

Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras

William Butske

Abstract. Zarhin proves that if *C* is the curve $y^2 = f(x)$ where $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = S_n$ or A_n , then $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$. In seeking to examine his result in the genus g = 2 case supposing other Galois groups, we calculate $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ for a genus 2 curve where f(x) is irreducible. In particular, we show that unless the Galois group is S_5 or A_5 , the Galois group does not determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$.

1 Background

Let *C* be a genus *g* curve defined over \mathbb{Q} . We denote by *J* the Jacobian of the curve *C*. *J* is an abelian variety of dimension *g* defined over \mathbb{Q} . While both *C* and *J* are defined over \mathbb{Q} , we will consider them over $\overline{\mathbb{Q}}$. As a result we will have an action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the set of $\overline{\mathbb{Q}}$ points of *C* and hence on the set of $\overline{\mathbb{Q}}$ points of *J*. If *f* is a polynomial over \mathbb{Q} , then we denote by $\operatorname{Gal}_{\mathbb{Q}}(f(x))$, the Galois group of *f* over \mathbb{Q} .

Let $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$, denote the ring of endomorphisms of *J* defined over $\overline{\mathbb{Q}}$. In his paper [6], Zarhin gives, for hyperelliptic curves, a simple criterion for determining when $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ is *trivial i.e.*, when $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$.

Theorem 1.1 (Zarhin) Let C be the curve defined by the equation $y^2 = f(x)$, where $\deg(f) = n \ge 5$ and f(x) is square-free in $\mathbb{Q}[x]$. If $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = S_n$ or A_n , then $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$.

So at least in the above case, $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ determines $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$.

Suppose now that f(x) is irreducible of degree 5, then $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ is one of the following groups: S_5 , A_5 , F_{20} (the Frobenius group of order 20), D_5 , or $\mathbb{Z}/5\mathbb{Z}$. We seek to determine to what extent Zarhin's result extends to these cases. For instance, is knowing $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = F_{20}$ enough to determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$? To answer this question we will determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ for a genus 2 curve with a \mathbb{Q} -rational Weierstrass point (the existence of such a point is equivalent to the condition that $\operatorname{deg}(f) = 5$ ([2]). Our main result is that the Galois group does not determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$.

Received by the editors January 4, 2009; revised June 29, 2009.

Published electronically March 18, 2011.

AMS subject classification: 11G10, 20C20.

W. Butske

2 Representations of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$

Let *J*[2] denote the points of order two on the Jacobian. Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) acts linearly on *J*[2], as does End_{$\overline{\mathbb{Q}}$}(*J*). In other words we have representations $\overline{\rho}_2$ and $\overline{\phi}_2$ as follows:

where $\overline{\rho}_2$ and $\overline{\phi}_2$ are nothing more than the restriction maps. Furthermore, we have that $J[2] \cong (\mathbb{F}_2)^{2g}$. Thus, in the case of a genus two curve, we have the homomorphisms:

$$\operatorname{End}_{\overline{\mathbb{Q}}}(J)$$

$$\downarrow \overline{\phi}_{2}$$

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\overline{\rho}_{2}} \operatorname{GL}_{4}(\mathbb{F}_{2}) \xrightarrow{} \operatorname{Mat}_{4}(\mathbb{F}_{2}).$$

2.1 Images of $\overline{\rho}_2$ and $\overline{\phi}_2$

One has an explicit basis for J[2] in terms of ramification points, as mentioned in Mori [3], and from this basis one can show that $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on J[2] via the surjection $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}_{\mathbb{Q}}(f(x))$. In other words, $\operatorname{Im}(\overline{\rho}_2) \cong \operatorname{Gal}_{\mathbb{Q}}(f(x))$. Now an endomorphism that kills J[2] factors as $[2]: J(C) \to J(C)$ followed by an endomorphism of J(C), so the kernel of $\overline{\phi}_2$ is $2 \operatorname{End}_{\overline{\mathbb{Q}}}(J)$, *i.e.*, $\operatorname{Im}(\overline{\phi}_2) \cong \operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$.

3 G-Normal Algebras

Notice now that $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ via conjugation, and furthermore, the maps $\overline{\rho}_2$ and $\overline{\phi}_2$ respect this action. Thus, if $h \in \operatorname{Im}(\overline{\phi}_2) \cong \operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ and $g \in \operatorname{Im}(\overline{\rho}_2) \cong \operatorname{Gal}_{\mathbb{Q}}(f(x))$, then $ghg^{-1} \in \operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$.

Definition 3.1 Let $G \to GL_n(F)$ be a faithful representation of a group G. Let A be an F-subalgebra of $Mat_n(F)$. We say that A is G-normal if for all elements $g \in G$ and $h \in A$ we have that $ghg^{-1} \in A$. (This notion appears in an equivalent form in Zarhin [7].)

In terms of this definition, we have that $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ is a $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -normal subalgebra of $\operatorname{Mat}_4(\mathbb{F}_2)$ when *C* is a genus two curve. In [7], Zarhin proves that if we take our representation of $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ arising from Mori, then the only subalgebra that is $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -normal for $\operatorname{Gal}_{\mathbb{Q}}(f(x)) \cong S_5$ or A_5 is \mathbb{F}_2 . Zarhin's theorem then follows as a corollary when combined with the Mumford–Albert classification of $\operatorname{End}_{\overline{\mathbb{Q}}}(f)$ ([4]). We will show that when $\operatorname{Gal}_{\mathbb{Q}}(f(x)) \cong F_{20}$, D_5 , or $\mathbb{Z}/5\mathbb{Z}$, the set of

https://doi.org/10.4153/CMB-2011-045-x Published online by Cambridge University Press

Gal_Q(f(x))-normal algebras is given by { \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_{16} }, and moreover, all such algebras occur as End_{$\overline{\mathbb{O}}$}(J) $\otimes_{\mathbb{Z}} \mathbb{F}_2$ for some curve C.

Remark 3.2 One should be careful here and note that the definition of *G*-normal algebra is made with respect to a particular representation. It is possible for an algebra to be normal with respect to one faithful representation and not normal with respect to another.

The fact that $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ is normal with respect to the image of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ informs a philosophy about the image of the ℓ -adic representations ρ_{ℓ} and ϕ_{ℓ} that one obtains from considering the inverse limit over *n* of the representations ρ_{ℓ^n} and ϕ_{ℓ^n} respectively. Note that ρ_{ℓ} : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_{2g}(\mathbb{Z}_{\ell})$ and ϕ_{ℓ} : $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to Mat_{2g}(\mathbb{Z}_{\ell})$. The philosophy is that a "big" $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$, hence a "big" $\operatorname{Im}(\phi_{\ell})$, forces a "small" $\operatorname{Im}(\rho_{\ell})$ and vice-versa. This philosophy is stated more precisely as "big monodromy" if and only if $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$ and has been proven in the case of genus 1 by Serre [5] and in genus 2 by Zarhin [6].

In our case we are examining $\ell = 2$ and the first term of our inductive limit, $J[2] \cong (\mathbb{Z}/2\mathbb{Z})^{2g}$. Applying our philosophy, we expect that the bigger the image of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, the harder it is for $End_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ to be normal with respect to this image. In other words, "big" image of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ implies "small" $End_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$, so if the image of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ is as big as possible (*i.e.*, S_n or A_n), then $End_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ should be small as possible, *i.e.*, \mathbb{F}_2 .

Indeed, this is what Zarhin did for curves of the form $y^2 = f(x)$. One might then be led to the conclusion that as we reduce the size of the image of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, *i.e.*, the size of $\text{Gal}_{\mathbb{Q}}(f(x))$, we can increase the size of $\text{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$. We state this bit of philosophy as a generalization of the idea of "big monodromy"

Big Monodromy Let $H \subsetneq G$ be transitive subgroups of S_n other than S_n and A_n . Then the set of G-normal algebras is properly contained in the set of H-normal algebras.

Our main result then comes as a bit of a surprise. Namely, the proper containments $\mathbb{Z}/5\mathbb{Z} \subsetneq D_5 \subsetneq F_{20}$ do not imply proper containments F_{20} -normal algebras $\subsetneq D_5$ -normal algebras $\subsetneq \mathbb{Z}/5\mathbb{Z}$ -normal algebras. In fact, these latter three sets are equal.

4 $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -Normal Subalgebras of $\operatorname{Mat}_4(\mathbb{F}_2)$

A naive method of determining the *G*-normal subalgebras of any $Mat_n(\mathbb{F}_p)$ would be to list all subspaces of $Mat_n(\mathbb{F}_p)$, use these spaces to generate algebras and then check if the resulting algebras remained *G*-normal. This method very quickly becomes too costly for practical implementation. In the case of $Mat_4(\mathbb{F}_2)$, there are 134732283882872625911 subspaces to check.

We can considerably narrow the number of subspaces to be checked by examining the $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -module structure of $\operatorname{Mat}_4(\mathbb{F}_2)$ more closely. In particular, all possibilities for $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ contain the cyclic subgroup $\mathbb{Z}/5\mathbb{Z}$, thus the set of $\mathbb{Z}/5\mathbb{Z}$ -normal subspaces is sufficient to determine all $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -normal subspaces. Give $\operatorname{Mat}_4(\mathbb{F}_2)$ the structure of an $F_2[t]$ -module by having t act on $\operatorname{Mat}_4(\mathbb{F}_2)$ via conjugation by a generator of $\mathbb{Z}/5\mathbb{Z}$. This allows us to use modules over PIDs to determine all the $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -normal subspaces of $\operatorname{Mat}_4(\mathbb{F}_2)$.

4.1 $\mathbb{F}_2[t]$ -Module Structure of $Mat_4(\mathbb{F}_2)$

Using the standard basis e_{ij} for Mat₄(\mathbb{F}_2), one computes that the matrix that represents the action of *t* is given by

	F01001000100010007	
	1011001000100010	
	1001000100010001	
	10001100000000000	
	01001010000000000	
	00101001000000000	
T =	00011000000000000	
1 —	00001000110000000 .	
	0000010010100000	
	00000101000000	
	000000110000000	
	0000000010001100	
	0000000001001010	
	0000000000101001	
	$\lfloor 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $	

Then via GAP4 [1],

char_{F₂}(T, t) =
$$(t - 1)^4 (t^4 + t^3 + t^2 + t + 1)^3$$

and

$$\min_{\mathbb{F}_2}(T,t) = t^5 - 1$$

Thus we have the $\mathbb{F}_2[t]$ -module decomposition of $Mat_4(\mathbb{F}_2)$:

(4.1)
$$\operatorname{Mat}_{4}(\mathbb{F}_{2}) \cong \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t]/(t+1) \bigoplus_{i=1}^{3} \mathbb{F}_{2}[t]/(t^{4}+t^{3}+t^{2}+t+1)$$

Given our decomposition (4.1), we note that if W is an $\mathbb{F}_2[t]$ -submodule of $\operatorname{Mat}_4(\mathbb{F}_2)$, then $W \cong W_1 \oplus W_2$, where $W_1 \subseteq \bigoplus_{i=1}^4 \mathbb{F}_2[t]/(t+1)$ is an $\mathbb{F}_2[t]/(t+1) \cong \mathbb{F}_2$ -submodule and

$$W_2 \subseteq \bigoplus_{i=1}^{3} \mathbb{F}_2[t]/(t^4 + t^3 + t^2 + t + 1)$$

is an

$$\mathbb{F}_2[t]/(t^4+t^3+t^2+t+1) \cong \mathbb{F}_{2^4}$$
-submodule.

Thus, to enumerate all $\mathbb{F}_2[t]$ -submodules, it suffices to enumerate all \mathbb{F}_2 -subspaces of $(F_2)^4$ and all \mathbb{F}_{2^4} subspaces of $(\mathbb{F}_{2^4})^3$. Denote by $(\frac{k}{n,q})$ the number of *k*-dimensional \mathbb{F}_q -subspaces of $(\mathbb{F}_q)^n$. Then we have

$$\left| \mathbb{F}_{2}[t] - \text{submodules of} \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t]/(t+1) \right| = 1 + \left(\frac{1}{4,2}\right) + \left(\frac{2}{4,2}\right) + \left(\frac{3}{4,2}\right) + 1$$
$$= 1 + 15 + 35 + 15 + 1$$
$$= 67$$

Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras

$$\mathbb{F}_{2}[t] - \text{submodules of} \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] / (t^{4} + t^{3} + t^{2} + t + 1) \Big| = 1 + \left(\frac{1}{3,2^{4}}\right) + \left(\frac{2}{3,2^{4}}\right) + 1$$
$$= 1 + 237 + 237 + 1$$
$$= 476$$

We can further restrict the number of subspaces needed in $\bigoplus_{i=1}^{4} \mathbb{F}_2[t]/(t+1)$ by noting that we require the identity matrix to be one of our subspaces since $id \in \text{End}_{\overline{\Omega}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$.

By counting the number of \mathbb{F}_2 -subspaces of $(\mathbb{F}_2)^4$ that contain the identity element, we need only consider 16 of the 67 \mathbb{F}_2 -subspaces of $(\mathbb{F}_2)^4$. Thus we have reduced our initial test of 134732283882873635911 subspaces to only having to check $16 \cdot 476 = 7616$ subspaces.

5 Description of Algorithm

In this section, we describe an algorithm for determining the $\mathbb{F}_2[t]$ -subalgebras of $Mat_4(\mathbb{F}_2)$. We write $Mat_4(\mathbb{F}_2)$ as the row space $(\mathbb{F}_2)^{16}$, taking as basis the standard basis $\{e_{ij}\}$ of $Mat_4(\mathbb{F}_2)$. For example, the identity matrix *id* corresponds to the row vector

 $(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) = e_{11} + e_{22} + e_{33} + e_{44}.$

Step 1: Obtain an explicit realization of decomposition (4.1).

Viewing Mat₄(\mathbb{F}_2) as a 16-dimensional \mathbb{F}_2 -vector space we computed the 16 × 16 matrix *T* associated with the action of $\mathbb{Z}/5\mathbb{Z}$ on Mat₄(\mathbb{F}_2), *i.e.*, the matrix associated with conjugation by the generator of $\mathbb{Z}/5\mathbb{Z}$ (to do this, we used our explicit representation of $\mathbb{Z}/5\mathbb{Z}$ in Mat₄(\mathbb{F}_2)).

Remark 5.1 Let *G* be a finite group, and let *V* be any finite dimensional *G*-vector space over *F* where char(*F*) does not divide the order of *G*. Consider the linear transformation $\phi: V \to V$ given by $v \mapsto \sum_{g \in G} gv$. The image of ϕ is then fixed elementwise by *G*. Conversely, if $v \in V$ is fixed by *G*, then $v = \sum_{g \in G} gv$. In other words, $V^G = \text{Im}(\phi)$.

The remark tells us that the columns of the matrix $T^4 + T^3 + T^2 + T + 1$ span the subspace of elements fixed by *T*, *i.e.*, by conjugation. We then reduce these to a basis, $\{v_1, v_2, v_3, v_4\}$, of Mat₄(\mathbb{F}_2)^{$\mathbb{Z}/5\mathbb{Z}$}. Upon examining this basis, one sees $\{v_1, v_2, v_3, v_4\} = \{e_{11}, e_{22}, e_{33}, e_{44}\}$, as one might expect. In particular, the identity element is in Mat₄(\mathbb{F}_2)^{$\mathbb{Z}/5\mathbb{Z}$}. We then have a basis for the $\bigoplus_{i=1}^4 \mathbb{F}_2[t]/(t+1)$ part of Mat₄(\mathbb{F}_2). We seek to extend $\{v_1, v_2, v_3, v_4\}$ to a basis for all of Mat₄(\mathbb{F}_2).

We could do this by randomly picking a vector out of the complement of the span of $\{v_1, v_2, v_3, v_4\}$ and testing if this vector yields an invariant subspace, but we do slightly better in noting that

$$\operatorname{Mat}_4(\mathbb{F}_2) = \operatorname{Ker}(\phi) \bigoplus \operatorname{Im}(\phi) = \operatorname{Ker}(\phi) \bigoplus \operatorname{Mat}_4(\mathbb{F}_2)^{\mathbb{Z}/5\mathbb{Z}}$$

W. Butske

and then calculating a basis for $\text{Ker}(\phi)$. In our implementation, the vector

$$v_5 := [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0]$$

generates an irreducible $\mathbb{Z}/5\mathbb{Z}$ -subspace of in the complement of $Mat_4(\mathbb{F}_2)^{\mathbb{Z}/5\mathbb{Z}}$, which we denote $\langle \nu_5 \rangle$. We then have an explicit basis for

$$V' := \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t]/(t+1) \bigoplus, \mathbb{F}_{2}[t]/(t^{4}+t^{3}+t^{2}+t+1)$$

which we wish to extend to $Mat_4(\mathbb{F}_2)$. We then take a random element in the complement of V' and check to see if it yields an irreducible submodule. We repeat this until we have a basis of

$$\bigoplus_{i=1}^{4} \mathbb{F}_{2}[t]/(t+1) \bigoplus_{i=0}^{3} \mathbb{F}_{2}[t]/(t^{4}+t^{3}+t^{2}+t+1).$$

The decomposition we arrive at is given by

$$\operatorname{Mat}_4(\mathbb{F}_2) \cong \bigoplus_{i=1}^4 e_{ii} \bigoplus \langle v_5 \rangle \bigoplus \langle v_6 \rangle \bigoplus \langle v_7 \rangle$$

where

$$\begin{split} \nu_5 &:= [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0], \\ \nu_6 &:= [0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], \\ \nu_7 &:= [1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0]. \end{split}$$

We then calculate a list of all \mathbb{F}_{2^4} -subspaces of $(\mathbb{F}_{2^4})^3$ and convert this to a list of bases for all invariant subspaces of the 12 dimensional part, $\bigoplus_{i=0}^3 \mathbb{F}_2[t]/(t^4+t^3+t^2+t+1)$, of Mat₄(\mathbb{F}_2) using the explicit basis we obtained above.

Step 2: Enumerate the subspaces containing the identity in terms of Step 1.

We combine the above list of with the list of all subspaces of $Mat_4(\mathbb{F}_2)^{\mathbb{Z}/5\mathbb{Z}}$ containing the identity to get the list of all subspaces of $Mat_4(\mathbb{F}_2)$ which are $\mathbb{Z}/5\mathbb{Z}$ -invariant.

Step 3: Determine which of the $\mathbb{F}_2[t]$ -submodules are in fact $\mathbb{F}_2[t]$ -subalgebras.

Using the list of Step 2, we generate all possible $\mathbb{F}_2[t]$ -subalgebras of Mat₄(\mathbb{F}_2) by using all $\mathbb{F}_2[t]$ -subspaces as generating sets. We then check which of these resulting algebras are $\mathbb{Z}/5\mathbb{Z}$ -invariant.

Step 4: Check the list from Step 3 for F_{20} and D_5 normalcy.

Given our list of all $\mathbb{Z}/5\mathbb{Z}$ -normal subalgebras from Step 3, we check to see which are also F_{20} and D_5 -normal.

6 Results of the Algorithm

Examining the output of the algorithm as implemented above in *GAP*4, we have that there are precisely five \mathbb{F}_2 -subalgebras of Mat₄(\mathbb{F}_2) that are $\mathbb{Z}/5\mathbb{Z}$ -normal, up to choice of basis. They are given as follows where by $F\langle x, y \rangle$ we denote the *F* algebra generated by *x* and *y*

$$\begin{split} A_{1} &:= \mathbb{F}_{2} \left\langle \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\rangle \\ A_{2} &:= \mathbb{F}_{2} \left\langle \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \right\rangle \\ A_{3} &:= \mathbb{F}_{2} \left\langle \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \right\rangle \\ A_{4} &:= \mathbb{F}_{2} \left\langle \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \right\rangle \\ A_{5} &:= \mathrm{Mat}_{4}(\mathbb{F}_{2}) \end{split}$$

We sum up our results in the following theorem, which is the main result of this work.

Theorem 6.1 (Main Result) The algebras A_i , for i = 1...5, are the only F_{20} , D_5 , and $\mathbb{Z}/5\mathbb{Z}$ -normal subalgebras of $Mat_4(\mathbb{F}_2)$; moreover, they are all simultaneously F_{20} , D_5 and $\mathbb{Z}/5\mathbb{Z}$ -normal.

Proof Only the fact that all the algebras are in addition F_{20} and D_5 -normal needs to be checked, but this can be done by hand, or by examining the output of Step 4 of the algorithm.

Corollary 6.2 Let C be the curve of genus 2 defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Q}[x]$ is of degree 5, square free, and irreducible. Then $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ is, up to choice of basis of J[2], one of A_1 , A_2 or A_3 .

Proof If $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = S_5$ or A_5 , apply Zarhin, otherwise $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ is one of F_{20} , D_5 , or $\mathbb{Z}/5\mathbb{Z}$ and we can apply Theorem 6.1. A_1, A_2, A_3, A_4 , and A_5 are of dimensions 1, 2, 4, 8, and 16 respectively, while $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ is of dimension less than or equal to 4 since $\operatorname{rank}_{\mathbb{Z}}(\operatorname{End}_{\overline{\mathbb{Q}}}(J)) \leq 4$ [4].

7 A_i as $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$

Furthermore, we show that that A_1 , A_2 , and A_3 occur as $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ as follows. First a family of polynomials that give the prescribed Galois group is constructed. Then one uses MAGMA to determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ and subsequently $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$.

Remark 7.1 This method of searching is an extremely naive fishing expedition, since Mori proved in [3] that a *generic* hyperelliptic curve of arbitrary genus has the property that $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$. Thus one expects such a search to generically fail, and it is perhaps surprising that this method yielded some results.

Example 7.2 For the polynomial $f(x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$ we have via MAGMA that $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}$. Thus $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2 = A_1$.

Example 7.3 The algebra A_2 occurs for $f(x) = x^5 - x^4 - x^3 - x^2 + x + 1$ as MAGMA gives us that

$$\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}\left\langle \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \right\rangle,$$

which, upon tensoring with \mathbb{F}_2 , is conjugate to A_2 . Note also that the characteristic polynomial of the above matrix is $x^2 - x - 1$ that has roots $\frac{1\pm 5}{2}$. Thus $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}(\sqrt{5})$.

Example 7.4 Lastly, A_3 occurs for the $f(x) = x^5 + 2$. We can see this in two ways. First, MAGMA gives us that

$$\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z} \left\langle \begin{bmatrix} 0 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -2 & 0 & 1 \\ -3 & -1 & -1 & 0 \end{bmatrix} \right\rangle.$$

Then one can tensor with \mathbb{F}_2 and check conjugate conjugacy to A_3 . Alternately, we can see from the above matrix representation of $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ that $\operatorname{End}_{\overline{\mathbb{Q}}}(J) = \mathbb{Z}[\zeta_5]$, where ζ_5 is a primitive root of unity. The ζ_5 comes from the fact that $(x, y) \mapsto (x\zeta_5, y)$ is an automorphism of the curve defined by $y^2 = x^5 + 2$. Now note that $\mathbb{Z}[\zeta_5]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\zeta_5)$, and thus the ideal (2) factors in $\mathbb{Z}[\zeta_5] = (\mathfrak{P}_1 \dots \mathfrak{P}_r)^e$ and $(2)\mathbb{Z}[\zeta_5] = \mathfrak{P}_1^{\alpha_1} \dots \mathfrak{P}_r^{\alpha_r}$. Since $\mathbb{Q}(\zeta_5)$ is Galois over \mathbb{Q} , $(2)\mathbb{Z}[\zeta_5] = (\mathfrak{P}_1 \dots \mathfrak{P}_r)^e$ and $ref = \phi(5) = 4$. Furthermore, since 2 does not divide 5, (2) splits into the product of $\phi(5)/f$ prime ideals, where f is the order of 2 (mod 5). Since f = 4, (2) does not split in $\mathbb{Z}[\zeta_5]$. Thus $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2 = \mathbb{Z}[\zeta_5] \otimes_{\mathbb{Z}} \mathbb{F}_2 = \mathbb{Z}[\zeta_5]/(2)$ has dimension f = 4 over $\mathbb{Z}/(2)\mathbb{Z} = \mathbb{F}_2$. Since $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2$ is $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ -normal and A_3 is the only algebra fitting this description, $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2 = A_3$.

While this shows that all of the algebras A_i do in fact occur, it sidesteps the question nearest to the idea of Zarhin's result. Namely, given the Galois group, how much information can we get about $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$? The following table gives a partial answer in the genus 2 case.

$\operatorname{Gal}_{\mathbb{Q}}(f(x))$	A_1	A_2	A_3
F_{20}	$x^5 + x^4 + 2x^3 + 4x^2 + x + 1$	$x^5 - 10x^2 + 20x - 24$	$x^5 + 2$
D_5	$x^5 + 11x + 44$	$x^5 - x^3 - 2x^2 - 2x - 1$	
$\mathbb{Z}/5\mathbb{Z}$	$x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$		

For instance, in the case that $\operatorname{Gal}_{\mathbb{Q}}(f(x)) = F_{20}$, all of the A_i can occur and the idea of determining $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ from $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ fails.

Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras

Remark 7.5 The author conjectures that the table can be filled in, *i.e.*, attempting to determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ via $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ always fails in the genus 2 case. More precisely, the author conjectures that for the Galois groups $G = F_{20}, D_5, \mathbb{Z}/5\mathbb{Z}$, there exist polynomials $f_{G,i}(x)$ such that $\operatorname{Gal}_{\mathbb{Q}}(f_{G,i}) = G$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_2 = A_i$ for i = 1, 2, 3.

8 A_i Intrinsically

We have the following lattice of algebras in $Mat_4(\mathbb{F}_2)$

$$\begin{array}{c} A_4 \\ | \\ A_3 \\ | \\ A_2 = \mathbb{F}_4 \\ | \\ A_1 = \mathbb{F}_2 \end{array}$$

Note that A_3 is not a field as it contains zero divisors. However, as the reviewer pointed out, we do have a containment in Mat₄(\mathbb{F}_2) as follows:

where we can take the field \mathbb{F}_{16} to be the algebra generated by the element

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Now, $\operatorname{Gal}(\mathbb{F}_{16}/\mathbb{F}_2) = \mathbb{Z}/4\mathbb{Z}$, thus we can realize the semidirect product $F_{20} = \mathbb{Z}/5\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$ as $F_{20} = \mathbb{Z}/5\mathbb{Z} \rtimes \operatorname{Gal}(\mathbb{F}_{16}/\mathbb{F}_2)$ and furthermore A_4 is the centralizer of A_2 in $\operatorname{Mat}_4(\mathbb{F}_2)$.

References

[1] The GAP Group, *GAP—Groups, Algorithms, and Programming, Version 4.4.* http://www.gap-system.org, 2004.

W. Butske

- P. Lockhart, On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc. 342(1994), no. 2, 729–752. doi:10.2307/2154650
- [3] S. Mori, *The endomorphism rings of some Abelian varieties*. Japan. J. Math. (N.S.) **2**(1976), no. 1, 109–130.
- [4] D. Mumford, *Abelian varieties*. Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, London, 1970.
- [5] J.-P. Serre, Abelian l-adic representations and elliptic curves. Revised reprint of the 1968 original. Research Notes in Mathematics, 7, A K Peters, Wellesley, MA, 1998.
- Y. G. Zarhin, Abelian varieties, l-adic representations and SL₂. Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), no. 2, 294–308.
- [7] _____, *Hyperelliptic Jacobians without complex multiplication*. Math. Res. Lett. **7**(2000), no. 1, 123–132.

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47907, U.S.A. e-mail: butske@rose-hulman.edu

10