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HEAVY TAILS OF DISCOUNTED AGGREGATE
CLAIMS IN THE CONTINUOUS-TIME
RENEWAL MODEL
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Abstract

We study the tail behavior of discounted aggregate claims in a continuous-time renewal
model. For the case of Pareto-type claims, we establish a tail asymptotic formula, which
holds uniformly in time.
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1. Introduction and the main result

Consider a continuous-time renewal model, in which claim sizes Xk , k = 1, 2, . . . , consti-
tute a sequence of independent, identically distributed (i.i.d.), and nonnegative random variables
with common distribution F , while their arrival times τk , k = 1, 2, . . . , constitute a renewal
counting process,

Nt = #{k = 1, 2, . . . : τk ≤ t}, t ≥ 0. (1.1)

We assume that {Xk, k = 1, 2, . . . } and {Nt, t ≥ 0} are mutually independent. To avoid
triviality, we mention that X1 and τ1 are not degenerate at zero. We allow τ1 to potentially
have a positive probability at zero, not for practical usefulness but for theoretical completeness.
Suppose that there is a constant interest force δ > 0. That is to say, after time t one dollar
becomes eδt dollars. Then, the aggregate claims form into a stochastic process of the form

Aδ(t) =
∞∑
k=1

Xke
δ(t−τk)1(τk≤t), t ≥ 0,

where for an event E the symbol 1E denotes its indicator function. Since Aδ(t) → ∞ almost
surely as t → ∞, we instead study the tail behavior of the discounted process,

Dδ(t) =
∞∑
k=1

Xke
−δτk1(τk≤t), t ≥ 0. (1.2)

We shall derive for the tail probability ofDδ(t), t ≥ 0, an asymptotic formula, which holds
uniformly for all t for which the renewal function,

λt = ENt =
∞∑
k=1

Pr(τk ≤ t),
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is positive. For this purpose, we define � = {t : λt > 0}. With t = inf{t : λt > 0} =
inf{t : Pr(τ1 ≤ t) > 0}, it is clear that

� =
{

[t,∞] if Pr(τ1 = t) > 0,

(t,∞] if Pr(τ1 = t) = 0.
(1.3)

We shall assume that the distribution F on [0,∞) is extended-regularly-varying tailed and
hence, heavy tailed. That is to say, F(x) = 1 − F(x) > 0 holds for all x ≥ 0 and there are
some constants α and β, 0 < α ≤ β < ∞, such that

v−β ≤ lim inf
x→∞

F(vx)

F (x)
≤ lim sup

x→∞
F(vx)

F (x)
≤ v−α for all v ≥ 1. (1.4)

We use F ∈ ERV(−α,−β) to signify the regularity property in (1.4). The class ERV is the
union of all classes ERV(−α,−β) over the range 0 < α ≤ β < ∞. This class has been
used in the study of precise large deviations by many people since the work of Klüppelberg
and Mikosch (1997). It is well known that ERV is a subclass of the class S of subexponential
distributions; see Theorem 1 of Goldie (1978). The subexponentiality of a distribution F is
characterized by the relations F(x) > 0 for all x ≥ 0 and

lim
x→∞

F ∗ F(x)
F (x)

= 2.

Clearly, the class ERV covers the famous class R of distributions with regularly-varying tails
characterized by the relations F(x) > 0 for all x ≥ 0 and

lim
x→∞

F(vx)

F (x)
= v−α for some α > 0 and all v ≥ 1. (1.5)

It is usually easier to handle distributions from the class R because of the well-developed
Karamata theory. Although the class ERV is marginally larger than the class R, we expect
that asymptotic results for the ERV case provide greater insight into the study of the subexpo-
nential case. For more details of heavy-tailed distributions, the reader is referred to Bingham
et al. (1987) and Embrechts et al. (1997).

Hereafter, all limit relationships hold for x tending to ∞ unless stated otherwise. For two
positive functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1. Furthermore, for
two positive bivariate functions a(·; ·) and b(·; ·), we say that the asymptotic relation a(x; t) ∼
b(x; t) holds uniformly over all t in a nonempty set � if

lim
x→∞

sup
t∈�

∣∣∣∣a(x; t)b(x; t) − 1

∣∣∣∣ = 0.

Asymptotic formulae that hold with such a uniformity feature are usually of higher theoretical
and practical interests.

Recall (1.2) and (1.3). Our main result is given below.

Theorem 1.1. Consider the renewal model introduced above. If F ∈ ERV, then the relation

Pr(Dδ(t) > x) ∼
∫ t

0−
F(xeδs) dλs (1.6)

holds uniformly for all t ∈ �.
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2. Some remarks

Remark 2.1. When t = ∞, the sum Dδ(t) reduces to

Dδ(∞) =
∞∑
k=1

Xke
−δτk . (2.1)

For F ∈ ERV(−α,−β), from (3.1) below with x fixed, we see that F(y) = O(y−α′
) for all α′,

0 < α′ < α. Hence, EXα
∗

1 < ∞ for all α∗, 0 < α∗ < α. Using this fact we may further verify
that E(Dδ(∞))α

∗∧1 < ∞. This means that Dδ(t) converges almost surely as t tends to ∞.
Likewise, using the fact that EXα

∗
1 < ∞ and the elementary renewal theorem, it is easy to

verify that
∫ ∞

0− F(e
δs) dλs < ∞, irrespective of whether or not τ1 has a finite mean. Therefore,

both sides of (1.6) are well defined.

Remark 2.2. Suppose that premiums are collected continuously at a constant rate c > 0. Then,
the surplus process is

Sδ(t) = xeδt + c

∫ t

0
eδ(t−s) ds − Aδ(t), t ≥ 0,

where x ≥ 0 denotes the initial surplus. Define the probability of ruin by time t as the probability
that the surplus process ever becomes negative by time t . Denote this probability by ψδ(x, t).
The limit ψδ(x,∞) = limt→∞ ψδ(x, t) represents the probability of ultimate ruin. Although
the practical relevance of ruin probabilities is questionable, they do provide a good risk measure
for insurance business. Clearly, for all t ∈ �,

ψδ(x, t) = Pr

(
inf

0<v≤t Sδ(v) < 0

)
= Pr

(
sup

0<v≤t

(
Dδ(v)− c

∫ v

0
e−δs ds

)
> x

)
.

Hence,

ψδ(x, t) ≤ Pr(Dδ(t) > x) and ψδ(x, t) ≥ Pr

(
Dδ(t) > x + c

δ

)
.

Note that, by (1.4), F((x + c/δ)eδs) ∼ F(xeδs) holds uniformly for all s ∈ [0,∞). Applying
Theorem 1.1, we immediately obtain that the relation

ψδ(x, t) ∼
∫ t

0−
F(xeδs) dλs (2.2)

holds uniformly for all t ∈ �. Klüppelberg and Stadtmüller (1998) first obtained a result
similar to (2.2) with t = ∞ for the special case when {Nt, t ≥ 0} is a homogeneous Poisson
process andF belongs to the class R. For this special case, Tang (2005) obtained the uniformity
of (2.2). Recently, Chen and Ng (2007) extended the asymptotic relation (2.2) with t = ∞ to
the case of negatively dependent claims.

Remark 2.3. We stated Theorem 1.1 in terms of the renewal model, where the innovations
Xk , k = 1, 2, . . . , denote claim sizes and hence, are nonnegative. However, in most situations
considered in practice, these innovations appearing in (1.2) could be real valued. For this more
general case, we may instead study the tail behavior of the running maximum process,

D̃δ(t) := sup
0≤s≤t

Dδ(s), t ≥ 0.
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We show that the asymptotic formula

Pr(D̃δ(t) > x) ∼
∫ t

0−
F(xeδs) dλs (2.3)

holds uniformly for all t ∈ � as long as the right tail of F is still extended regularly varying as
described in (1.4). In fact, for this case, the part until (4.3) of the proof given in Subsection 4.1
is valid for both Dδ(t) and D+

δ (t) := ∑∞
k=1X

+
k e−δτk1(τk≤t), t ≥ 0, where X+

k = Xk1(Xk≥0)
denotes the positive part of Xk for k = 1, 2, . . .. As for all t ≥ 0,

Dδ(t) ≤ D̃δ(t) ≤ D+
δ (t),

we see that (2.3) holds uniformly for all t ∈ � ∩ [0, T ] for an arbitrarily fixed number T ∈ �.
The remaining proof of the uniformity on � of (2.3) can be given by simply copying the part
of the proof of Theorem 1.1 given after (4.3) with all the Dδ terms replaced by D̃δ terms.

Remark 2.4. Relation (1.6) unfortunately involves the renewal function λt , t ≥ 0, as do (2.2)
and (2.3). If the i.i.d. interarrival times have a common finite mean E τ1 = 1/λ, then λt ∼ λt as
t → ∞ by the elementary renewal theorem. This tempts us to consider the replacement of λs
in (1.6) by λs. However, this is not feasible in general. In fact, under the condition F ∈ ERV,
the differential dλs in the integral is on an equal footing. Thus, we cannot ignore an integral
part in the right neighborhood of zero.

If {Nt, t ≥ 0} is a homogeneous Poisson process with intensity λ > 0, then λs = λs for
all s > 0. Other cases where the explicit form of the renewal function λs is available can be
found in the literature. For example, let τ1 have a phase-type distribution (of which the Erlang
distribution is a special case) with density given by

g(s) = αeT s t, s ≥ 0,

where α is a row vector, T is a matrix, and t = −T 1 with 1 = (1, . . . , 1)
�

. The vector α and
the matrix T should be chosen such that (α, 0) is the initial distribution and(

T t

0 0

)
is the intensity matrix of a continuous-time Markov jump process with finite state space in
which one state is absorbing and the others are transient. In this case, the derivative of the
renewal function λs , called the renewal density, is given by

dλs
ds

= αe(T +tα)s t .

As another example, let τ1 have a uniform distribution on (0, a). Then, the renewal density is
given by

dλs
ds

= 1

a
es/a

∑
k : 0≤k≤s/a

e−k (k − s/a)k

k! .

These formulae are copied from Asmussen (2003, p. 88, 148).
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Remark 2.5. We now propose a result for a general situation, in which the renewal function λs
can indeed be simplified to λs. Consider the discounted process (1.2). For any x ≥ 0, denote by

Tx = inf{t : Dδ(t) > x}
the first time whenDδ(t) up-crosses the level x, where inf ∅ = ∞ by convention. The following
is a corollary of Theorem 1.1, giving explicit approximations for the tail probability of Tx .

Corollary 2.1. In addition to the assumptions of Theorem 1.1, we assume that the i.i.d. inter-
arrival times have a non-lattice distribution and a finite mean E τ1 = 1/λ. Then,

lim
t→∞

lim sup
x→∞

Pr(t < Tx < ∞)

λ
∫ ∞
t
F (xeδs) ds

= lim
t→∞ lim inf

x→∞
Pr(t < Tx < ∞)

λ
∫ ∞
t
F (xeδs) ds

= 1. (2.4)

If F ∈ R as defined in (1.5) with some α > 0, then (2.4) can be strengthened to

lim
t→∞ lim

x→∞
Pr(t < Tx < ∞)

(λ/αδ)e−αδtF (x)
= 1. (2.5)

The proof of Corollary 2.1 is left to Section 4. From the proof one sees that the same result
holds for the case discussed in Remark 2.3.

3. Lemmas

Lemma 3.1. Let F ∈ ERV(−α,−β). Then for any α′ and β ′, 0 < α′ < α, β < β ′ < ∞,
there are positive constants ci and di , i = 1, 2, such that the inequality

F(y)

F (x)
≤ c1

(
y

x

)−α′

(3.1)

holds whenever y ≥ x ≥ d1, and that the inequality

F(y)

F (x)
≥ c2

(
y

x

)−β ′

(3.2)

holds whenever y ≥ x ≥ d2.

Proof. This lemma is a consequence of Proposition 2.2.1 of Bingham et al. (1987). In
fact, with f = 1/F we see that (3.1) and (3.2) above are, respectively, (2.2.1′) and (2.2.1) of
Bingham et al. (1987).

Lemma 3.2. Consider the renewal process {Nt, t ≥ 0} defined in (1.1). It holds for all T ∈ �
and all v > 0 that

lim
x→∞

sup
t∈�∩[0,T ]

1

λt
ENv

t 1(Nt>x) = 0.

Proof. Follow the proof of Lemma 5.3 of Tang (2004) with slight modifications.

Lemma 3.3. Let {X1, . . . , Xn} be n i.i.d. random variables with common distribution F ∈ S.
Then for arbitrarily fixed numbers a and b, 0 < a ≤ b < ∞, the relation

Pr

( n∑
k=1

ckXk > x

)
∼

n∑
k=1

F

(
x

ck

)
holds uniformly for all (c1, . . . , cn) ∈ [a, b] × · · · × [a, b].

Proof. See Proposition 5.1 of Tang and Tsitsiashvili (2003).
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4. Proofs

4.1. Proof of Theorem 1.1

To be more precise, we assume F ∈ ERV(−α,−β). In the first half of this subsection, we
prove that (1.6) holds uniformly for all t ∈ � ∩ [0, T ], for an arbitrarily fixed number T ∈ �.
We split the probability Pr(Dδ(t) > x) into two parts as

Pr(Dδ(t) > x) =
( ∞∑
n=m+1

+
m∑
n=1

)
Pr

( n∑
k=1

Xke
−δτk > x,Nt = n

)
:= I1 + I2,

where m is a temporarily fixed positive integer.
We first deal with I1. Recall that F ∈ ERV(−α,−β). As mentioned in the proof of

Lemma 4.5 of Tang (2005), using a result of Nagaev (1979) we may prove that for an arbitrarily
fixed number v > β, there is some cv > 0 such that for all n = 1, 2, . . . and all x ≥ 0,

Pr

( n∑
k=1

Xk > x

)
≤ cvn

vF (x).

Therefore,

I1 ≤
∞∑

n=m+1

Pr

( n∑
k=1

Xk > x

)
Pr(Nt = n) ≤ cvF (x)ENv

t 1(Nt>m).

By (3.2), for some β ′ > β and all x ≥ d2, we have

F(x) ≤ 1

c2
eδTβ

′
F(xeδT ).

Hence, by Lemma 3.2, for all x ≥ d2,

lim inf
m→∞

sup
t∈�∩[0,T ]

I1∫ t
0− F(xeδs) dλs

≤ cv

c2
eδTβ

′
lim inf
m→∞

sup
t∈�∩[0,T ]

F(xeδT )ENv
t 1(Nt>m)

F (xeδT )λt
= 0. (4.1)

We now turn to I2. Under the condition Nt = n, all τk appearing in I2 are not larger than T .
Using Lemma 3.3, it holds uniformly for all t ∈ � ∩ [0, T ] that

I2 =
m∑
n=1

Pr

( n∑
k=1

Xke
−δτk > x

∣∣∣ Nt = n

)
Pr(Nt = n)

∼
m∑
n=1

n∑
k=1

Pr(Xke
−δτk > x | Nt = n)Pr(Nt = n)

=
( ∞∑
n=1

−
∞∑

n=m+1

) n∑
k=1

Pr(Xke
−δτk > x,Nt = n) := I21 − I22.
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Clearly,

I21 =
∞∑
k=1

∞∑
n=k

Pr(Xke
−δτk > x,Nt = n)

=
∞∑
k=1

Pr(Xke
−δτk > x, τk ≤ t)

=
∫ t

0−
F(xeδs) dλs.

Note that

I22 ≤ F(x)

∞∑
n=m+1

nPr(Nt = n).

Hence, similar to (4.1), for all x ≥ d2,

lim
m→∞

sup
t∈�∩[0,T ]

I22∫ t
0− F(xeδs) dλs

= 0.

We conclude that the asymptotic relation (1.6) holds uniformly for all t ∈ � ∩ [0, T ].
In the second half of this subsection, we extend the uniformity of (1.6) to the whole interval�.

For arbitrarily fixed numbers α′ and β ′, 0 < α′ < α, β < β ′ < ∞, again by (3.1) and (3.2), it
holds that, for all x ≥ max{d1, d2} and all t ∈ [0,∞),∫ ∞

t
F (xeδs) dλs∫ ∞

0− F(xeδs) dλs
=

∫ ∞
t
(F (xeδs)/F (x)) dλs∫ ∞

0−(F (xeδs)/F (x)) dλs
≤ c1

∫ ∞
t

e−δsα′
dλs

c2
∫ ∞

0− e−δsβ ′ dλs
. (4.2)

The right-hand side of the above tends to zero as t tends to infinity. Therefore, for any ε > 0,
there exists some T0 ∈ � such that the inequality∫ ∞

T0

F(xeδs) dλs ≤ ε

∫ T0

0
F(xeδs) dλs (4.3)

holds for all x ≥ max{d1, d2}. Recall (2.1). Using Theorem 3.1 of Tang and Tsitsiashvili
(2004), we find that

Pr(Dδ(∞) > x) ∼
∞∑
k=1

Pr(Xke
−δτk > x) =

∫ ∞

0−
F(xeδs) dλs. (4.4)

Hence, (1.6) holds for t = ∞.
We are ready to extend the uniformity of (1.6) to the whole interval �. On the one hand, it

holds uniformly for all t ∈ (T0,∞] that

Pr(Dδ(t) > x) ≥ Pr(Dδ(T0) > x)

∼
∫ T0

0−
F(xeδs) dλs

≥
(∫ t

0−
−

∫ ∞

T0

)
F(xeδs) dλs

≥ (1 − ε)

∫ t

0−
F(xeδs) dλs,
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where in the second step we used (1.6) with t replaced by T0, while in the last step we used (4.3).
On the other hand, likewise, it holds uniformly for all t ∈ (T0,∞] that

Pr(Dδ(t) > x) ≤ Pr(Dδ(∞) > x)

∼
∫ ∞

0−
F(xeδs) dλs

≤
(∫ t

0−
+

∫ ∞

T0

)
F(xeδs) dλs

≤ (1 + ε)

∫ t

0−
F(xeδs) dλs,

where in the second step we used (4.4), while in the last step we used (4.3). Hence, it holds for
all t ∈ (T0,∞] and all large x, say x > x1 > 0, that

(1 − 2ε)
∫ t

0−
F(xeδs) dλs ≤ Pr(Dδ(t) > x) ≤ (1 + 2ε)

∫ t

0−
F(xeδs) dλs. (4.5)

From the first half of this proof we see that (4.5) still holds for all t ∈ �∩[0, T0] and all large x,
say x > x2 > 0. Therefore, (4.5) holds for all t ∈ � and all x > max{x1, x2}. As ε > 0 is
arbitrary, we have obtained the uniformity of (1.6) over all t ∈ �.

4.2. Proof of Corollary 2.1

As every trajectory of Dδ(t) is piecewise constant with only upward jumps, we have
Pr(Tx ≤ t) = Pr(Dδ(t) > x) for all t ∈ � ∩ [0,∞) and Pr(Tx < ∞) = Pr(Dδ(∞) > x).
Hence, by Theorem 1.1, for all t ∈ � ∩ [0,∞),

Pr(t < Tx < ∞) = Pr(Dδ(∞) > x)− Pr(Dδ(t) > x)

∼
∫ ∞

0−
F(xeδs) dλs −

∫ t

0−
F(xeδs) dλs

=
∫ ∞

t

F (xeδs) dλs, (4.6)

where in the second step we used the asymptotic relation (1.6). There is no problem with this
step because, with t arbitrarily fixed, similar to (4.2),

lim inf
x→∞

∫ ∞
0− F(xeδs) dλs∫ t
0− F(xeδs) dλs

≥ 1 + c2
∫ ∞
t

e−δsβ ′
dλs

c1
∫ t

0− e−δsα′ dλs
> 1.

For any 
 > 0, by the well-known Blackwell renewal theorem,

lim
s→∞(λs+
 − λs) = λ
.

It follows that, for any ε > 0 and all large s, say s > s1 = s1(ε, 
) > 0,

(1 − ε)λ
 ≤ λs+
 − λs ≤ (1 + ε)λ
.
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Therefore, for all x ∈ [1,∞) and t > s1,∫ ∞

t

F (xeδs) dλs =
∞∑
k=1

∫ t+k


t+(k−1)

F (xeδs) dλs

≤
∞∑
k=1

F(xeδ[t+(k−1)
])(1 + ε)λ


≤ (1 + ε)λ

∞∑
k=1

∫ t+(k−1)


t+(k−2)

F (xeδs) ds

= (1 + ε)λ

∫ ∞

t

F (xeδ(s−
)) ds.

Using the definition in (1.4), it holds for all x ∈ [1,∞) and all large s, say s > s2 > 0, that

F(xeδ(s−
)) ≤ (1 + ε)eβδ
F (xeδs).

It follows that, for all x ∈ [1,∞) and t > max{s1, s2},∫ ∞

t

F (xeδs) dλs ≤ (1 + ε)2eβδ
λ
∫ ∞

t

F (xeδs) ds.

A similar lower bound for the integral
∫ ∞
t
F (xeδs) dλs can also be established. Hence, by the

arbitrariness of the constants 
 and ε, the relation∫ ∞

t

F (xeδs) dλs ∼ λ

∫ ∞

t

F (xeδs) ds, t → ∞, (4.7)

holds uniformly for all x ∈ [1,∞). Clearly, the uniformity of (4.7) indicates that

lim
t→∞

lim sup
x→∞

∫ ∞
t
F (xeδs) dλs

λ
∫ ∞
t
F (xeδs) ds

= lim
t→∞ lim inf

x→∞

∫ ∞
t
F (xeδs) dλs

λ
∫ ∞
t
F (xeδs) ds

= 1. (4.8)

From (4.6) and (4.8) we have

lim
t→∞

lim sup
x→∞

Pr(t < Tx < ∞)

λ
∫ ∞
t
F (xeδs) ds

= lim
t→∞

(
lim
x→∞

Pr(t < Tx < ∞)∫ ∞
t
F (xeδs) dλs

lim sup
x→∞

∫ ∞
t
F (xeδs) dλs

λ
∫ ∞
t
F (xeδs) ds

)
= 1.

The derivation above with lim sup replaced by lim inf is still valid. This proves (2.4).
Likewise, when F ∈ R with some α > 0,

lim
t→∞ lim

x→∞
Pr(t < Tx < ∞)

(λ/αδ)e−αδtF (x)
= lim
t→∞

(
lim
x→∞

Pr(t < Tx < ∞)∫ ∞
t
F (xeδs) dλs

lim
x→∞

∫ ∞
t
F (xeδs) dλs

(λ/αδ)e−αδtF (x)

)
= lim
t→∞

(
1

(λ/αδ)e−αδt lim
x→∞

∫ ∞

t

F (xeδs)

F (x)
dλs

)
= lim
t→∞

(
1

(λ/αδ)e−αδt

∫ ∞

t

e−αδs dλs

)
= lim
t→∞

(
1

(λ/αδ)e−αδt

∫ ∞

t

e−αδsλ ds

)
= 1,
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where in the second step we used (4.6), in the third step we used the dominated convergence
theorem justified by (3.1) and (1.5), and in the fourth step we applied the Blackwell renewal
theorem as we did in (4.7). This proves (2.5).
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