 polynomials $g_{1}=e^{2} t^{2}+t, g_{2}=e t^{2}+e t, g_{3}=t^{2}+e^{2} t, g_{4}=$ $g_{1}+g_{2}, g_{5}=g_{1}+g_{3}, g_{6}=g_{2}+g_{3}, g_{7}=g_{1}+g_{2}+g_{3}$ and the corresponding 7 hyperplanes $H_{i}=H_{u_{i}}$ where $u_{1}=e^{2}, u_{2}=1 / e, u_{3}=1 / e^{4}, u_{4}=e /(1+e)$, $u_{5}=1 /(1+e)^{2}, u_{6}=1 /\left(e+e^{2}\right)^{2}$, and $u_{7}=1 /\left(1+e+e^{2}\right)$. These 7 values
u are linearly independent over F_{0} and the 7 hyperplanes H_{i} are therefore in general position.

We now complete the choice of polynomial $f_{1}=g_{1}+c_{1}, f_{2}=g_{2}+c_{2}, f_{3}=$ $g_{3}+c_{3}$ where the c_{i} are determined successively so as to make the 7 polynomials $f_{1}, f_{2}, f_{3} f_{1}+f_{2}, f_{1}+f_{3}, f_{2}+f_{3}, f_{1}+f_{2}+f_{3}$ irreducible over F and so that

$$
\left|\begin{array}{lll}
e^{2} & e & 1 \\
1 & e & e^{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \neq 0
$$

We first pick $c_{1} \notin H_{g_{1}}$. This gives us $n / 2$ possible choices for c_{1}. Once we have chosen c_{1} we pick c_{2} so that $c_{2} \notin H_{g_{2}}, c_{2} \nexists c_{1}+H_{g_{4}}$. This gives us $n / 4$ possible choices for c_{2}. Having chosen c_{2} we pick c_{3} so that $c_{3} \notin H_{g_{3}}, c_{3} \nexists c_{1}+H_{g_{5}}$, $c_{3} \notin c_{2}+H_{g_{6}}, c_{3} \notin c_{1}+c_{2}+H_{g_{7}}$, and

$$
\left|\begin{array}{ccc}
e^{2} & e & 1 \\
1 & e & e^{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \neq 0
$$

This gives us at least $n / 16-1$ choices for c_{3}. Once these choices have been made we get $n+2$ orthogonal completely Latin cubes

$$
\begin{aligned}
& A_{i j k^{(t)}}=f_{1}(t) x_{i}+f_{2}(t) x_{j}+f_{3}(t) x_{k}, \quad t \nmid F ; \\
& A_{i j k^{(\infty)}}=e^{2} x_{i}+e x_{j}+x_{k} ; \\
& A_{i j k^{\prime}}^{\prime}=x_{i}+e x_{j}+e^{2} x_{k} ;
\end{aligned}
$$

where $F=\left\{x_{0}, \ldots, x_{n-1}\right\}$ is arranged as in the proof of Theorem 3.2.
4. Examples. We can use the results of Section 3 to construct strongly magic cubes of every prime power order $q \geqq 7$ and hence, by Kronecker products, for every order n whose least primary divisor is no less than 7 .

We need only show that there exist triples of linearly independent vectors $\mathbf{C}^{(1)}, \mathbf{C}^{(2)}, \mathbf{C}^{(3)}$ over finite fields of order $q \geqq 7$ with the properties $c_{j}^{(i)} \neq 0$, $c_{j}{ }^{(i)} \neq I c_{k}{ }^{(i)}$ for $j \neq k$. For q a power of 2 we also need the property $c_{1}{ }^{(i)}+$ $c_{2}{ }^{(i)}+c_{3}{ }^{(i)} \neq 0$. The vectors $\left(1, t, t^{2}\right)$ with $t \neq 0, \pm 1$ have the desired properties for odd q and so for odd $q \geqq 7$ there are at least 4 Latin cubes so that the superposition of any 3 yields a strongly magic cube. For q a power of 4 we also have to rule out the two values of t for which $t^{2}+t+1=0$. Thus for even q there are at least 5 Latin cubes so that the superposition of any 3 yields a strongly magic cube.

Choosing the values $t= \pm 2,3$ for $q=7$ we get the 3 cubes $A^{(t)}$ whose entries are

$$
a_{i j k}{ }^{(t)} \equiv i+t j+t^{2} k-3\left(t+t^{2}\right) \quad(\bmod 7)
$$

$i, j, k=0, \ldots, 6$. Their superposition yields a strongly magic cube with entries expressed in base 7 . For 4 -dimensional cubes our construction yields strongly magical yields strongly magical cubes of every primary order $q \geqq 17$.

References

1. Joseph Arkin and E. G. Straus, Latin k-cubes, Fibonacci Quarterly, 12 (1974), 288-292.
2. W. W. R. Ball, Mathematical Recreations and Essays (New York 1962).
3. Denes and Keedwell, Latin Squares (London 1974).
4. Walter Taylor, On the coloration of cubes, Discrete Math. 2 (1972), 187-190.

197 Old Nyack Turnpike, Spring Valley, New York; San Jose State University, San Jose, California; University of California, Los Angeles, California

[^0]: Received January 24, 1975 and in revised form, February 24, 1976. The work of the third author was supported in part by NSF Grant No. 28696.

