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Abstract. A left orderable monster is a finitely generated left orderable group all of whose
fixed point-free actions on the line are proximal: the action is semiconjugate to a minimal
action so that for every bounded interval I and open interval J, there is a group element
that sends I into J. In his 2018 ICM address, Navas asked about the existence of left
orderable monsters. By now there are several examples, all of which are finitely generated
but not finitely presentable. We provide the first examples of left orderable monsters that
are finitely presentable, and even of type F∞. These groups satisfy several additional
properties separating them from the previous examples: they are not simple, they act
minimally on the circle, and they have an infinite-dimensional space of homogeneous
quasimorphisms. Our construction is flexible enough that it produces infinitely many
isomorphism classes of finitely presented (and type F∞) left orderable monsters.
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finiteness properties
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1. Introduction
A group G is left orderable if it admits a total order which is invariant under left
multiplication by any group element. This concept has a remarkable connection with
dynamics of group actions on the line: a countable group G is left orderable if and only if
it admits a faithful action by orientation-preserving homeomorphisms on the real line.

One of the fundamental questions in the field is to understand the following. Given a
left orderable group, what are the possible actions on the line by orientation-preserving
homeomorphisms? It is folklore that up to semiconjugacy, every action of a finitely
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generated left orderable group on the line by orientation-preserving homeomorphisms and
without global fixed points is of one of three types [13, Theorem 3.5.19]:
(1) cyclic or type 1 if there exists an invariant Radon measure on R, in which case the

group surjects onto the integers;
(2) locally proximal or type 2 if it does not preserve a Radon measure on R, yet

it is semiconjugate to a minimal action that commutes with integer translations.
Equivalently, such an action descends to a minimal and proximal action on the circle
(see Proposition 2.5);

(3) proximal or type 3 if for every bounded interval I and open interval J, there is a group
element f such that I · f ⊂ J .

The above framework has shed light on various algebraic and dynamical properties of
left orderable groups, and on the question of when certain groups are left orderable. For
example, it was unknown until very recently whether lattices in higher-rank semisimple Lie
groups admit actions on the line or not; it turns out that outside some exceptional cases,
they do not [12]. Before this breakthrough solution, given that lattices do not admit actions
of type 1 [24] or 2 [4, 5, 17], it was thought that a promising approach could be to leverage
finite generation to also rule out type-3 actions. More succinctly, [32, Question 4] (see also
[13, Question 3.5.11]) asks the following question.

Question 1.1. (Navas ICM 2018) Do there exist finitely generated left orderable groups all
of whose fixed point-free actions by homeomorphisms on the line are of type 3?

Definition 1.2. (Navas) A finitely generated left orderable group G is a left orderable
monster if all of its fixed point-free actions by homeomorphisms on the line are of type 3.

Given the negative solution in [12] to the question concerning higher-rank lattices, it is
intriguing that in fact left orderable monsters do exist. This fact was proved independently
by Matte Bon and Triestino [30], and by Hyde, the second author, Navas, and Rivas
[22, 23]. In both cases, the examples are families of groups whose construction is
non-trivial, and that have a number of stronger properties. First, both families of groups are
simple: a property much stronger than the absence of type-1 actions. Second, these groups
are uniformly perfect, and even have vanishing second bounded cohomology [14]; in fact,
they admit no fixed point-free action on the circle whatsoever [14, 30]—these properties
are much stronger than the absence of type-2 actions.

However, the groups in [22, 23, 30] are not finitely presentable since each is a
non-trivial limit of markings of a finitely presented group in the space of marked groups.
Therefore, one might hope that the above still yields an alternative approach to disprove left
orderability of lattices, namely leveraging finite presentability to rule out type-3 actions.
In particular, one may hope that this approach works for lattices in products of trees [6],
whose left orderability is still an open question. Indeed, it follows from their simplicity
and from [5, Corollary 26] that if they are left orderable, then they must be left orderable
monsters. One of the key motivations of this article is to show that this modified approach
cannot work, that is, there do in fact exist finitely presentable left orderable monsters.

Our examples are very different in nature from those in [22, 30]. First, as we already
mentioned, they are finitely presentable, and even of type F∞ (finite presentability is
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equivalent to admitting a classifying space with a finite 2-skeleton, and type F∞ means
there is a classifying space with a finite n-skeleton for all n). Second, the absence of
type-1 or type-2 actions is shown via a direct dynamical argument, and not via some much
stronger property such as simplicity, uniform perfection, or vanishing of second bounded
cohomology. Indeed, each of these properties is shown to fail. Lastly, in our construction,
the group itself is much more straightforward than in previous examples.

We now describe a concrete instance of our general construction. Let T denote the lift
of Thompson’s group T to the real line. Let z denote the generator of the center of T . Let
T 2,3 denote the lift of the Stein–Thompson group T2,3, and let g ∈ T 2,3 denote a lift of an
element with an irrational rotation number in T2,3. Such elements exist, e.g., it was proved
in [25] that T2,3 contains elements whose rotation number equals log 2/log 3. We now take
the amalgamated product and define

M := T ∗z=g T 2,3.

Now we can state our main result.

THEOREM 1.3. The group M is a left orderable monster.

A number of notable properties can be quickly established for this group. First, the
space of homogeneous quasimorphisms of M is infinite-dimensional. In particular, M is
not uniformly perfect, and the second bounded cohomology of M is infinite-dimensional.
Moreover, M surjects onto Thompson’s group T. In particular, there exists a minimal action
of M on the circle, and M is not simple. This showcases the difference with previous
examples, which not only do not share these properties, but also were all more complicated
to construct and harder to analyze.

To state our more general construction, we define G to be the class of infinite groups G
of orientation-preserving homeomorphisms of the circle that satisfy:
(1) the lift G of G to the real line is perfect;
(2) G is simple;
(3) G has a unique proximal action on the circle, up to conjugacy;
(4) G has torsion.

Groups in G include: Thompson’s group T [10], the Stein–Thompson groups T2,3,n3,...,nk
[21, 33] (for example T2,3), the commutator subgroup of the golden ratio Thompson group
Tτ [8], and the piecewise projective group S constructed by the second author [26]. Some
of these groups are known to have irrational rotation numbers, e.g., T ′

τ [14], and Tn1,...,nk if
some ni and nj are coprime [25]. A peculiarity of T is that the rotation numbers of all of its
elements are rational [19]. We do not know whether S contains an element with irrational
rotation number.

The following is our main result (with Theorem 1.3 as a special case).

THEOREM 1.4. Let G1, G2 ∈ G be groups such that G2 contains an element with an
irrational rotation number. Let Gi denote the lift of the standard action of Gi , let z
denote the generator of the center of G1, and let g ∈ G2 denote the lift of an element
with irrational rotation number. Then the following hold.
(1) The group M := G1 ∗z=g G2 is a left orderable monster.
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(2) If G1, G2 are finitely presented (respectively of type F∞), then M is also finitely
presented (respectively of type F∞.)

(3) The space of homogeneous quasimorphisms of M is infinite-dimensional. In par-
ticular, M is not uniformly perfect, and the second bounded cohomology of M is
infinite-dimensional.

(4) M admits a unique proximal action on the circle (up to conjugacy), and this
coincides with the unique proximal action of the quotient G1. In particular, G1 is
an isomorphism invariant of M.

Using the above, we will conclude the following.

COROLLARY 1.5. There exist infinitely many isomorphism classes of finitely presentable
(and type F∞) left orderable monsters.

2. Actions on the line and on the circle
We denote by Homeo+(R) and Homeo+(S1) the groups of orientation-preserving homeo-
morphisms of the real line and the circle, respectively. Given f ∈ Homeo+(R), the support
of f, denoted supp(f ), is the set of points that are moved by f. Note that the support of
a homeomorphism is always an open set. Given G ≤ Homeo+(R) or Homeo+(S1), we
denote by Fix(G) the set of global fixed points of G, which is closed. We say that an action
ρ of a group G is fixed point-free if Fix(ρ(G)) = ∅.

Recall that a group action on a topological space by homeomorphisms is minimal if
each orbit is dense. We say that � ⊂ R (or � ⊂ S1) is exceptional if � is perfect and
totally disconnected. Let G ≤ Homeo+(M), where M ∈ {R, S1}, and let � ⊂ M be an
exceptional set. We say that � is minimal if it is G-invariant and the action of G on � is
minimal.

The following are some fundamental results concerning actions of groups on the circle
and the real line.

THEOREM 2.1. [31, Theorem 2.1.1] If � ≤ Homeo+(S1) is a countable group, then
precisely one of the following holds.
(1) The action admits a finite orbit.
(2) The action is minimal.
(3) There exists a unique, minimal, exceptional subset � ⊂ S1 which is homeomorphic

to the Cantor set.

For the case of the line, a similar result holds under the additional assumption of finite
generation.

PROPOSITION 2.2. [31, Proposition 2.1.12] Every fixed point-free action of a finitely
generated group G on R by orientation-preserving homeomorphisms admits a non-empty
minimal invariant closed set. This closed set is one of the following.
(1) Discrete, in which case the group surjects onto the integers.
(2) The whole real line, in which case the group action is minimal.
(3) A unique minimal, exceptional set � ⊂ R.
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We are particularly interested in the third case of the previous proposition. The following
is a fact concerning this case.

PROPOSITION 2.3. [31, §§2.1.1 and 2.1.2] Let M ∈ {R, S1}. Let G ≤ Homeo+(M) be
such that G admits a unique, exceptional, minimal set � ⊂ M. Then there is a continuous
surjective map φ : M → M, a group H ≤ Homeo+(M), and a surjective homomorphism
ψ : G → H , such that:
(1) the restriction of φ to � is surjective, and every fiber has size at most 2;
(2) for each g ∈ G, φ ◦ g = ψ(g) ◦ φ;
(3) the action of H on M is minimal.

Using the above, we define the following process, which we call the minimalization
of an action. We start with the action of a finitely generated group G on R (or S1) by
orientation-preserving homeomorphisms. We assume that this action is not minimal; in
the case of R, we assume that there is no discrete orbit, and in the case of S1, we assume
that there is no finite orbit. Using the above, we obtain the (possibly non-faithful) action
of G on R (or S1) which is minimal. This new action is called the minimalization of the
original action, and is semiconjugate to the original. If the original action was minimal to
begin with, then this is the same as the original action.

For actions on the circle, a further property will be relevant for us. An action of a group
G on S1 is said to be proximal if for every non-empty open arc J ⊂ S1 and every proper arc
I ⊂ S1, there exists f ∈ G such that I · f ⊂ J . We warn the reader that in the literature,
this property is referred to by various other names, such as strongly proximal, extremely
proximal, strongly expansive, or compact-open transitive (some of these properties have
well-established and distinct meanings in topological dynamics that happen to coincide
for the case of actions on the circle). In this article, we refer to it as proximal.

THEOREM 2.4. (Margulis [29], see also [18, §5.2]) Let G act faithfully and minimally on
the circle. Suppose that G is non-abelian. Then:
(1) if the action is proximal, the centralizer of G in Homeo+(S1) is trivial;
(2) otherwise, the centralizer of G in Homeo+(S1) is a finite cyclic group 〈θ〉, and the

induced action of G on S1/〈θ〉 ∼= S1 is proximal.

Now we can push our minimalization process one step further. Given a minimal action
of G on the circle such that the image of G in Homeo+(S1) is non-abelian, we obtain a
proximal action of G on the circle, which we call the proximalization of the original action.
If the original action was proximal to begin with, then this is the same as the original action.

Proximal actions on the circle are especially relevant for type-2 actions on the line.

PROPOSITION 2.5. [28, Theorem 1] Let G be a group, and let ρ be a minimal type-2 action
on R by orientation-preserving homeomorphisms. Then there exists a fixed point-free
homeomorphism t ∈ Homeo+(R) which commutes with ρ(G), such that the induced
action of G on R/〈t〉 ∼= S1 is proximal.

Finally, we prove a basic fact about rotation numbers of homeomorphisms of the circle,
which will be the crucial tool for our proof of Theorem 1.4. Let g ∈ Homeo+(S1), and let
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g be a lift of g to the real line. Then the quantity

rot(g) := lim
n→∞

gn(x)

n
∈ R

is independent of the choice of x ∈ R, and moreover depends on the choice of lift only up
to integers. In particular, the rotation number rot(g) ∈ R/Z is well defined.

PROPOSITION 2.6. Let ρ : G → Homeo+(S1) be a group action on the circle. Let ρm
be the minimalization of ρ, and suppose that ρm(G) is non-abelian, so that there exists
a proximalization ρp. Then there exists an integer n ≥ 1 such that for all g ∈ G, we
have rot(ρp(g)) = nrot(ρ(g)). In particular, the rationality or irrationality of rot(ρ(g))
is preserved under proximalization.

Proof. The rotation number of a circle homeomorphism is a semiconjugacy invariant
[18, §5.1]. In particular, if ρm is the minimalization of ρ, then for all g ∈ G, it holds
that rot(ρm(g)) = rot(ρ(g)).

Now by Proposition 2.4, since ρm(G) is non-abelian, there exists a (possibly trivial)
finite-order homeomorphism θ that centralizes ρm(G) and such that the proximalization
ρp is the induced action on the quotient S1/〈θ〉. Let n ≥ 1 be the order of θ . By [18,
Proposition 4.1], up to conjugacy and changing the generator of 〈θ〉, we may assume that θ
is rotation by 1/n. It then follows from the definition of rotation numbers that rot(ρp(g)) =
nrot(ρm(g)), and we conclude.

3. Groups in G and their lifts
In this section, we state and prove various results about the groups G ∈ G that play a
crucial role in our general construction. Given a group G ∈ G, recall that G denotes the
lift of G to the real line, that is, the group of all homeomorphisms of R that commute with
integer translations and induce elements of G on the quotient R/Z = S1. We have a central
extension

1 → Z → G → G → 1.

LEMMA 3.1. Let G ∈ G and let f ∈ G be an element that does not lie in the center. Then
f normally generates G.

Proof. Let N = 〈〈f 〉〉 and let Z = Z(G) ∼= Z. The image of N under the quotient G → G

is a normal subgroup of G, and is non-trivial since N is not contained in Z. Since G is
simple, this image must equal G. This impliesG = NZ, soG/N ∼= Z/(N ∩ Z) is abelian.
Now the fact that G is perfect implies N = G.

LEMMA 3.2. For G ∈ G, every proper normal subgroup of G is central. Hence, G has no
proper non-trivial torsion-free quotients, and no non-trivial finite quotients.

Proof. That every proper normal subgroup is central follows from Lemma 3.1. The center
itself corresponds to the quotient G, which has torsion. For any other non-trivial proper
normal subgroup, the generator of the center will map to a non-trivial torsion element in
the quotient. All non-trivial quotients surject onto G, and thus are infinite.
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Next, we want to study the possible dynamics of G (G ∈ G) on the line (see [30,
Theorem 8.7] for the case of Thompson’s group T).

LEMMA 3.3. For G ∈ G, every fixed point-free action of G by homeomorphisms on the
line is semiconjugate to the standard action.

Proof. Let ρ be a fixed point-free action of G by orientation-preserving homeomor-
phisms on the line. Note that ρ cannot fix a Radon measure because G is perfect,
and hence non-indicable. Therefore, via a semiconjugacy, we pass to a minimal action
(Proposition 2.3), which we denote as ρ′. We also know from Lemma 3.2 that ρ′ must
be a faithful action of G. Since G has a cofinal central element, it cannot admit a
minimal faithful type-3 action [13, Proposition 3.5.12]. Therefore, ρ′ is a type-2 action.
By Proposition 2.5, there exists a fixed point-free homeomorphism t that commutes with
ρ′(G) and such that the induced action of G on R/〈t〉 ∼= S1 is proximal.

Now, using our rigidity assumption on proximal actions of groups in G—together with
the fact that the center must act trivially, by Theorem 2.4—this action is even topologically
conjugate to the standard action of G. Lifting this conjugacy, we obtain that ρ ′ is conjugate
to an action ρ′′ of G on the line that sends the center to itself and induces the standard
representation on the quotient G. In other words, we can write ρ ′′(g) = ρst (g)z

ig , where
z is the generator of the center and ig ∈ Z. Since z is central, the map g �→ ig is a
homomorphism, which must be trivial because G is perfect. Therefore, ρ ′′ = ρst and we
conclude.

Finally, we consider actions of G on the circle.

PROPOSITION 3.4. Let G ∈ G. Let ρ be an action of G on the circle without global fixed
points, and let ρst be the standard action, that is, the one induced by the unique (up to
conjugacy) proximal action of the quotient G. Then, for all g ∈ G, it holds that

rot(ρ(g)) ∈ Q/Z ⇐⇒ rot(ρst (g)) ∈ Q/Z.

Proof. Let ρm be the minimalization of ρ. Since every non-trivial quotient of G surjects
onto G, ρm(G) is not abelian, so we can produce a proximalization ρp. By Theorem 2.4,
the centralizer of ρp(G) is trivial, therefore, the whole center ofG lies in the kernel of ρp.
It follows that ρp induces a proximal action of G, and so by the definition of G, we deduce
that ρp is conjugate to ρst . We conclude by Proposition 2.6 and the fact that rotation
numbers are conjugacy-invariant [18, §5.1].

3.1. Examples. Here we provide some examples of groups in G. We start with the most
well-known example.

Example 3.5. (Thompson) Our first example is Thompson’s group T, which is the group
of orientation-preserving piecewise linear homeomorphisms of the circle R/Z stabilizing
Z[ 1

2 ], with slopes in 2Z and breakpoints in Z[ 1
2 ]. It is well known that T lies in G and

that it is of type F∞; all necessary facts can be found in [3, 10, 19]. For the uniqueness of
the action on the circle, this is only stated explicitly in [19] in a weaker form (uniqueness
among C2 actions), however, it can be deduced from their cohomological computations or
from the rest of the discussion in this section.
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For the remainder of the examples, simplicity and torsion can be found in the literature,
and perfection of the lift is easy to check and can sometimes be reduced to the case of T.
The uniqueness of the proximal action is less well studied, but can be established via the
following general criterion.

THEOREM 3.6. [15, Proposition 6.9], [14, Corollary 4.2] Let G ≤ Homeo+(S1) be either
piecewise linear or piecewise projective. Suppose that there exists a dense orbit Y ⊂ S1

such that the action of G on positively oriented triples in Y is transitive. Then the given
action of G on S1 is proximal, and it is the unique proximal action of G on the circle, up to
conjugacy.

This next example provides an infinite family of groups in G, which will be used in the
proof of Corollary 1.5.

Example 3.7. (Stein–Thompson) For n1, . . . , nk ∈ N (ni ≥ 2), let λ := n1 . . . nk , let
Y := Z[1/λ]/Z, and let P := 〈n1, . . . , nk〉 ≤ R×. The Stein–Thompson group Tn1,...,nk is
the group of orientation-preserving piecewise linear homeomorphisms of the circle R/Z,
stabilizing Y, with slopes in P and breakpoints in Y; see [33]. When k = 1 and n1 = 2, we
recover the classical Thompson’s group T.

We claim that any Stein–Thompson group of the form G := T2,3,n3,...,nk is in G, for
example T2,3. All Stein–Thompson groups clearly have torsion, and these particular
Stein–Thompson groups are all simple [21]. Since T ≤ G, we deduce that the group of
translations is contained in the commutator subgroup of G. Together with simplicity of G,
this shows that G is perfect.

Finally, we claim that Theorem 3.6 applies, with Y as above; in fact, we claim that
the action is transitive on positively ordered p-tuples for all p ≥ 1. Let x1, . . . , xp and
y1, . . . , yp be two positively ordered p-tuples in Y. Then there exists some q ≥ 1 such
that the representatives of all xi and yi in [0, 1) are integer multiples of λ−q . Setting
x = y = {0, . . . , 1 − λ−q} mod Z includes both p-tuples inside larger tuples x, y with
the additional property that the difference between two consecutive points lies in P.
Now, adding the midpoint of two consecutive points to x or y keeps the elements of
the tuple inside Y, and does not change the property that the difference between two
consecutive points in x or y lies in P. Therefore, we can add midpoints inductively to x
or y to ensure that for each i = 1, . . . , p, the number of points in the arc x ∩ (xi−1, xi) is
the same as the number of points in the arc y ∩ (yi−1, yi) (where we abuse the notation
and interpret x0, y0 as xp, yp). This ensures that the piecewise linear homeomorphism of
S1 sending x to y and interpolating linearly also sends xi to yi for each i. Since x and y are
contained in Y, and the difference between two consecutive points is in the multiplicative
group P, the corresponding homeomorphism of the circle is an element of G that sends xi
to yi for each i, as desired.

This shows that T2,3,n3,...,nk is in G. Also note that all Stein–Thompson groups are of
type F∞ [33], and that any T2,3,n3,...,nk has elements with irrational rotation number [25].

We end with two more exotic examples.
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Example 3.8. (Golden ratio Thompson) Let τ := (
√

5 − 1)/2 be the small golden ratio.
The golden ratio Thompson’s group Tτ is a circle version of Cleary’s golden ratio
Thompson’s group Fτ [7, 11], introduced in [8]. The commutator subgroup T ′

τ has index 2
and is simple [8, Theorem 3.2]. Moreover, the action of T ′

τ on Z[τ ] is transitive on
positively oriented n-tuples for all n [14, Lemmas 5.5 and 5.7], so Theorem 3.6 applies
to T ′

τ . Moreover, T ′
τ is of type F∞ [14, Proposition 5.8], and the lift T ′

τ is perfect
[14, Lemma 5.13]. Thus, T ′

τ ∈ G. Finally, T ′
τ clearly has elements with irrational rotation

number, for instance, the rotation by 2τ (see [14] for more detail).

Example 3.9. (Piecewise projective) The group S introduced in [26] is simple, has torsion,
and is of type F∞ [27]. It is a group of piecewise projective homeomorphisms of the circle
R ∪ {∞}, which is the real projective line. The action of S preserves Q ∪ {∞}, and it acts
transitively on positively oriented triples of this set. (Indeed, the copy of T in S already
acts transitively on such triples). Thus, Theorem 3.6 applies to S. Moreover, S is perfect
with a similar argument as above: its derived subgroup contains T , and therefore all of the
integer translations. Thus, S ∈ G. We do not know whether S has elements with irrational
rotation number.

4. Monstrousness and the proof of Theorem 1.4
Now we can prove our main result.

Proof of Theorem 1.4. We recall our hypothesis: G1, G2 ∈ G are groups such that G2

contains an element with an irrational rotation number. For example, for the special case
in Theorem 1.3, one can use G1 = T (Example 3.5) and G2 = T2,3 (Example 3.7). We
denote as usual by Gi the lift of the standard action of Gi , we let z denote the generator of
the center of G1, and let g ∈ G2 denote a lift of an element of G2 with irrational rotation
number.

(1) The left orderability of M follows from the fact that an amalgamated product of
two left orderable groups along a cyclic subgroup is left orderable [1] (see [2] for a more
general result).

Being an amalgamated product of two perfect groups, M is perfect, therefore, it has
no type-1 action. Now suppose by contradiction that M admits a fixed point-free type-2
action ρ : M → Homeo+(R), which we may assume to be minimal by Proposition 2.3.
This implies the existence of a fixed point-free element t ∈ Homeo+(R) that commutes
with ρ(M). Up to conjugating our action by a suitable homeomorphism, we may assume
for the rest of the proof that x · t = x + 1 for each x ∈ R (this follows, for example, from
Hölder’s theorem [13, Theorem 3.1.2]). Also, we declare H1 = ρ(G1) and H2 = ρ(G2).

We first claim that neither H1 nor H2 have global fixed points in R. Indeed, suppose
by contradiction that H1 fixes a point x (the proof for H2 is identical). Since ρ(M) has
no global fixed points, H2 does not fix x. Thus, there is an H2-invariant open interval J
containing x on which the restriction of the action of H2 is fixed point-free. SinceG2 does
not have proper non-trivial torsion-free quotients by Lemma 3.2, this action on J is faithful.

By Lemma 3.3, the action of H2 on J ∼= R is semiconjugate to the standard action. In
particular, ρ(g) does not fix a point in J: otherwise the rotation number of the image of g
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in G2 would be 0. However, looking at the action of all of M, this contradicts the fact that
ρ(g) = ρ(z) ∈ H1 fixes x. This proves our claim. Moreover, it follows from Lemma 3.3
that H1 and H2 are semiconjugate to their standard actions on the real line.

Now the quotient R → R/〈t〉 ∼= S1 induces a homomorphism φ : M → Homeo+(S1)

with kernel 〈t〉 ∩M . The restriction of φ to each Gi is fixed point-free on S1. Indeed, if
it fixed a point, then this fixed point would lift to a discrete orbit, which would have to be
fixed pointwise becauseGi is perfect (and hence non-indicable). However, we have already
shown that the restriction of ρ to Gi has no global fixed points.

We can therefore use Proposition 3.4 on G1 to obtain rot(φ(z)) ∈ Q/Z, and then on
G2 to obtain rot(φ(g)) /∈ Q/Z. However, φ is an action of M, so φ(g) = φ(z), which is a
contradiction.

(2) It is a standard fact that an amalgamation of two type F∞ groups along a type F∞
subgroup is of type F∞; indeed, the amalgamation acts cocompactly on a tree with type
F∞ vertex and edge stabilizers, and hence is itself F∞, for example, by [3, Propositions
1.1 and 3.1]. The same holds for other finiteness properties, such as finite presentability.
Therefore, part (2) of the theorem follows.

(3) We use the following fact [20] (see also [16]): an amalgamated product A ∗C B
has an infinite-dimensional space of homogeneous quasimorphisms whenever C �= B

and C has at least 3 double cosets in A. This automatically holds if C is not maximal
in A, in particular, it applies to M, which therefore has an infinite-dimensional space
of homogeneous quasimorphisms. Being moreover perfect, all such quasimorphisms
represent non-trivial classes in bounded cohomology, and witness that M is not uniformly
perfect [9].

(4) The fact that M admits a proximal action follows from the fact that the quotient of
M by the normal closure of G2 is G1, which acts proximally on the circle. We now show
that this action of M is unique (up to conjugacy).

Let ρ be a proximal action of M on the circle. First, we claim that ρ(g) fixes a
point. Assume otherwise. In this case, we obtain that both actions ρ(G1), ρ(G2) are
fixed point-free, since the element ρ(g) = ρ(z) acts without fixed points on the circle
and is contained in both actions. Since G1, G2 do not admit non-trivial finite quotients by
Lemma 3.2, it further follows that ρ(G1), ρ(G2) do not admit a finite orbit. This means
that they both admit proximalizations, using Theorems 2.1 and 2.4. Now, using the same
argument as in the proof of part (1), we obtain the contradiction that ρ(g) = ρ(z) has both
a rational and an irrational rotation number. This proves our claim that ρ(g) fixes a point
in the circle.

Next, we claim that ρ(G2) fixes a point in the circle. If not, again it also cannot admit
a finite orbit, so by Theorems 2.1 and 2.4, it must admit a proximalization ρ′. Since this
is conjugate to the standard action (by our assumption on groups in G), this means that
ρ′(g) has an irrational rotation number. However, this is impossible, since ρ(g), ρ ′(g) are
semiconjugate, and ρ(g) admits a fixed point, so it has rotation number 0. This proves that
ρ(G2) fixes a point in the circle.

The complement of Fix(ρ(G2)) is a union of open intervals, each of which are
individually ρ(G2)-invariant. SinceG2 does not admit a non-trivial left orderable quotient
by Lemma 3.2, the action of ρ(G2) on each these intervals is faithful. Thanks to
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Lemma 3.3, each of these is semiconjugate to the standard action of G2 on R. Since in
the standard action, g does not fix a point, this implies that Fix(ρ(G2)) = Fix(ρ(g)).

Now let X = Fix(ρ(G2)) = Fix(ρ(g)) ⊂ S1. Clearly, X is a closed subset of the circle,
and X is ρ(G1)-invariant, since Fix(ρ(g)) = Fix(ρ(z)) and ρ(z) is central in ρ(G1).
Hence, X is a closed non-empty ρ(M)-invariant set. By the minimality of ρ(M), we
conclude that X = S1. It follows that the element ρ(g) = ρ(z) fixes the circle pointwise,
and hence lies in the kernel ρ : M → Homeo+(S1). Therefore, ρ(M) descends to a
proximal action of G1, which is unique by our assumption.

We conclude with the main corollary.

Proof of Corollary 1.5. Let G1, G2, M be as in the statement of Theorem 1.4, and
moreover assume that they are finitely presented (or type F∞). Part (4) of Theorem 1.4
tells us that G1 is an invariant for the isomorphism type of M. The class G contains the
finitely presented (even type F∞) groups T2,3,n3,...,nk (Example 3.7), which are pairwise
non-isomorphic [25]. We conclude that finitely presented (even type F∞) M can also take
on infinitely many isomorphism types.
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