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Numerous experiments and theoretical calculations have shown that cylindrical vesicles
can undergo a pearling instability similar to the Rayleigh–Plateau instability of a liquid
jet when they are subjected to external tension. In a living cell, a Rayleigh–Plateau-like
instability could be triggered by internal tension generated in the cell cortex. This
mechanism has been suggested to play an essential role in biological processes such as
cell morphogenesis. In contrast to the simple, passive and isotropic membrane of vesicles,
the cortical tensions generated by biological cells are often strongly anisotropic. Here,
we theoretically investigate how this anisotropy affects the Rayleigh–Plateau instability
mechanism. We do so in the limit of both low and high Reynolds numbers and accordingly
cover cell behaviour under anisotropic cortical tension as well as fast liquid jets with
anisotropic surface tension. Combining analytical linear stability analysis with numerical
simulations we report a strong influence of the anisotropy on the dominant wavelength of
the instability: increasing azimuthal with respect to axial tension leads to destabilisation
and to a shorter break-up wavelength. In addition, compared to the classical isotropic
Rayleigh–Plateau situation, the range of unstable modes grows or shrinks when the
azimuthal tension is higher or lower than the axial tension, respectively. We explore
nonlinear effects like an altered break-up time and formation of satellite droplets under
anisotropic tension. In Part 2 (Bächer et al. J. Fluid Mech., vol. xxx, 2021, Ax) of this
series we continue our analysis by analytically investigating the influence of bending and
shear elasticity, usually present in vesicles and cells, on this anisotropic Rayleigh–Plateau
instability.

Key words: instability, capsule/cell dynamics, membranes

1. Introduction

The break-up of liquid jets into droplets, triggered by surface tension, was already
investigated intensively by Plateau in the second half of the 19th century (Plateau 1873).
Based on the concept of the fastest growing perturbation, Rayleigh derived a relation
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between the radius of the liquid jet and the dominant wavelength which determines the
size of the droplets for an ideal fluid in the absence of an outer medium (Rayleigh
1878). Later, he extended the theoretical description of this Rayleigh–Plateau instability to
viscous jets in the inertialess Stokes limit (Rayleigh 1892). Again in the Stokes limit, the
presence of an outer medium with arbitrary viscosity ratio between inner and outer fluid
has been investigated by Tomotika (1935). A simplified version for the important case of
equal viscosities has been presented by Stone & Brenner (1996). The Rayleigh–Plateau
instability is a prime example of the beauty of fluid mechanics and possesses great
relevance in various applications. We refer to the review article by Eggers & Villermaux
(2008) for further details.

However, pearling and break-up due to the Rayleigh–Plateau mechanism are not
restricted to liquid jets. In 1994, Bar-Ziv & Moses (1994) reported a pearling instability
for a tubular vesicle. A vesicle consists of a lipid bilayer membrane confining an interior
fluid and is often considered as a model system for a biological cell (Seifert 1997). Under
local application of laser tweezers the vesicle formed pearls (Bar-Ziv & Moses 1994).
Using a hydrodynamic theory Nelson, Powers & Seifert (1995) and Goldstein et al. (1996)
explained the pearling of the vesicle by a laser induced tension, which in turn triggers
a Rayleigh–Plateau-like instability. Pearl formation starts at the site of application of the
laser and the instability then propagates along the cylindrical vesicle (Goldstein et al.
1996; Bar-Ziv, Tlusty & Moses 1997). Later, several experimental studies demonstrated
different ways to induce the tension which is required for the pearling instability (Powers
2010). Pulling on membrane tethers with optically trapped particles (Bar-Ziv, Moses &
Nelson 1998; Powers, Huber & Goldstein 2002), protein mediated anchoring of membrane
tethers to a substrate (Bar-Ziv et al. 1999), applying a magnetic field (Ménager et al. 2002),
electric field (Sinha, Gadkari & Thaokar 2013) or osmotic pressure gradient (Yanagisawa,
Imai & Taniguchi 2008; Sanborn et al. 2013) can all lead to pearling. Furthermore,
Kantsler, Segre & Steinberg (2008) reported the transition of a finite-size, tubular vesicle
to a pearling state due to stretching in an extensional flow and noted that the transition
is reversible when the external flow stops. In shear flow the instability has also been
observed (Pal & Khakhar 2019). Boedec, Jaeger & Leonetti (2014) derived theoretically
the growth rate for the instability of a cylindrical vesicle under tension. They treat the
fluid surrounding the vesicle in the limit of the Stokes equation and allow for variations
of the tension along the vesicle. By means of boundary integral simulations Narsimhan,
Spann & Shaqfeh (2015) showed that the initial shape of a closed vesicle in extensional
flow influences the number of fragments after pearling.

In contrast to passive vesicles, where the tension triggering the Rayleigh–Plateau
instability has to be imposed from the outside, living biological cells are able to
internally create active stresses in their cytoskeletal network (Kruse et al. 2005; Marchetti
et al. 2013; Prost, Jülicher & Joanny 2015; Salbreux & Jülicher 2017; Jülicher, Grill
& Salbreux 2018). Such cytoskeletal networks can build a thin layer that underlies
the plasma membrane, named the cell cortex (Alberts et al. 2007; Köster & Mayor
2016; Chugh & Paluch 2018), in which the action of motor proteins leads to active
tension at the cell’s interface (Chugh et al. 2017). A positive constant active tension
caused by a homogeneous (Pleines et al. 2013) actomyosin distribution in the cortex
describes the internal tendency of the cytoskeleton to contract (Needleman & Dogic
2017). Alternatively, proteins which anchor at the plasma membrane can trigger a
pearling instability (Tsafrir et al. 2001) by bending the membrane and thus inducing a
non-zero curvature (Campelo & Hernández-Machado 2007; Jelerčič & Gov 2015). For a
viscous active surface Mietke et al. (2019a) and Mietke, Jülicher & Sbalzarini (2019b)
report a Rayleigh–Plateau instability with mechano-chemical regulation. For a biological
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tissue composed of multiple cells Hannezo, Prost & Joanny (2012) provide an energy
argument based on an effective surface tension. Berthoumieux et al. (2014) considered
the Green’s function for an elastic cell membrane subjected to active tension, which
again leads to the prediction of a Rayleigh–Plateau instability. Bächer & Gekle (2019)
confirmed the instability threshold predicted by Berthoumieux et al. (2014) and presented
the shape of a membrane undergoing Rayleigh–Plateau instability in three-dimensional
simulations of active membranes. For soft materials the Rayleigh–Plateau instability is an
important mechanism in beaded object formation (Mora et al. 2010) and the production
of synthetic vesicles (Anna 2016; Pal & Khakhar 2019). Especially in the biological
context, Rayleigh–Plateau-like instabilities have been proposed to play an important role
in microtubuli-driven cell deformation (Emsellem, Cardoso & Tabeling 1998), as a driving
mechanism behind mitochondrial fission (Gonzalez-Rodriguez et al. 2015) as well as for
pathological shapes of blood vessels during vasoconstriction (Alstrøm et al. 1999).

All the above mentioned studies on the Rayleigh–Plateau instability in different contexts
have in common that they consider an isotropic tension. However, in reality, cytoskeletal
systems often exhibit strong anisotropy (Reymann et al. 2012; Murrell et al. 2015;
Blackwell et al. 2016; Zhang et al. 2018), e.g. due to the formation of stress fibres
(Tojkander, Gateva & Lappalainen 2012). Accordingly, the tension in the cell cortex can be
anisotropic (Rauzi et al. 2008; Mayer et al. 2010; Behrndt et al. 2012; Callan-Jones et al.
2016), which is important for many biological phenomena such as cell-shape regulation
(Callan-Jones et al. 2016), cell polarisation (Mayer et al. 2010), ingression formation
(Reymann et al. 2016), the formation of a furrow during cell division (White & Borisy
1983; Salbreux, Prost & Joanny 2009) and the production of blood platelets (Bächer,
Bender & Gekle 2020). For a solid rod in the absence of any kind of fluid, Gurski &
McFadden (2003) proposed an instability mechanism based on the bulk anisotropy of the
underlying crystal lattice for the growing of nanowires. How anisotropic surface tension
affects the Rayleigh–Plateau instability of vesicles, cells or even liquid jets, however,
remains an open question.

In this work, we analytically extend the framework of the Rayleigh–Plateau instability to
include anisotropic interfacial tension for low (Stokes fluid) and high (ideal fluid) Reynolds
numbers. In both situations, we derive the dispersion relation depending on the tension
anisotropy and report a striking influence on the dominant wavelength and maximum
growth rate of the instability. Compared to the classical Rayleigh–Plateau criterion for
isotropic surface tension, we observe a decrease in wavelength for dominating azimuthal
tension and an increase for dominating axial tension. The analytical predictions agree
very well with numerical simulations using a boundary integral method (BIM) and a
lattice-Boltzmann/immersed boundary method (LBM/IBM). From these simulations we
also compute the nonlinear correction to the linear break-up time. Including interface
viscosity in the stability analysis for the Stokes regime also influences the dominant
wavelength and growth rate of the instability albeit less pronounced than the tension
anisotropy. Finally, we use a long-wavelength expansion to investigate the formation
of satellite droplets (Ashgriz & Mashayek 1995; Martínez-Calvo et al. 2020) under
anisotropic interfacial tension. In Part 2 (Bächer, Graessel & Gekle 2021) we consider
the anisotropic Rayleigh–Plateau instability of vesicles or capsules endowed with bending
and shear elasticity.

We start by introducing our theoretical model for an anisotropic interface, the coupling
to the surrounding fluid as well as the numerical methods used in the simulations in § 2. We
then present the dispersion relation for the Rayleigh–Plateau instability of an anisotropic
interface obtained by analytical linear stability analysis in § 3 first for a Stokes fluid in
§ 3.1 and then for an ideal fluid in § 3.2. In § 4.1 we discuss the effect of anisotropic
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FIGURE 1. Illustration of the set-up. We consider a complex interface which can be either a
liquid jet of Newtonian fluid in the limit of vanishing viscosity η or the membrane of a vesicle
or cell immersed in a fluid in the limit of the Stokes equation, i.e. density ρ = 0. The fluid jet is
immersed in an ambient fluid with η0, ρ0. The cylindrical interface of initial radius R0 (dashed
line) is subjected to a periodic perturbation with amplitude ε (solid blue line). The interface is
parametrised by the position along the cylinder axis z and the radius R(z, t). We consider the
interfacial tension in the axial direction γ z (orange) different from that in the azimuthal direction
γ φ (green), both of which contribute to the membrane force acting onto the fluid with different
curvature components (grey circles).

interfacial tension on the dominant wavelength of the instability by comparing analytical
and simulation results and show a transition between Stokes fluid and ideal fluid in
§ 4.2. In § 4.3 we discuss the dominant growth rate in comparison to numerical results.
Nonlinear corrections of the linear break-up time are investigated in § 4.4. In § 5 we
discuss the combination of anisotropic tension and interface viscosity and finally present
the formation of satellite droplets under the influence of tension anisotropy for an ideal
fluid jet without ambient fluid in § 6. We conclude in § 7.

2. Description of an anisotropic interface

2.1. Problem illustration
We consider a general complex interface, as sketched in figure 1, which is surrounded by a
fluid on both sides. This can either represent the interface of a liquid jet in the co-moving
frame or the membrane of a vesicle or biological cell. As usual (Eggers & Villermaux
2008; Boedec et al. 2014), we assume that the interface is infinitely long. In the analytical
stability analysis we consider an axisymmetric interface, which is parametrised by the
axial position z and the local radius R(z, t). Initially, the interface is cylindrical with radius
R(z, 0) = R0. At arbitrary time t the interface is subjected to a perturbation δR(z, t), such
that the local radius is given by R(z, t) = R0 + δR(z, t).

In order to perform a linear stability analysis of the complex interface in the presence
of anisotropic interfacial tension, we apply a periodic perturbation to its shape (Drazin &
Reid 2004). The perturbation of the interface is illustrated in figure 1: it modulates the
radius in z-direction along the cylinder axis with amplitude ε(t) = ε0 eωt, a wavelength
λ and a corresponding wavenumber k = 2π/λ of the wave vector pointing along the
cylinder axis. The perturbation with initial amplitude ε0 grows in time with growth rate ω.
Accordingly, the interface of the jet can be described by its radius as

R(z, t) = R0 + ε0 exp(ωt + ikz). (2.1)
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Throughout this work, we consider an anisotropic interfacial tension, i.e. the value of
the axial tension differs from the value of the azimuthal tension. This anisotropic tension
accounts for two fundamentally different situations. First, in a liquid jet anisotropy can
arise, e.g. from covering the interface with passive anisotropic surfactant molecules, thus
extending the classical concept of liquid–liquid surface tension to an anisotropic situation.
Second, in biological cells or tissue, an active biological machinery, cytoskeletal filaments
with motor proteins underlining the plasma membrane, can produce anisotropic tensions at
the interface as described in more detail in the Introduction. Due to their usually contractile
nature, these active tensions enter the physical equations in the same way as the classical
surface tension, despite their fundamentally different origin. In the following, we therefore
use the same symbol and refer to both scenarios with the general term interfacial tension.

2.2. Interface coupled to a surrounding fluid
Interfacial tension leads to internal forces being transmitted from the interface to the fluid
(Green & Zerna 1954; Barthès-Biesel 2016; Salbreux & Jülicher 2017). In contrast to
the classical isotropic Rayleigh–Plateau scenario, we assign anisotropic tension to the
interface, i.e. we distinguish between the azimuthal γ φ and the axial interfacial tension
γ z. As sketched in figure 1 the periodic perturbation along the axis changes the curvature
of the interface both in the azimuthal and in the axial direction. In azimuthal direction
the curvature 1/Rφ is the inverse of the local radius of the interface Rφ = R(z, t), where
we follow the convention that the curvature of a cylinder is positive. Accordingly, the
curvature along the axis is given by the negative second derivative of the radius, 1/Rz =
−R′′ such that the curvature is negative at a neck and positive at a bulge (compare figure 1).
The derivative R′′ follows directly from (2.1).

The anisotropic tension does not depend on the position along the interface, therefore
its derivative vanishes and for a liquid–liquid interface no internal forces tangential to
the interface arise (Green & Zerna 1954; Salbreux & Jülicher 2017). The internal force
normal to the interface is given by the interfacial tension components weighted by the
corresponding principal curvature. Balance of forces requires that this normal force is
in equilibrium with the difference in tractions exerted by the fluids on either side of the
interface. Thus, the normal traction jump across the interface Δf n reads

γ φ

Rφ

+ γ z

Rz
= Δf n. (2.2)

The traction jump is given by the projection of the three-dimensional viscous stress
tensor of the outer and inner fluid onto the interface normal vector (Chandrasekharaiah
& Debnath 1994). For an incompressible interface or for negligible viscous effects, i.e.
for an ideal fluid, the traction jump is determined by the pressure p of the fluid. With the
normal vector pointing outwards from the interface and considering the outer and inner
fluid as incompressible, the traction jump in normal direction is thus given by

Δf n = −pout + pin = p(r = R), (2.3)

with pressures pout and pin of the outer and inner fluid, respectively, and p(r = R) denoting
the pressure difference at the interface. Together (2.2) and (2.3) lead to

γ φ

Rφ

+ γ z

Rz
= p(r = R), (2.4)
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for an incompressible interface or an ideal fluid interface. The relation in (2.4) reduces
to the classical Young–Laplace equation γ /R = p in the limit of isotropic surface tension
γ = γ φ = γ z and vanishing curvature along z, i.e. Rz → ∞. The anisotropic interfacial
tension thus leads to a pressure disturbance of the inner fluid, where the two contributions
of the interfacial tension are weighted with their respective radii of curvature.

2.3. Fluid dynamics
The motion of the fluid inside and outside the jet is in general described by the
Navier–Stokes equation

∂v

∂t
+ (v · ∇) v = − 1

ρ
∇p + νΔv, (2.5)

with the velocity field v, fluid density ρ, kinematic viscosity ν = η/ρ and shear
viscosity η. Density and viscosity of the outer fluid are denoted by ρo and ηo, respectively.
The fact that the liquid is incompressible, which is true for both the liquid of a jet and
the liquid encapsulated in a vesicle, leads furthermore to the continuity equation for the
incompressible liquid

∇ · v = 0. (2.6)

The Navier–Stokes and continuity equations together govern the motion of the fluid.
Besides the well-known Reynolds number Re = ρR0V0/η with a typical velocity V0 and

the unperturbed interface radius R0 as the typical length, we use the Ohnesorge number
(Eggers & Villermaux 2008), which relates characteristic scales of the interface and the
surrounding fluid

Oh = η√
ρR0γ

. (2.7)

In our anisotropic scenario with γ z /= γ φ we define two distinct Ohnesorge numbers Ohz
and Ohφ for the respective interfacial tensions.

In the limit of small velocities or large viscosity, i.e. the Stokes regime, the Reynolds
number approaches zero while the Ohnesorge number becomes large. In this regime, the
Navier–Stokes equation can be replaced by the linear Stokes equation

0 = −∇p + ηΔv. (2.8)

In the limit of large velocities or small viscosity, i.e. for an ideal fluid, the Reynolds number
is larger than one and the Ohnesorge number becomes small. Here, the Euler equation
applies

∂v

∂t
+ (v · ∇) v = − 1

ρ
∇p. (2.9)

2.4. Numerical simulations
We aim for a comparison of our main analytical results, the dominant wavelength of the
instability and its growth rate presented in §§ 4.1 and 4.3, respectively, with numerical
simulations solving the coupled fluid and interface dynamics. The simulations further
provide us a glimpse on the nonlinear aspects of the instability dynamics. For a Stokes
fluid and an ideal fluid with an outer fluid with the same properties, we perform
three-dimensional boundary integral method and lattice-Boltzmann/immersed boundary
method simulations, respectively.
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2.4.1. Three-dimensional numerical investigation of the instability
We consider a fluid column, the liquid jet, immersed in an ambient fluid. We use

fully three-dimensional simulations, thus testing also for non-axisymmetric instabilities
triggered by anisotropic interfacial tension (which we did not observe).

The interface encapsulates a Newtonian fluid and is surrounded by another Newtonian
fluid of the same density ρ0 = ρ or viscosity η0 = η. For the fluid, periodic boundary
conditions are chosen in each of the three spatial directions together with a kinematic
boundary condition at the interface. Fluid dynamics is either solved by the BIM or the
LBM/IBM, as detailed below.

Following the set-up sketched in figure 1, we consider an initially cylindrical interface
which is modelled as a thin shell and which we discretise by nodes connected to triangles.
Anisotropic tension of the interface is realised using the recently developed and validated
computational method for active membranes in flows (Bächer & Gekle 2019). This
approach can treat both the anisotropic surface tension of a liquid jet in the co-moving
frame and the anisotropic active tension of a biological cell cortex on the same footing.
To investigate the instability dynamics, we initially apply a small periodic perturbation to
the cylindrical interface, as shown in figure 1. From this initial configuration the temporal
evolution of the interface and the suspending fluid is solved including a dynamical two
way coupling of interface and fluid. The method to determine the dominant wavelength
and growth rate is described in appendix A.

2.4.2. Boundary integral method
As the simulation method at zero Reynolds number we use the BIM to solve the fluid

dynamics (Pozrikidis 2001; Zhao et al. 2010). The BIM solves the Stokes equation in the
presence of discretised boundaries based on hydrodynamic Green’s functions. It directly
solves for the fluid velocity at the nodes of the discretised interface for given interface
shape and interfacial force density. As a consequence of using the Stokes equation, in
BIM simulations inertial effects are excluded. Neglecting inertial effects corresponds to
Re = 0 and an Ohnesorge number Oh → ∞. Membrane forces due to interfacial tension
are calculated as detailed in Bächer & Gekle (2019). As the interfacial tension in the
simulation we use γ φ ≈ 10 pN μm−1, a typical tension expected for blood cells (Dmitrieff
et al. 2017). For details on the implementation of the BIM we refer to Guckenberger &
Gekle (2018).

As the box size, we consider the length of the cylindrical tube, which is typically 80
times the tube radius, along the axis and ten times the tube radius in lateral directions.
A typical discretisation of the interface consists of approximately 17 000 nodes and 32 500
triangles. We do not use periodic boundary conditions for the membrane due to technical
issues of the implementation used for BIM simulations. We rather place the outer rings of
nodes exactly at the beginning and end of the box, respectively, and fix the nodes by elastic
springs. Due to an insufficient number of neighbouring nodes, at the boundary nodes the
force from the interfacial tension is not calculated. We note that using this set-up, the
fluid encapsulated by the membrane remains inside. For the initial small deformation of
the interface we choose the amplitude ε0 = 0.02. The fluid viscosity is chosen as η ≈
1.2 × 10−3 Pa s. We simulate for approximately 100 time steps with adaptive step size and
a total simulation time of approximately 20 ms.

2.4.3. Lattice-Boltzmann/immersed boundary method
As a method to solve fluid dynamics at large/finite Reynolds number, we use the

LBM (Aidun & Clausen 2010; Krüger et al. 2016) together with the IBM (Peskin 2002;
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Mittal & Iaccarino 2005; Bächer, Schrack & Gekle 2017; Mountrakis, Lorenz & Hoekstra
2017; Bächer et al. 2018). Our LBM/IBM is implemented in the software package
ESPResSo (Limbach et al. 2006; Roehm & Arnold 2012; Arnold et al. 2013; Weik et al.
2019) and has been extensively validated (Gekle 2016; Guckenberger et al. 2016; Bächer
et al. 2018; Bächer & Gekle 2019).

The LBM solves the fluid dynamics on the basis of the mesoscopic Boltzmann equation
and accounts for the fluid dynamics according to the full Navier–Stokes equation. The
fluid thus has a finite density, a finite viscosity and, therefore, a finite Ohnesorge number.
The fluid is discretised by an Eulerian grid and populations representing the distribution
functions for the different velocities are assigned to each fluid node. We here use the
D3Q19 velocity set and a typical fluid mesh with dimensions of approximately 650 × 40 ×
40 with some simulation lattices extending up to 800 × 40 × 40. A typical simulation runs
for 500 000 steps. In the limit of an ideal fluid we choose Ohnesorge numbers in the range
of 10−3–10−4. Initially, the fluid has zero velocity.

The discretised interface is coupled to the background fluid using the IBM. A typical
interface contains 18 240 nodes and 36 480 triangles, has a radius of 6 LBM grid cells
and is periodic along the axial direction with an initial perturbation amplitude ε0 = 0.02
in simulations to determine the dominant wavelength. An additional refined simulation
set-up is used for determination of the dominant growth rate, where we simulate one
period of the dominant mode with initial perturbation ε0 = 0.002 and increased resolution
with a radius of 13 LBM grid cells. Here, a typical fluid lattice consists of 180 × 70 × 70
nodes and a membrane mesh of 15 416 nodes and 30 832 triangles. We again note that
axisymmetry is not imposed and that the simulations are fully three-dimensional. The
average distance between two interface nodes is approximately the length of one LBM
grid cell. An interface node moves with the local fluid velocity which is interpolated at
the node position from the surrounding fluid nodes by an eight-point stencil. The force
stemming from the interfacial tension and acting from the membrane onto the fluid at
the site of each interface node is transmitted to the fluid by the same eight-point stencil
interpolation scheme. Thus, the IBM provides a dynamic two way coupling of membrane
and fluid.

3. Dispersion relation for anisotropic interfacial tension

3.1. Anisotropic Rayleigh–Plateau instability for a Stokes fluid
Biological cells as well as their synthetic counterpart (vesicles) are typically a few tens
micrometres in size. Therefore, we consider the limit of small Reynolds numbers, i.e.
Re � 1, where the Navier–Stokes equation (2.5), reduces to the linear Stokes equation
(2.8) which together with the continuity equation (2.6) describes the fluid behaviour. In the
following, we consider identical fluid viscosity inside and outside the vesicle, i.e. ηo = η.
Our aim is to obtain the dispersion relation in the case of anisotropic interfacial tension,
which gives the growth rate depending on the wavenumber of the perturbation (2.1). As
detailed in appendix B.1 we perform a linear stability analysis and obtain the dispersion
relation for a Stokes fluid

ω(k) = γ φ

R0η

(
1 − γ z

γ φ
(R0k)2

)[
I1(kR0)K1(kR0)

+kR0

2
(I1(kR0)K0(kR0) − I0(kR0)K1(kR0))

]
, (3.1)
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with Iν(x), Kν(x) being the modified Bessel functions of the first and second kind,
respectively, and of order ν.

Positive values of ω correspond to growing perturbations (2.1), whereas perturbation
modes with negative growth rate are dampened. Because of the positive prefactor ωS

0 =
γ φ/(R0η), which is the inverse of the viscocapillary time based on the azimuthal tension
γ φ , and the positive modified Bessel functions for positive kR0, the tension anisotropy
determines the range of growing, i.e. unstable, modes. We obtain from (3.1) the range of
growing modes for values of kR0 between −√

γ φ/γ z and
√

γ φ/γ z. This range depends
on the square root of the anisotropy of the interfacial tension. We recover for isotropic
tension γ z = γ φ = γ the range of growing wavelengths between −√

γ φ/γ z = −1 and√
γ φ/γ z = 1 as found by Plateau (1873). So in the case of the classical Rayleigh–Plateau

instability, the growing wavelengths do not depend on the interfacial tension γ but only on
the undisturbed radius R0 of the jet (Drazin & Reid 2004). Here, in addition the anisotropy
of interfacial tension enters as a factor.

We show in figure 2(a) the dispersion relation of the classical Rayleigh–Plateau
instability, i.e. for isotropic interfacial tension. The growth rate ω is plotted only against
positive kR0 due to symmetry. We further distinguish the individual contributions from γ φ ,
the first term in (3.1), and from γ z, the second term in (3.1), and plot them in orange and
green, respectively, together with the total dispersion relation in blue. It is the interplay of
the two contributions of the interfacial tension γ z and γ φ that determines the dispersion
relation. The azimuthal tension γ φ , i.e. the first term in (3.1), is positive and thus the
system would be unstable against any perturbation with arbitrary wavenumber. However,
this is not the case, because this term is balanced by the damping contribution from γ z.
Both contributions together determine a finite maximum of the dispersion relation, which
corresponds to the dominant mode that grows fastest.

We now consider an anisotropic interface were the contributions γ φ and γ z are no longer
identical. Their changing ratio leads to a different weighting of the contributions to the
dispersion relation (3.1). If the destabilising contribution from γ φ rises compared to γ z

as shown in figure 2(b), the range of growing wavelengths increases. On the other hand,
if γ φ decreases relative to γ z, the range becomes smaller (see figure 2c). Because the
destabilising γ φ contribution reaches a maximum at kR0 = 1.59 and tends to zero for
kR0 → ∞, independent of the anisotropy ratio, also for vanishing γ z → 0 a well-defined
mode at finite kR0 has the largest growth rate. This is shown by figure 2(d) in the case
of γ z = 0 with an extended kR0-range on the horizontal axis. In the limit γ φ = 0 all
modes are stable. Furthermore, changes in the anisotropy ratio shift the position of the
maximum of the dispersion relation. If γ φ > γ z (figure 2b), the position of the maximum
of ω shifts to larger values of kR0, if γ φ < γ z the maximum is found at smaller kR0 as
shown in figure 2(c). This means for dominating axial tension γ z the instability wavelength
increases.

3.2. Anisotropic Rayleigh–Plateau instability for an ideal fluid
Performing again a linear stability analysis using the same solution procedure as before,
we calculate the dispersion relation for an ideal fluid jet with same density inside and
outside the jet as detailed in appendix B.2. We obtain the dispersion relation

ω2 = γ φ

ρR3
0

(kR0)
2

(
1 − γ z

γ φ
(kR0)

2

)
I1(kR0)K1(kR0). (3.2)
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FIGURE 2. Dispersion relation in the Stokes regime for η = ηo. Curves are shown for
(a) isotropic interfacial tension γ z/γ φ = 1.0 and for anisotropic interfacial tension with
(b) γ z/γ φ = 0.5 and (c) γ z/γ φ = 2.0. We distinguish the contributions from γ φ (green) and
γ z (orange). An anisotropic tension strongly alters the range of growing modes and shifts the
maximum towards larger kR0 in (b) or smaller kR0 in (c). (d) Dispersion relation for vanishing
axial interfacial tension, i.e. γ z = 0. The γ φ contribution (green) has its maximum at kR0 = 1.59
in each of the panels, because γ φ is kept constant. Thus, although all modes are unstable in (d),
in principle, there still exists a well-defined finite dominant wavelength for a Stokes fluid due to
fluid stresses.

Compared to the dispersion relation for a Stokes fluid in (3.1), we here obtain an
equation for the squared growth rate ω2. According to the ansatz for the perturbed interface
in (2.1), perturbations with real and positive ω will grow. Imaginary ω describe oscillatory
perturbations of the surface which do not grow in time. Imaginary ω correspond to
negative values of ω2. Each positive ω2 has a positive and negative solution ω. The positive
solution will grow while the negative is damped. Thus, we are interested in non-negative
values of ω2 which are obtained from (3.2). This leads to the same expression for the
range of growing wavelengths as for the Stokes fluid in § 3.1 because the relevant factor
in the dispersion relation is identical, i.e. the anisotropy ratio γ z/γ φ enters the equation
in the same way. However, the prefactor of the growth rate changes ω2

0 = γ φ/(ρR3
0), it

now depends on the density rather than on the viscosity and is the squared inverse of
the capillary time based on the azimuthal tension γ φ . Furthermore, the geometrical factor
containing the Bessel functions is remarkably different.
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FIGURE 3. Dispersion relation for an ideal fluid with ρ = ρo. Curves are shown for (a) isotropic
interfacial tension γ z/γ φ = 1.0 and for anisotropic interfacial tension with (b) γ z/γ φ = 0.5 and
(c) γ z/γ φ = 2.0. We distinguish the contributions from γ φ (green) and γ z (orange). While γ z is
purely damping, γ φ is destabilising. An anisotropic tension strongly alters the range of growing
modes and shifts the maximum towards larger kR0 in (b) or smaller kR0 in (c).

The dispersion relation (3.2) for the ideal fluid is shown in figure 3(a–c) for same
values of the anisotropy ratio as in figure 2(a–c). We again observe a strong variation
of the maximum position and range of unstable modes with changing anisotropy ratio.
A remarkable difference to the Stokes fluid is the shape of the γ φ contribution. Here for
an ideal fluid the destabilising γ φ contribution no longer reaches a maximum at finite kR0
but instead increases indefinitely. Thus, in the limit γ z = 0 all modes are unstable with
steadily increasing growth rate. Compared to the Stokes fluid, the total dispersion relation
is furthermore more asymmetric between kR0 = 0 and

√
γ φ/γ z and the maximum shifts

towards larger wavenumbers (compare e.g. figure 2b to figure 3b).
In appendix E we further generalise our results to the dispersion relation including a

general density and viscosity contrast as derived by Tomotika (1935).

4. Quantitative analysis of the effects due to tension anisotropy

4.1. Dominant wavelength
Having determined the range of (un)stable wavenumbers in the previous section, we now
explicitly investigate how tension anisotropy affects the value of the dominant, i.e. fastest
growing, wavelength λm. This quantity is of practical interest as it determines the size of
the fragmented vesicles/droplets and provides an intrinsic length scale of the instability.
For arbitrary ratios γ z/γ φ , we use Mathematica to determine numerically the maximum
of the dispersion relation (3.1) and (3.2). We further perform fully three-dimensional
simulations of a membrane endowed with interfacial tension using BIM and LBM/IBM,
as detailed in § 2.4. While BIM intrinsically solves the fluid dynamics in the Stokes limit,
LBM/IBM simulations are run for Oh ≈ 0.00025, i.e. very close to the ideal fluid limit.
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FIGURE 4. Dominant wavelength as function of the anisotropy in interfacial tension.
(a) Simulation results from BIM for the Stokes fluid are in very good agreement with the
analytical results obtained from the dispersion relation (3.1). (b) Results for the ideal fluid from
LBM/IBM agree very well with dominant wavelength obtained from the analytical dispersion
relation (3.2). While the whole curve is at larger values in the Stokes limit, in both cases the
dominant wavelength increases steadily with increasing γ z/γ φ . Simulation snapshots of the
interface are shown for different ratios γ z/γ φ over a length of about 55R0 as insets.

The result of the linear stability analysis is compared to the simulation results in figure 4.
The solid lines show how the position of the maximum of the dispersion relations (3.1)
(orange line in figure 4a) and (3.2) (red line in figure 4b), i.e. the dominant wavelength
λm, changes with the ratio γ z/γ φ . The simulation results for the Stokes fluid using BIM
are drawn as triangles, those for the ideal fluid using LBM/IBM as squares. Both are in
very good agreement with the respective theoretical predictions. For the Stokes fluid the
obtained value kmR0 ≈ 0.562 (i.e. λm/R0 ≈ 11.18) for isotropic tension γ z/γ φ = 1 is in
good agreement with Tomotika (1935) and Stone & Brenner (1996). For the ideal fluid
the dominant wavelength is smaller compared to the Stokes limit, which is true for all
values of kR0. For both Stokes fluid and ideal fluid increasing the ratio γ z/γ φ leads to
an increase in the wavelength compared to its value at isotropic tension (illustrated by
the insets from simulations on the right-hand sides of figures 4a and 4b). For decreasing
ratio the opposite happens, the wavelength decreases (see inset from simulations at the
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top of figures 4a and 4b). Over the entire range of interfacial tension ratios we observe
a nonlinear dependence of the wavelength on the anisotropy ratio. In the Stokes regime
at an anisotropy ratio of zero a finite wavelength dominates. This is due to the fact that
the γ φ-contribution to the dispersion relation, as shown in figure 2(d), does not diverge
for large wavenumbers but rather has a maximum at kmR0 = 1.59 which corresponds to
a wavelength of λm = 3.96R0. This value matches the y-axis intercept of the dominant
wavelength in figure 4(b). For the ideal fluid, however, for vanishing anisotropy ratio the
wavelength goes to zero. In the limit of infinite ratio the wavelengths tend to infinity for
both Stokes and ideal fluid.

In order to explain the effect of anisotropic interfacial tension, we first recall the classical
Rayleigh–Plateau mechanism where two opposing effects influence the break-up. Since the
radius in the region of a constriction is smaller than in a peak region, a pressure gradient
develops pushing fluid out of the constriction and thus amplifying the disturbance. At the
same time, however, due to the perturbation of the surface, the radius of curvature along
the z-direction is negative in the region of the constriction and positive in the region of
a peak. As can be seen from the Young–Laplace equation (2.4) this introduces another
pressure gradient dragging the liquid back from the peak regions thus counteracting the
pressure difference due to variations of the radius. The instability is a result of the interplay
of both effects. An anisotropic interfacial tension weights these effects by either the
azimuthal tension γ φ or axial tension γ z. Thus, a change in the ratio of the interfacial
tension leads to a change in the weighting, shifting the region of growing wavelength and
also altering the most unstable wavelength. This argument is illustrated by the three cases
of the dispersion relation with its different contributions shown in figures 2 and 3.

The limit λm → ∞ for γ z → ∞ can be understood on the basis of the Young–Laplace
equation for anisotropic interfacial tension in (2.4), as well. For infinite γ z a finite
curvature along z would result in an infinite pressure difference. Thus, the interfacial
tension must be balanced by a vanishing curvature, i.e. by an infinite curvature radius,
which is equivalent to an infinite wavelength.

Finally, we discuss the limit γ z → 0. We start with considering the ideal fluid. Due
to finite γ φ every circular segment of the interface along the cylinder axis tends to
contract. The incompressibility of the liquid inside prevents this homogeneous contraction.
This means that a volume conserving neck–tail perturbation between two neighbouring
thin circular segments, thus with very small wavelength and very large curvature in
the z-direction, can in principle be established. Since γ z → 0 there is no counteracting
contribution which balances this tendency. The monotonic increase of the growth rate for
the γ φ-contribution with increasing k, as shown by the course of the dispersion relation in
figure 3, suggests that such a perturbation grows fastest. This, in total, results in λm → 0
for the ideal fluid. In the Stokes limit, however, the γ φ-contribution is finite for large
kR0, possibly due to viscous stresses from the fluid which have a damping effect on the
perturbation.

4.2. Transition between the two regimes
In the following, we will show that the border between the Stokes regime and the ideal
fluid limit is not necessarily clear cut. In fact, by varying nothing more than the anisotropy
ratio, the system can undergo a transition from one regime to the other. To demonstrate this
transition, we present simulations using the LBM/IBM for typical parameters of biological
cells/vesicles. We choose an interfacial tension of γ φ = 10−4 N m−1, which is the cortical
tension reported for neutrophils (Tinevez et al. 2009) and in the middle of the range
of typical tensions reported by Winklbauer (2015). As typical diameter of the tubular
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FIGURE 5. Transition between both regimes. (a) LBM/IBM simulations with typical vesicle
and cell parameters (green dots) show dominant wavelengths between the two curves obtained
in the limit of a Stokes fluid (orange) and an ideal fluid (red). (b) The transition between the two
regimes in the wavelength is accompanied by a strong variation in the Ohnesorge number with
respect to the tension along the axis z, i.e. Ohz.

vesicle we choose 2R0 = 1 μm and for the surrounding fluid density ρ = 1000 kg m−3

and viscosity η = 1.2 × 10−3 Pa s.
The dominant wavelength is shown in figure 5(a) as a function of the anisotropy

ratio with green dots. For a clear comparison we also show the Stokes fluid dispersion
relation in orange and the relation for the ideal fluid in red. The numerical simulations
exhibit a transition between the two curves. For a small anisotropy ratio we obtain a finite
wavelength, which nearly matches the result in the Stokes regime. In the case of isotropic
tension we obtain a dominant wavelength of kmR0 ≈ 0.628 (i.e. λm/R0 ≈ 10.005), a value
in between the one for the ideal fluid and the Stokes regime. For larger values of the
anisotropy ratio we end up close to the curve for an ideal fluid.

We explain the transition between both regimes by the varying Ohnesorge number,
which is shown in figure 5(b). By varying the anisotropy ratio, either the Ohnesorge
number Ohφ or Ohz varies, while the other can be kept constant. Here, we keep Ohφ ≈ 5.5
shown by the dark-green downwards-pointing triangles in figure 5(b). Consequently, Ohz
changes from 30 to approximately 2.5, as shown by the light-green upwards-pointing
triangles. The transition in the Ohnesorge number Ohz is matched by the transition in
the wavelength. At small anisotropy ratios with large Ohnesorge number, the wavelength
is close to the analytical prediction for the Stokes equation. This is in good agreement
with the Stokes equation having Oh → ∞. Towards larger anisotropy ratios the Ohnesorge
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number becomes smaller and the wavelength approaches the predictions for an ideal
fluid. We thus conclude that finite inertia effects trigger the transition, even though the
Ohnesorge number is still larger than one. Our results clearly show that finite inertia
effects can alter the Rayleigh–Plateau instability of tubular vesicles, even though their
micrometric dimensions may at first sight suggest the opposite.

4.3. Dominant growth rate
We now investigate the growth rate of the most unstable mode ωm, i.e. the value of the
maximum of the dispersion relation, in a quantitative manner. Using Mathematica we
determine the maximum growth rate for varying tension anisotropy from the analytical
dispersion relation. In addition, we perform simulations as described in § 2.4, where we
extract the growth rate as described in appendix A.

The results in the limit of a Stokes fluid are shown in figure 6(a) and the limit of
an ideal fluid is shown in figure 6(b). With increasing tension anisotropy the dominant
growth rate decreases strongly. This can again be explained by the stabilising nature of
the axial tension γ z which slows down the instability. For tension anisotropy approaching
infinity the growth rate approaches zero. At tension anisotropy equal zero we observe a
finite growth rate of ωm ≈ 0.087 for the Stokes fluid in (a), which results from viscous
stresses in the Stokes fluid. In stark contrast, for an ideal fluid in (b) the maximum growth
rate increases more strongly and even diverges for tension anisotropy to zero due to the
destabilising nature of the azimuthal tension γ φ . Simulation results for the Stokes fluid
with BIM (triangles) and for the ideal fluid with LBM/IBM (squares) are in very good
agreement with the corresponding analytical results. From the inverse of the growth rate
the linear break-up time can be estimated, which is the time it takes until a droplet or
vesicle pinches off. From figure 6 we can conclude that with decreasing tension anisotropy
the break-up of the interface is strongly accelerated.

4.4. Nonlinear correction to the linear break-up time
After discussing dispersion relation, growth rate and dominant wavelength obtained
by linear stability analysis, we now proceed to investigate the nonlinear behaviour of
the Rayleigh–Plateau instability. This is covered by the simulations presented above
using BIM for a Stokes fluid and LBM/IBM for an ideal fluid. In the following, we
extract the nonlinear correction of the linear break-up time (Ashgriz & Mashayek 1995;
Martínez-Calvo et al. 2020), which we define based on (A 1) by

Δtnl = tb − ln(ε−1
0 )

ωm
, (4.1)

from simulations with initial perturbation amplitude ε0 as described in appendix A. This
correction compares the break-up time obtained from simulations tb to the linear break-up
time obtained from the maximum growth rate of the dispersion relation ωm and is shown
in figure 7 in relation to tb. In the limit of a Stokes fluid the nonlinear correction varies
strongly: we observe a change of sign above an anisotropy ratio of about γ z/γ φ = 0.5
where the correction becomes strongly negative. The nonlinear correction for the ideal
fluid for the LBM/IBM is smaller, positive, and slightly increases with increasing tension
anisotropy. For isotropic tension but varying Marangoni number of a surfactant-covered
fluid jet Martínez-Calvo et al. (2020) report effects going in the same direction with a
more pronounced variation of the nonlinear correction of the linear break-up time towards
the Stokes limit and less variation towards the ideal fluid limit.
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FIGURE 6. Growth rate of the dominant mode as a function of the anisotropy in interfacial
tension. The dominant growth rate according to the dispersion relation (a) for a Stokes fluid
(3.1) (orange line) and (b) for an ideal fluid (3.2) (red line) is shown with corresponding
BIM simulations (triangles) and LBM/IBM simulations (squares), respectively, depending on
the tension anisotropy γ z/γ φ . The dominant growth rate decreases steadily and strongly with
increasing tension anisotropy. While the decrease with increasing anisotropy is similar, the
growth rate is one order of magnitude larger for the ideal fluid and it does not remain finite
at zero anisotropy in contrast to the Stokes fluid in (a). In both cases simulation results are in
perfect agreement with the theory.

5. Influence of interface viscosity

We now investigate how anisotropic interfacial tension influences the instability
wavelength and growth rate in the Stokes regime if the interface in addition possesses
interface viscosity (Boussinesq 1913; Scriven 1960; Whitaker 1976; Hajiloo, Ramamohan
& Slattery 1987; Powers 2010; Yazdani & Bagchi 2013; Narsimhan et al. 2015;
Martínez-Calvo & Sevilla 2018; Guglietta et al. 2020). The dispersion relation in presence
of interface viscosity and tension anisotropy is derived in appendix B.3 and reads

ω = γ φ

ηR0

(
1 − γ z

γ φ
(kR0)

2

) (
1 + 2ηS

ηR0
kR0ξ

)−1 [
I1(kR0)K1(kR0)

+kR0

2
(I1(kR0)K0(kR0) − I0(kR0)K1(kR0))

]
(5.1)
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FIGURE 7. Nonlinear correction of the linear break-up time for varying tension anisotropy. The
nonlinear correction of the linear break-up time is shown relative to the break-up time tb obtained
from simulations. In the limit of an ideal fluid the LBM/IBM simulations show a slightly
increasing nonlinear correction to the linear break-up time with increasing tension anisotropy.
In contrast, BIM simulations show the reversed behaviour for a Stokes fluid, where in addition
the sign changes and the amplitude variations are more pronounced.

with the abbreviation

ξ = − 1
2 [kR0I1(kR0)K1(kR0) − kR0I0(kR0)K0(kR0)] . (5.2)

For vanishing interface viscosity ηS the dispersion relation correctly reduces to (3.1).
From the dispersion relation we numerically calculate the dominant wavelength λm

and the corresponding growth rate ωm for varying anisotropy ratio γ z/γ φ and interface
viscosity ηS, which we measure relative to fluid viscosity η. Phase diagrams of the
dominant wavelength and the corresponding growth rate are shown in figures 8(a) and
8(b), respectively. Typical values for the interface viscosity of vesicles and red blood cells
reported in the literature vary from 10−10 Pa s m to 10−7 Pa s m (Dimova et al. 2006; den
Otter & Shkulipa 2007; Guglietta et al. 2020). In combination with typical fluid viscosities
(§ 2.4) and sizes of the order of R0 = 1 μm for vesicles and R0 = 4 μm for red blood
cells this leads to typical viscosity ratios 2ηS/(ηR0) = 0.1–40. In figure 8 these values
correspond to the range from approximately −1 to approximately 1.6 on the ordinate. For
fixed values of the viscosity ratio, an increase in the anisotropy ratio leads to a larger
dominant wavelength and smaller maximum growth rate. This is in line with the results
discussed above for zero interface viscosity in §§ 4.1 and 4.3. Especially in the region of
small interface viscosities, changes in ηS have little effect on dominant wavelength and
growth rate, but also around a fraction of 1 the anisotropy dominates. If the interface
viscosity ηS becomes very large compared to the fluid viscosity, the growth rate tends to
zero, as a more viscous interface leads to a slower dynamics of the perturbation. The latter
is consistent with the results of Narsimhan et al. (2015) for isotropic interfaces. We also
note that the maximum wavenumber of the instability, beyond which perturbations do not
grow, is influenced only by the anisotropy ratio and not the viscosity ratio, because the
root of the dispersion relation (5.1) is determined by the first term in brackets.
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FIGURE 8. Influence of interface viscosity on the anisotropic Rayleigh–Plateau instability.
Phase diagrams for (a) the dominant wavelength and (b) the corresponding growth rate. The
dominant wavelength increases both with increasing anisotropy ratio and increasing interface
viscosity ηS. The growth rate of the dominant perturbation decreases with increasing anisotropy
ratio and interface viscosity. Despite the increase in the wavelength and the slowing down of the
instability for very large values of the interface viscosity, the tension anisotropy is the dominating
parameter.

6. Formation of satellite droplets for an ideal fluid jet without ambient fluid under
influence of tension anisotropy

We eventually consider an ideal fluid jet without ambient fluid, i.e. η0 = 0 and ρ0 � ρ.
In appendix C we derive the dispersion relation including anisotropic interfacial tension
and show that for the ideal fluid jet without ambient fluid similar results hold as for the
ideal fluid discussed in §§ 3.2 and 4. To compare our analytical results to simulations of an
ideal fluid jet without ambient fluid we develop an axisymmetric simulation method based
on a long-wavelength (or small-k) approximation as detailed in appendix D. We consider
the Navier–Stokes equation (D 9) together with the kinematic boundary condition (D 10)
in the small-k approximation and solve them numerically. From the dynamic evolution the
dominant growth rate and wavelength can be calculated, similarly to the procedure for the
three-dimensional simulations detailed in appendix A. They are in good agreement with
the theory as detailed in appendix C. We further obtain the jet shape over time.

With this, we are able to study the formation of satellite droplets under anisotropic
interfacial tension. Satellite droplets are typically much smaller than and form in between
the main drops during break-up of a liquid jet for certain parameter combinations (Eggers
& Dupont 1994; Eggers 1997; Martínez-Calvo et al. 2020). In the presence of an ambient
fluid (BIM and LBM/IBM simulations) we do not observe satellite droplet formation,
which may be related to limitations in the resolution of our simulation and the fact that
we do not simulate the actual pinch-off. In the following, we therefore investigate satellite
droplet formation using the small-k simulations for a liquid jet without ambient fluid at
varying tension anisotropy and viscosity. Starting with the zero-viscosity, ideal fluid jet
(Oh = 0), we observe satellite droplets as shown at the bottom of figure 9. As the dominant
wavelength increases with increasing anisotropy, the satellite droplet at the bottom right
of figure 9 is more elongated compared to the left one. However, both satellites possess
the same relative volume of approximately Ξ = 3 % (Rutland & Jameson 1970; Lafrance
1975; Mansour & Lundgren 1990; Ashgriz & Mashayek 1995; Eggers 1997), which is
defined as the volume integral over the satellite droplet divided by the volume integral
over one period of the perturbation (Martínez-Calvo et al. 2020). For the ideal fluid jet, Ξ
is independent of the tension anisotropy.
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FIGURE 9. Formation of satellite droplets under the influence of tension anisotropy in the
absence of an ambient fluid ρo = 0, ηo = 0. Relative volume Ξ of the satellite droplet for
varying tension anisotropy γ z/γ φ and varying Ohnesorge number Oh. Parameter combinations
for the shapes shown around the colour map are indicated in the phase diagram by black
crosses. For the ideal fluid jet without ambient fluid with ρo = 0 (Oh = 0) the relative volume
of 3 % remains constant while for the Stokes fluid without ambient fluid ηo = 0 (large Oh) no
satellites appear. In the intermediate range, a significant influence of tension anisotropy on the
relative volume is observed. Especially, the satellite droplet becomes cylindrical for large tension
anisotropy, as shown in the top right image.
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As our small-k simulations are based on the full Navier–Stokes equation, they allow
us to explore the effect of fluid viscosity measured in terms of the Ohnesorge number
Oh on the satellite droplet. In the centre of figure 9 we show the relative volume Ξ
in a colour map. For isotropic interfacial tension, we observe a decrease in the satellite
volume, which is in agreement with results reported by Martínez-Calvo et al. (2020)
in the absence of surfactants. With increasing Ohnesorge number the phase diagram in
figure 9 shows a growing influence of the anisotropy. For a small but non-zero Oh ≈ 0.2,
the volume assumes its maximum at γ z/γ φ = 0 and decreases with increasing anisotropy.
At higher Oh, the effect is reversed and the volume strongly increases with increasing
tension anisotropy. In contrast to Oh = 0, at larger Ohnesorge number Oh = 0.9 the shape
of the satellite droplet is strongly influenced by an increase in tension anisotropy from
γ z/γ φ = 0.5 to γ z/γ φ = 3.5 as illustrated by the images at the top of figure 9. For
small anisotropy (upper left shape) the satellite droplet is small and spherical but most
remarkably for larger tension anisotropy (upper right) it develops a more cylindrical shape,
it is longer and larger. In both cases the satellite droplet is connected to the main droplets
by a thin fluid string. At very large Ohnesorge number beyond one, i.e. towards the Stokes
regime, the satellite volume decreases to zero over the whole range of anisotropy. All in
all, over a broad range of intermediate Ohnesorge numbers we observe a striking influence
of tension anisotropy on the satellite droplet, where at larger Oh larger tension anisotropy
stabilises the satellite droplet.

7. Conclusion

Using linear stability analysis supported by numerical simulations we generalised the
Rayleigh–Plateau mechanism for the break-up of a liquid cylinder to situations where
the interfacial tension is anisotropic. Two physically relevant situations were studied: a
vesicle/biological cell in the limit of small Reynolds number (Stokes equation) and an ideal
fluid in the limit of large Reynolds number (Euler equation). We found that anisotropic
interfacial tension alters not only the range of growing perturbations but also strongly
affects the dominant wavelength of the instability. If the axial tension is inferior/superior
to the azimuthal tension, the dominant wavelength becomes smaller/larger than the
wavelength of the classical isotropic Rayleigh–Plateau instability. For strong anisotropy,
the dominant wavelength can even lie outside the instability range of the classical isotropic
Rayleigh–Plateau instability. The predictions of our linear stability analysis were found to
be in excellent agreement with numerical simulations using a boundary integral method
at low and a lattice-Boltzmann/immersed boundary method at high Reynolds number.
LBM/IBM simulations with typical vesicle/cell parameters, which include finite inertia
effects, show a transition in the wavelength for decreasing Ohnesorge number from the
Stokes regime to the ideal fluid. Using simulations, we found the nonlinear correction to
the linear break-up time to decrease/increase with the anisotropy ratio in the Stokes/Euler
limits, respectively. We found that including viscosity of the interface surrounded by
Stokes fluid leads to an increase in the dominant wavelength and a slower dynamics of the
perturbation. However, except at very large interface viscosity, changes are small compared
to the effects of varying tension anisotropy. Finally, we showed that the satellite droplet
volume of 3 % is not affected by varying tension anisotropy in the limit of an ideal fluid.
For Ohnesorge numbers just below one, the satellite volume decreases with increasing
anisotropy.

In Part 2 we investigate the alteration of the anisotropic Rayleigh–Plateau instability
due to the bending and shear elasticity present in a typical cell. Besides biological cells,
our results apply to synthetic interfaces with anisotropic properties such as nematic liquid
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FIGURE 10. Illustration of the analysis of the numerical simulations. (a) For fixed values
of the anisotropic interfacial tension, in this case γ z/γ φ = 0.4, we run multiple simulations
with varying wavelengths of the interface perturbation. One simulation corresponds to one
wavelength, which is determined by the number of maxima (different curves) per box length. The
radius averaged over all maxima divided by the unperturbed radius R0 is shown over time. The
inset shows the growth up to a radius of 110 % of R0. The first simulation to reach this threshold
is considered as the fastest growing mode. (b) LBM/IBM simulations of a single period of the
perturbation with increasing resolution and smaller initial perturbation amplitude ε0 = 0.002
allow us to determine the growth rate (here shown for different perturbation wavelengths with
γ z/γ φ = 2 in comparison to the analytical solution (3.2)) and the nonlinear correction of the
linear break-up time.

crystals confined to interfaces (Keber et al. 2014) or cell-laden hydrogels extruded from a
nozzle during bioprinting applications (Snyder et al. 2015; Mandrycky et al. 2016).
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Appendix A. Simulation analysis

In the following we explain in detail the analysis procedure of the BIM and LBM/IBM
simulations. In order to analyse in simulations both the wavelength of the dominant mode
and its growth rate we consider the interface shape over time for a given perturbation and
track a local maximum corresponding to a later droplet/vesicle as shown in figure 10(a).
In order to obtain the most unstable mode for given anisotropic interfacial tension
in the simulations, we consider a cylindrical interface of fixed anisotropic interfacial
tension immersed in a fluid of fixed properties and apply a series of perturbations
with varying wavelength. One simulation corresponds to one perturbation with fixed
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wavelength. The initial amplitude of the perturbation is chosen as ε(t = 0) = 0.02R0 in
all simulations. Note that a multiple of the wavelength has to fit in the simulation box and
we thus vary the wavelength in discrete steps. Figure 10(a) shows an example of a series
of simulations for given anisotropic interfacial tension γ z/γ φ = 0.4 using the LBM/IBM.
In this example we force a perturbation with 10–17 maxima onto a cylindrical interface
in a box of length 650 grid cells. Each curve corresponds to a simulation with different
wavelength of the perturbation. In each of the simulations the radius at the position of the
different maxima is tracked over time. The curves show the local radius at the position
of the maxima, averaged over all maxima, varying in time. From the initial amplitude
ε(t = 0) = 0.02R0 all modes grow with a different speed. In order to determine the fastest
growing wavelength, we define a threshold for the amplitude εcrit = 0.1R0, which can
be considered as an upper limit of small deformations. The inset of figure 10 shows
the growth of all modes up to the radius R0 + εcrit. The mode which first reaches this
threshold, is considered as the fastest growing mode and its corresponding wavelength
as the most unstable wavelength. This procedure can be applied to different values of
the anisotropy ratio γ z/γ φ and allows us to numerically determine the most unstable
wavelength depending on tension anisotropy. With increasing wavelength we increase the
box length in order to ensure a good resolution for this procedure. Nevertheless, the finite
box size and the resulting discrete variation of the wavelength result in discretisation
effects. In order to account for these discretisation effects we compute the range in
wavelength which cannot be distinguished due to the discrete variation: adding/subtracting
half the wavelength is not possible for a given box length, because we necessarily enforce
an integral number of wavelengths in the simulation box. This range is given in the figures
as error bars of the simulation results.

The growth rate is calculated as the quotient of the derivative of the maximum radius
over time and the maximum radius itself, in a regime of linear growth. In BIM simulations
we use the series of perturbations as detailed above, for the LBM/IBM simulations we
consider one period of the dominant perturbation with increased resolution and initial
perturbation amplitude ε0 = 0.002. Figure 10(b) shows the growth rate determined from
simulations for varying wavenumber in comparison to the analytically obtained dispersion
relation (3.2) for LBM/IBM simulations. An error is estimated from the average value of
the quotient which determines the growth rate.

As a measure of the nonlinear behaviour covered by the simulations, we further extract
the nonlinear correction to the linear break-up time Δtnl defined in (4.1). To do so we
determine the break-up time in the simulation tb by tracking a minimum of the interface
shape over time and extrapolating the last time steps towards a radius of zero. From the
analytical evolution of a perturbation based on the linear stability analysis as given in (B 1)
the linear break-up time can be calculated at the position of a minimum by

Rmin = R0 − R0ε0 eωt != 0. (A 1)

The difference between tb and the linear break-up time determines the nonlinear correction
as given by (4.1).

Appendix B. Analytical derivation of the dispersion relations

B.1. Dispersion relation for a Stokes fluid
In the following we consider the inner and outer fluid in the Stokes limit with same
viscosity, i.e. ηo = η. The following calculations are based on the method introduced by
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Stone & Brenner (1996). We use an ansatz of a cylindrical interface which is slightly
perturbed in a periodic fashion with time dependent amplitude ε(t) � 1. For later
convenience we write the equation describing the shape as

R = R0 (1 + ε(t) cos(kz)) , (B 1)

which is a slightly different notation but equivalent to the ansatz in (2.1). We calculate
the traction jump at the interface Δfn in (2.2), which is equal to the negative membrane
force, using (B 1) and assuming that the magnitude of the interface perturbation is small,
i.e. ε � 1,

γ φ

R(z, t)
+ γ z

Rz(z, t)
≈ γ φ

R0
(1− ε cos(kz))−γ z ∂

2R
∂z2

= γ φ

R0

(
1−

[
1 − γ z

γ φ
(kR0)

2

]
ε cos(kz)

)
.

(B 2)
The traction jump can be decomposed into a constant pressure contribution p0 = γ φ/R0
and a perturbation in the traction jump

− γ φ

R0
ε

(
1 − γ z

γ φ
(R0k)2

)
cos(kz), (B 3)

which is evaluated at the position of the unperturbed interface due to linearisation
(Tomotika 1935; Stone & Brenner 1996). The goal now is to solve the Stokes equation
(2.8) in the presence of the traction jump perturbation (B 3). This is done by considering
a ring force representing the traction jump (Stone & Brenner 1996) such that the Stokes
equation becomes

− ∇p + η∇2v + êrδ (r − R0)
γ φε

R0

(
1 − γ z

γ φ
(R0k)2

)
cos(kz) = 0. (B 4)

The ring force in the radial direction (third term entering in (B 4) with the radial unit
vector êr) accounts for the presence of the membrane, from which a force due to interfacial
tension is acting on the fluid. The interfacial force is evaluated at the undeformed radial
position of the infinitely thin interface. As a consequence the ring force enters with a delta
distribution δ(r − R0).

In line with the periodic perturbation of the radius of the interface in (B 1), a periodic
ansatz for the velocity components and the pressure field is chosen (Stone & Brenner 1996)

vr(r, z) = γ φε

η
v̄r(r) cos(kz), (B 5)

vz(r, z) = γ φε

η
v̄z(r) sin(kz), (B 6)

p(r, z) = γ φε

R0
p̄(r) cos(kz), (B 7)

where, due to the perturbation of the interface (B 1) and kinematic boundary conditions,
the radial velocity is written with a cosine while the axial velocity due to continuity
equation (2.6), which involves a derivative with respect to z, is written with a sine. The
prefactor of the velocities γ φ/η is chosen such that v̄r and v̄z become dimensionless,
where the same applies for the pressure prefactor. The velocity prefactor γ φ/η is identical
to the viscocapillary velocity based on the azimuthal tension γ φ . The amplitude of the
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perturbation varies in time, i.e. ε = ε(t). For solving the Stokes equation we introduce
the Hankel transforms (Poularikas 2000) of the velocity amplitudes Vr(s), Vz(s) and the
pressure P(s)

Vr(s) = H1 [v̄r] =
∫ ∞

0
v̄r(r)rJ1(sr) dr, (B 8)

Vz(s) = H0
[
v̄z

] =
∫ ∞

0
v̄z(r)rJ0(sr) dr, (B 9)

P(s) = H0
[
p̄
] =

∫ ∞

0
p̄(r)rJ0(sr) dr, (B 10)

together with their inverse transforms

v̄r(r) = H−1
1 [Vr] =

∫ ∞

0
Vr(s)sJ1(sr) ds, (B 11)

v̄z(r) = H−1
0

[
Vz

] =
∫ ∞

0
Vz(s)sJ0(sr) ds, (B 12)

p̄(r) = H−1
0 [P] =

∫ ∞

0
P(s)sJ0(sr) ds, (B 13)

where Jν is the Bessel function of the first kind and order ν.
For the transformation of the Stokes equation (B 4) and continuity equation (2.6)

into Hankel space we use the following identities for the Bessel differential operators
(Poularikas 2000):

H1

[
∂2

∂r2
f + 1

r
∂

∂r
f − 1

r2
f
]

= −s2H1
[
f
]

(B 14)

and

H0

[
∂2

∂r2
f + 1

r
∂

∂r
f
]

= −s2H0
[
f
]
. (B 15)

Together with the Hankel transform of the ring force

H1

[
δ (r − R0)

γ φε

R0

(
1 − γ z

γ φ
(R0k)2

)
cos(kz)

]
= J1(sR0)γ

φε

(
1 − γ z

γ φ
(R0k)2

)
cos(kz),

(B 16)
we are able to write down the continuity equation together with the two components of the
Stokes equation in Hankel space

sVr + kVz = 0, (B 17)

s
R0

P − (s2 + k2)Vr +
(

1 − γ z

γ φ
(R0k)2

)
J1(sR0) = 0, (B 18)

k
R0

P − (
s2 + k2) Vz = 0. (B 19)

We can solve this system of equations for the radial velocity in Hankel space and obtain

Vr =
(

1 − γ z

γ φ
(R0k)2

)
k2 1

(s2 + k2)2
J1(sR0), (B 20)
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which leads to the radial velocity in real space using the inverse Hankel transform

vr = γ φε

η
cos(kz)

(
1 − γ z

γ φ
(R0k)2

)
k2

∫ ∞

0

sJ1(sR0)J1(sr)
(s2 + k2)2

ds. (B 21)

As done in the case of the ideal fluid jet without ambient fluid, we consider a
perturbation of the interface growing with rate ω, i.e.

ε(t) = ε0 eωt. (B 22)

The kinematic boundary condition at the interface leads to

vr(r = R0, z) = R0∂tε cos(kz) = R0ωε cos(kz), (B 23)

and using (B 21) we obtain the growth rate

ω = γ φ

R0η

(
1 − γ z

γ φ
(R0k)2

)∫ ∞

0

k2sJ1(sR0)
2

(s2 + k2)2
ds. (B 24)

The integral can be evaluated (Gradshteı̆n, Ryzhik & Jeffrey 2007, 6.535), taking the
derivative with respect to variable k in the denominator) and we obtain the dispersion
relation for a Stokes fluid in (3.1).

B.2. Dispersion relation for an ideal fluid
Below we perform a linear stability analysis in the ideal fluid limit. Since the perturbation
of the interface between both fluids is small, also the perturbation of the velocity is small.
Because we consider a co-moving frame, the velocity vector contains only the perturbation
and thus is small, vi � 1, as well. As a consequence, the nonlinear term in the Euler
equation is of second order and can be neglected, leading to the linear Euler equation

∂v

∂t
= − 1

ρ
∇p. (B 25)

We here solve the linearised Euler equation (B 25) which is valid for each position (r, z)
both in the inner and in the outer fluid of same density ρo = ρ. Note that the continuity
equation does not change compared to the previous section.

In the linearised Euler equation we add the traction jump that here equals a pressure
disturbance occurring at the interface due to interfacial tension according to (2.4), which
is expanded as done in (B 1) and enters in terms of a ring force. In turn we have to solve

∂

∂t
v = − 1

ρ
∇p + êrδ(r − R0)

1
ρ

γ φε

R0

(
1 − γ z

γ φ
(kR0)

2

)
cos(kz). (B 26)

In the linearised Euler equation (B 25) the density appears rather than the viscosity. In
the perturbation ansatz for the velocity (B 5) and (B 6) the prefactor changes accordingly
to

√
γ φ/(ρR0). The prefactors are chosen such that v̄r(r), v̄z(r) are again dimensionless.
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In total, after transformation into the Hankel space, we obtain the analytical equations

sVr = −kVz, (B 27)

ωVz =
√

γ φ

ρR0
kP, (B 28)

ωVr =
√

γ φ

ρR0
sP + R0

√
γ φ

ρR0
J1(sR0)

(
1 − γ z

γ φ
(kR0)

2

)
, (B 29)

which are solved for the radial component of the velocity, as done in the case of the Stokes
equation in § 3.1. We obtain for the velocity

vr(r, z) = k2R0

ω

γ φ

ρR0
ε cos(kz)

(
1 − γ z

γ φ
(kR0)

2

) ∫ ∞

0

sJ1(sR0)J1(sr)
k2 + s2

ds (B 30)

and using the kinematic boundary condition we obtain the squared growth rate

ω2 = k2 γ φ

ρR0

(
1 − γ z

γ φ
(kR0)

2

) ∫ ∞

0

sJ2
1(sR0)

k2 + s2
ds. (B 31)

We can again evaluate the integral (Gradshteı̆n et al. 2007, 6.535) and the resulting
dispersion relation for an ideal fluid is given in (3.2).

B.3. Dispersion relation taking interface viscosity into account
We now derive a dispersion relation for a system where, in addition to the fluid viscosity
η, a viscosity of the interface ηS is considered. The solution method starts from the Stokes
equation and is again based on the previous B.1. Here, the interface viscosity results in an
additional force acting from the interface onto the fluid (Scriven 1960; Narsimhan et al.
2015; Sprenger et al. 2020). The component normal to the interface is given by

f n
i.v. = 2ηS

R0
∂zvz = 2ηS

R0

γ φ

η
εv̄z(R0)k cos(kz), (B 32)

where surface incompressibility and for the second identity the velocity ansatz from (B 6)
is used. Similar to Powers (2010) we do not consider any tangential component of the
viscous force. This additional normal force contribution appears as an additional term in
the ring force in (B 4) such that (B 18) in the Hankel space becomes

s
R0

P − (
s2 + k2) Vr +

(
1 − γ z

γ φ
(kR0)

2 + 2ηS

ηR0
v̄z(R0)kR0

)
J1(sR0) = 0. (B 33)

Analogously, the radial velocity in Hankel space from (B 20) becomes

Vr =
(

1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

)
k2 1

(s2 + k2)2
J1(sR0), (B 34)

which is then transformed back to obtain vr, which still depends on v̄z(R0). In order to
obtain v̄z(R0), we use the continuity equation (B 17) to relate Vz to Vr and insert (B 34),
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then transform Vz back from Hankel space and thus identify

v̄z(R0) = −
(

1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

) ∫ ∞

0

s2kJ1(sR0)J0(sR0)(
s2 + k2

)2 ds, (B 35)

which is then solved for v̄z(R0). Following the same steps as in appendix B.1 we then
calculate the growth rate ω:

ω = γ φ

ηR0

(
1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

)
k2

∫ ∞

0

sJ1(sR0)
2

(s2 + k2)2
ds. (B 36)

The integral in this equation has already been solved in appendix B.1. Combining (B 36)
and the solution for v̄z(R0) and solving the integral in (B 35) (based on 49(13) and 49(14)
of Erdelyi et al. 1954) leads to the dispersion relation in (5.1).

Appendix C. Dispersion relation for an ideal fluid jet without ambient fluid

In deriving the dispersion relation for an ideal fluid jet without ambient fluid we follow
the ansatz by Eggers & Villermaux (2008). Here, we consider the outer fluid to have no
influence, i.e. ηo = 0 and ρo � ρ. As we perform a linear stability analysis, we again use
the linearised version of the Euler equation (B 25). By the linearised Euler equation (B 25)
and the continuity equation (2.6) the pressure p must fulfil a Laplace equation

∇2p = 0. (C 1)

Corresponding to the interface perturbation, a perturbation ansatz for the pressure
distribution in the jet is chosen (Eggers & Villermaux 2008)

p(z, r, t) = p0 + δp(z, r, t), (C 2)

with constant pressure p0 and a general perturbation δp. At the interface, the pressure is
determined by the modified Young–Laplace equation which according to (2.4) is

p0 + δp(r = R) = γ φ

R(z, t)
+ γ z

Rz(z, t)
. (C 3)

The pressure perturbation can be separated into the periodic perturbation in the z-direction,
its magnitude F(r) depending on the radial position and the constant prefactor δp̄

δp(z, r, t) = δp̄F(r) exp(ωt + ikz). (C 4)

The pressure obeys the Laplace equation (C 1), which in cylindrical coordinates and using
that p does not depend on the angular coordinate φ, reads

∂2p
∂r2

+ 1
r

∂p
∂r

+ ∂2p
∂z2

= 0. (C 5)

Now, using (C 2) for the pressure and inserting (C 4) leads to a partial differential equation
for the function F(r)

∂2F
∂r2

+ 1
r

∂F
∂r

− k2F(r) = 0. (C 6)
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This equation is solved by the modified Bessel function of the first kind and of order zero

F(r) = I0(kr). (C 7)

Using the perturbation ansatz (2.1) for the interface and considering anisotropic interfacial
tension, the perturbation in the pressure in (C 3) is in analogy to (B 3) given by

δp(r = R) = − ε0

R2
0

(
γ φ − γ zR2

0k2) exp(ωt + ikz). (C 8)

From (C 4) and (C 7) we have the relation δp = δp̄I0(kr) exp(ωt + ikz), which together
with (C 8) leads to the magnitude of the pressure perturbation

δp̄ = − ε0

R2
0

(
γ φ − γ zR2

0k2) 1
I0(kR0)

. (C 9)

Since ε0 � R0 we can evaluate the modified Bessel functions at the position of the
unperturbed interface R0.

In line with the ansatz for the pressure a perturbation ansatz for the velocity is chosen,

v = v0 + δv, (C 10)

with v0 the velocity of the unperturbed jet, which vanishes in the co-moving frame. The
motion of the interface is governed by the kinematic boundary condition

∂R
∂t

+ vz
∂R
∂z

= δvr(r = R). (C 11)

The velocity perturbation is linked to the pressure by the linearised Euler equation (B 25),
its r-component in cylindrical coordinates reads

∂δvr

∂t
= − 1

ρ

∂p
∂r

. (C 12)

Combination of the derivative with respect to time t of (C 11), where in linearised form
the second term on the left-hand side vanishes, and (C 12) gives

∂2R
∂t2

= − 1
ρ

∂p
∂r

∣∣∣∣
r=R

. (C 13)

Inserting the ansatz for the interface radius (2.1) on the left and the one for the pressure
(C 2) on the right-hand side of (C 13) and using the fact that I′0(x) = I1(x) leads to

ω2 = − k
ρε0

δp̄I1(kr)
∣∣∣∣
r=R

. (C 14)

Evaluating the modified Bessel functions at R0 and inserting (C 9) finally yields the
dispersion relation for an ideal fluid jet without ambient fluid

ω2 = γ φ

ρR3
0

kR0

[
1 − γ z

γ φ
(kR0)

2

]
I1(kR0)

I0(kR0)
. (C 15)

This dispersion relation is shown in figures 11(a)–11(c) for different values of the
anisotropy ratio. The general shape of the dispersion relation and the changes due to
variation of the anisotropy ratio are similar to that discussed in § 3.2.
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FIGURE 11. Results for an ideal fluid jet without ambient fluid. The dispersion relation for an
ideal fluid jet without ambient fluid with ρo = 0 is shown for (a) isotropic interfacial tension
γ z/γ φ = 1.0 and for anisotropic interfacial tension with (b) γ z/γ φ = 0.5 and (c) γ z/γ φ = 2.0.
We distinguish the contributions from γ φ (green) and γ z (orange). Depending on the tension
anisotropy (d) wavelength and (e) growth rate (blue curves) are shown in comparison with
the results presented above in figures 4(b) and 6(b) for an ideal fluid (red curves). While the
wavelength is similar to the case of an ideal fluid, for small and intermediate anisotropy ratios
the growth rate is visibly larger.
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In figures 11(d) and 11(e) dominant wavelength and corresponding maximal growth
rate for the ideal fluid jet without ambient fluid are drawn as blue lines. For isotropic
tension γ z/γ φ = 1 we recover the well-known result (Rayleigh 1878; Drazin & Reid
2004; Eggers & Villermaux 2008) for the dominant wavelength of kmR0 ≈ 0.697 (i.e.
λm/R0 ≈ 9.015). Simulations for the ideal fluid jet without ambient fluid based on the
small-k approximation are included as blue triangles. They agree well with the analytical
results. For comparison the curves and simulations for the ideal fluid from 4(b) and
6(b) are shown as red lines/squares. In figure 11(d) we see that the curves are quite
similar, i.e. the dominant wavelength changes only slightly when there is no ambient fluid.
The corresponding growth rate is significantly influenced by an additional ambient ideal
fluid at small and intermediate tension anisotropy, while the influence vanishes for large
anisotropy as we can observe in figure 11(e).

Appendix D. Long-wavelength description

D.1. Dynamic equations for jet simulations
In the following, we derive the fluid equations of motion in long-wavelength (or small-k)
approximation (Weber 1931; Eggers & Dupont 1994; García & Castellanos 1994; Eggers
1997) for a fluid jet without ambient fluid, i.e. ηo = ρo = 0. The final equations are then
solved numerically as detailed below to obtain the dynamic nonlinear evolution of an
ideal jet interface in absence of an ambient fluid. The perturbation of the interface is
considered to have a wavelength considerably longer than the radius of the liquid jet.
Therefore, a typical radial length is small compared to a typical axial length, i.e. terms with
a dependency on the radial position enter with a factor ε̂ � 1 (Eggers & Villermaux 2008).
The axial velocity is expanded in radial direction using a Taylor series and considering
axisymmetry

vz(z, r) = v0(z) + v2(z)ε̂2r2 + O(r4). (D 1)

From the continuity equation (2.6) one can obtain the radial velocity

vr = − 1
2v

′
0ε̂r − 1

4v
′
2ε̂

3r3 + O(r5), (D 2)

where a prime denotes the partial derivative with respect to z. Similarly, we consider an
expansion of the pressure with respect to the radial position

p(z, r) = p0(z) + p2ε̂
2r2 + O(r4). (D 3)

We further calculate the force from the inner fluid of the jet onto the interface using the
outward unit normal vector on the interface given by

n = 1√
1 + R′2

(
êr − R′êz

)
, (D 4)

with êz the unit vector along the jet axis. The normal component of the force is given
by the projection of the three-dimensional fluid stress twice onto the normal vector
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(Chandrasekharaiah & Debnath 2014)

− n · σ · n 	 +p0 + ηv′
0 (D 5)

and the tangential force evaluated at the interface r = R is

− t · σ · n 	 −η
(
2Rv2 − 1

2 Rv′′
0 − 3v′

0R′) , (D 6)

with t pointing along the interface which is perpendicular to n in the plane. Combining
the force from the internal fluid and the force due to anisotropic interfacial tension the
pressure at the interface follows

p0 = γ φ

(
1
R

− γ z

γ φ
R′′

)
− ηv′

0. (D 7)

In addition, we obtain from the tangential force across the interface

v2 = 1
4
v′′

0 + 3
2

1
R

v′
0R′. (D 8)

The Navier–Stokes equation determining the fluid dynamics finally becomes

∂tv0 + v0v
′
0 = − 1

ρ
γ φ

(
1
R

− γ z

γ φ
R′′

)′
+ 1

ρ
ηv′′

0 + ν
(
4v2 + v′′

0

)
. (D 9)

The kinematic boundary condition is also considered up to terms in lowest order with
respect to ε̂, which gives the dynamics of the interface

∂tR = −v0R′ − 1
2 Rv′

0. (D 10)

The closed system of coupled equations (D 9) and (D 10) can then be solved numerically.
We consider a one-dimensional interface which is discretised by 220 points. We initially
perturb the interface according to (D 11) with ε0 = 0.001 and initialise the velocity profile
v0(z) with zero. Derivatives of the radius and velocity profile are calculated at each time
step using quintic splines. This allows us to calculate (D 8) and the right-hand side of (D 9)
and (D 10). For solving the equations a three step Runge–Kutta algorithm is used with a
typical time step of Δt = 0.00025.

D.2. Dispersion relation in the long-wavelength description
The aim of the following discussion is to derive a simple, analytical equation for the
wavenumber and growth rate of the most unstable perturbation mode. This we use to
prescribe the dominant mode in small-k simulations of a fluid jet with varying Ohnesorge
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number. As ansatz for the periodic interface perturbation growing in time we use

R(z, t) = R0 + R0ε0 cos(kz) exp (ωt) (D 11)

and for the velocity
v0 = v̂ε0 sin(kz) exp (ωt) . (D 12)

Inserting the ansatz into the kinematic boundary condition (D 10) leads to

v̂ = −2
ω

k
(D 13)

in linear order in ε0. The Navier–Stokes equation leads to

ωv̂ = −γ φ

ρ

(
k

R0
− γ z

γ φ
k3R0

)
− 3

η

ρ
k2v̂. (D 14)

Combining both equations results in the dispersion relation for a fluid jet without ambient
fluid in the small-k approximation

ω2 = 1
2

γ φ

ρR3
0

(
(kR0)

2 − γ z

γ φ
(kR0)

4

)
− 3

η

ρR2
0
(kR0)

2ω, (D 15)

which now depends on tension anisotropy, fluid density and viscosity.
The dispersion relation in the small-k approximation (D 15) can be solved analytically

for the position of the maximum, i.e. the dominant mode

(kR0)max = 1√
2

γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

(D 16)

and the dominant growth rate is determined by

ω2
m = 1

2
γ φ

ρR3
0

⎛
⎜⎜⎜⎝ 1

2
γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

−
γ z

γ φ(
2

γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

)2

⎞
⎟⎟⎟⎠

− 3
η

ρR2
0

ωm

2
γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

. (D 17)

In the limit of an ideal fluid jet, i.e. for vanishing viscosity and vanishing Ohnesorge
number we obtain for the maximum growth rate

ω2
m = 1

8
γ φ

ρR3
0

1
γ z

γ φ

, (D 18)

which approximates the blue curve in figure 11(e). We observe that in the framework of
the small-k approximation the dominant growth rate scales with the tension anisotropy to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.947


Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-33

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0 0.5 1.0 1.5

Tension anisotropy γ z/γφ

E
rr

o
r 
ε
di
sp

0

0.05

0.10

0.15

0.20

0.25

0.30 Small-k approximation
Ideal f luid jet w/o ambient

0.25 0.50

kR
0

ω
2
/ω

2 0

0.75 1.00 1.25

2.0 2.5 3.0 3.5 4.0

FIGURE 12. Comparison of the small-k approximation with the analytical results. The inset
shows the dispersion relation obtained by the small-k approximation (orange line) compared
to the analytically obtained accurate dispersion relation (C 15) for an ideal fluid jet without
ambient fluid (blue line) for a tension anisotropy of γ z/γ φ = 0.5. Systematically varying the
tension anisotropy shows that the error (D 19) between exact theory and approximation strongly
decreases towards large tension anisotropy. Therefore, the small-k approximation is less accurate
for small anisotropy, but becomes a very accurate approximation for large anisotropy.

the power of minus one half. Analogously, the dominant wavelength in the limit of an ideal
fluid jet scales with the square root of the tension anisotropy, as can be seen from (D 16).
We note that the full dispersion relation with contributions of the Bessel functions leads
to deviations from this scaling behaviour.

In figure 12 we compare the full dispersion relation obtained analytically for an ideal
fluid jet without ambient fluid (C 15) to the one obtained in the small-k limit (D 15) for
vanishing viscosity. The inset shows the two dispersion relations for an anisotropy ratio of
γ z/γ φ = 0.5. We analyse the deviation of the approximation quantitatively by calculating
the squared difference averaged over all sample points relative to the maximum of the
dispersion relation

εdisp =

√√√√〈(
ω2 − ω2

ska

)2
〉

ω4
max

(D 19)

as the error. We observe a strong increase of the error towards small anisotropy.
Nevertheless, the deviation for γ z/γ φ = 0.1 is approximately 15 % and thus the
approximation still reasonable accurate. Increasing the anisotropy results in the deviation
approaching zero, i.e. the approximation becomes perfectly accurate towards large tension
anisotropy.

Appendix E. General dispersion relation

We use the insights from the detailed derivations of the dispersion relations in the
appendices B and C to obtain the modifications due to anisotropic interfacial tension of
more general dispersion relations. From the dispersion relation in presence of an ambient
Stokes fluid (3.1) or an ambient ideal fluid (3.2) we follow Tomotika (1935) and introduce
a general density Nρ = ρ/ρo and viscosity contrast Nη = η/ηo between inner and outer
fluid. We use the following abbreviations concerning the wavenumber and the modified
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Bessel functions

y2 = (kR0)
2 + ω

ρ

η
R2

0 F(x) = x
I0(x)

I1(x)
G(x) = x

K0(x)

K1(x)
, (E 1a–c)

where an additional superscript o indicates definition with the corresponding parameters
of the outer fluid. The dispersion relation in presence of an ambient medium with a density
and viscosity contrast (Tomotika 1935) including anisotropic interfacial tension then takes
the form

ρo2R4
0

ηo2
ω2Nρ

[
F(kR0)F(yoR0) + G(kR0)G(yR0)

] − 4(kR0)
4 (

1 − Nη

)2
F(yoR0)G(yR0)

+
(

2(kR0)
2(Nη − 1) + ωNo

ρ

ρR2
0

ηo

)2

F(kR0)G(yR0)

+
(

2(kR0)
2(Nη − 1) − ω

ρoR2
0

ηo

)2

F(yoR0)G(kR0)

−
(

2(kR0)
2(Nη − 1) + ω

ρoR2
0

ηo
(Nρ − 1)

)2

F(kR0)G(kR0)

+ (kR0)
2

(
γ φρoR0

ηo2

(
1 − γ z

γ φ
k2R2

0

)
+ 2ω

ρoR2
0

ηo
(Nη − 1)

)
[
F(kR0) − F(yoR0) + NρG(kR0) − NρG(yR0)

]
= 0. (E 2)

This general dispersion relation includes the Stokes fluid in (3.1) as well as the dispersion
relation for an ideal fluid (3.2) in the corresponding limits. These are obtained by first
considering identical fluids inside and outside, i.e. Nρ = 1 and Nη = 1. Second, for the
Stokes fluid an expansion of the Bessel functions in the limit of small density is necessary,
while for the ideal fluid the viscosity is set to zero and identities for the Bessel functions
are used to rewrite the remaining terms.

Starting from the dispersion relation for an ideal fluid jet without ambient fluid (C 15)
we follow Chandrasekhar (1961) to obtain the general dispersion relation for a jet in a
passive ambient medium. The general dispersion relation including tension anisotropy in
this case has the form

2(kR0)
2ω

ρ

η
R2

0 (2F(kR0) − 1) + 4(kR0)
4 (F(kR0) − F(y)) + ω2 ρ2

η2
R4

0F(kR0)

− γ φρR0

η2
(kR0)

2

(
1 − γ z

γ φ
(kR0)

2

)
= 0. (E 3)

This contains the dispersion relation of an ideal fluid jet in (C 15) in the limit of negligible
viscosity.
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