Endomorphisms of Two Dimensional Jacobians and Related Finite Algebras

William Butske

Abstract. Zarhin proves that if C is the curve $y^{2}=f(x)$ where $\operatorname{Gal}_{\mathbb{Q}}(f(x))=S_{n}$ or A_{n}, then $\operatorname{End}_{\overline{\mathbb{O}}}(J)=\mathbb{Z}$. In seeking to examine his result in the genus $g=2$ case supposing other Galois groups, we calculate $\operatorname{End}_{\overline{(\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ for a genus 2 curve where $f(x)$ is irreducible. In particular, we show that unless the Galois group is S_{5} or A_{5}, the Galois group does not determine End $\overline{\mathbb{Q}}(J)$.

1 Background

Let C be a genus g curve defined over (\mathbb{O}). We denote by J the Jacobian of the curve C. J is an abelian variety of dimension g defined over (O). While both C and J are defined over $(\mathbb{O}$, we will consider them over $\overline{(0)}$. As a result we will have an action of $\operatorname{Gal}(\overline{(\mathbb{O}} /(\mathbb{O}))$ on the set of $\overline{(\mathbb{O})}$ points of C and hence on the set of $\overline{(\mathbb{O})}$ points of J. If f is a polynomial over $\left(\mathbb{O}\right.$, then we denote by $\mathrm{Gal}_{\mathbb{Q}}(f(x))$, the Galois group of f over (\mathbb{O}).

Let $\operatorname{End}_{\overline{\mathbb{O}}}(J)$, denote the ring of endomorphisms of J defined over $\overline{\mathbb{O}}$. In his paper [6], Zarhin gives, for hyperelliptic curves, a simple criterion for determining when $\operatorname{End}_{\overline{\mathbb{O}}}(J)$ is trivial i.e., when $\operatorname{End}_{\overline{\mathbb{O}}}(J)=\mathbb{Z}$.

Theorem 1.1 (Zarhin) Let C be the curve defined by the equation $y^{2}=f(x)$, where $\operatorname{deg}(f)=n \geq 5$ and $f(x)$ is square-free in $\left(\mathbb{O}[x]\right.$. If $\mathrm{Gal}_{\mathbb{Q}}(f(x))=S_{n}$ or A_{n}, then $\operatorname{End}_{\overline{\mathbb{Q}}}(J)=\mathbb{Z}$.

So at least in the above case, $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ determines $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$.
Suppose now that $f(x)$ is irreducible of degree 5 , then $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ is one of the following groups: S_{5}, A_{5}, F_{20} (the Frobenius group of order 20), D_{5}, or $\mathbb{Z} / 5 \mathbb{Z}$. We seek to determine to what extent Zarhin's result extends to these cases. For instance, is knowing $\operatorname{Gal}_{\mathbb{Q}}(f(x))=F_{20}$ enough to determine $\operatorname{End}_{\overline{\mathbb{O}}}(J)$? To answer this question we will determine $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ for a genus 2 curve with a $(\mathbb{O}$-rational Weierstrass point (the existence of such a point is equivalent to the condition that $\operatorname{deg}(f)=5$ ([2]). Our main result is that the Galois group does not determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$.

[^0]
2 Representations of $\operatorname{Gal}\left(\overline{(\mathbb{O})} /(\mathbb{O})\right.$ and $\operatorname{End}_{\overline{(0)}}(J)$

Let $J[2]$ denote the points of order two on the Jacobian. $\operatorname{Gal}(\overline{(\mathbb{O}} /(\mathbb{O})$) acts linearly on $J[2]$, as does $\operatorname{End}_{\overline{\mathbb{0}}}(J)$. In other words we have representations $\bar{\rho}_{2}$ and $\bar{\phi}_{2}$ as follows:

where $\bar{\rho}_{2}$ and $\bar{\phi}_{2}$ are nothing more than the restriction maps. Furthermore, we have that $J[2] \cong\left(\mathbb{F}_{2}\right)^{2 g}$. Thus, in the case of a genus two curve, we have the homomorphisms:

2.1 Images of $\bar{\rho}_{2}$ and $\bar{\phi}_{2}$

One has an explicit basis for $J[2]$ in terms of ramification points, as mentioned in Mori [3], and from this basis one can show that $\mathrm{Gal}(\overline{(\mathbb{O} /(\mathbb{O})})$ acts on $J[2]$ via the surjection $\operatorname{Gal}(\overline{\mathbb{O} /} /(\mathbb{O})) \rightarrow \operatorname{Gal}_{\mathbb{Q}}(f(x))$. In other words, $\operatorname{Im}\left(\bar{\rho}_{2}\right) \cong \operatorname{Gal}_{\mathbb{Q}}(f(x))$. Now an endomorphism that kills $J[2]$ factors as [2]: $J(C) \rightarrow J(C)$ followed by an endomorphism of $J(C)$, so the kernel of $\bar{\phi}_{2}$ is $2 \operatorname{End}_{\overline{\mathbb{Q}}}(J)$, i.e., $\operatorname{Im}\left(\bar{\phi}_{2}\right) \cong \operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$.

3 G-Normal Algebras

Notice now that $\operatorname{Gal}\left(\overline{(0)} /(\mathbb{O})\right.$) acts on $\operatorname{End}_{\overline{(0)}}(J)$ via conjugation, and furthermore, the maps $\bar{\rho}_{2}$ and $\bar{\phi}_{2}$ respect this action. Thus, if $h \in \operatorname{Im}\left(\bar{\phi}_{2}\right) \cong \operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ and $g \in \operatorname{Im}\left(\bar{\rho}_{2}\right) \cong \operatorname{Gal}_{\mathbb{Q}}(f(x))$, then $g h g^{-1} \in \operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$.

Definition 3.1 Let $G \rightarrow G L_{n}(F)$ be a faithful representation of a group G. Let A be an F-subalgebra of $\operatorname{Mat}_{n}(F)$. We say that A is G-normal if for all elements $g \in G$ and $h \in A$ we have that $g h g^{-1} \in A$. (This notion appears in an equivalent form in Zarhin [7].)

In terms of this definition, we have that $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ is a $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal subalgebra of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ when C is a genus two curve. In [7], Zarhin proves that if we take our representation of $\mathrm{Gal}_{\mathbb{Q}}(f(x))$ arising from Mori, then the only subalgebra that is $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal for $\operatorname{Gal}_{\mathbb{Q}}(f(x)) \cong S_{5}$ or A_{5} is \mathbb{F}_{2}. Zarhin's theorem then follows as a corollary when combined with the Mumford-Albert classification of $\operatorname{End} \frac{0}{\overline{\mathbb{Q}}}(J)([4])$. We will show that when $\operatorname{Gal}_{\mathbb{Q} 2}(f(x)) \cong F_{20}, D_{5}$, or $\mathbb{Z} / 5 \mathbb{Z}$, the set of
$\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal algebras is given by $\left\{\mathbb{F}_{2}, \mathbb{F}_{4}, \mathbb{F}_{16}\right\}$, and moreover, all such algebras occur as $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ for some curve C.

Remark 3.2 One should be careful here and note that the definition of G-normal algebra is made with respect to a particular representation. It is possible for an algebra to be normal with respect to one faithful representation and not normal with respect to another.

The fact that $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ is normal with respect to the image of $\mathrm{Gal}(\overline{\mathbb{O}} / /(\mathbb{O})$) informs a philosophy about the image of the ℓ-adic representations ρ_{ℓ} and ϕ_{ℓ} that one obtains from considering the inverse limit over n of the representations $\rho_{\ell^{n}}$ and $\phi_{\ell^{n}}$ respectively. Note that $\rho_{\ell}: \operatorname{Gal}\left(\overline{\mathbb{O}} /(\mathbb{O}) \rightarrow G L_{2 g}\left(\mathbb{Z}_{\ell}\right)\right.$ and $\phi_{\ell}: \operatorname{Gal}(\overline{\mathbb{O}} /(\mathbb{O})) \rightarrow M a t_{2 g}\left(\mathbb{Z}_{\ell}\right)$. The philosophy is that a "big" $\operatorname{End}_{\overline{\mathbb{O}}}(J)$, hence a " $\operatorname{big} " \operatorname{Im}\left(\phi_{\ell}\right)$, forces a " $\operatorname{small"} \operatorname{Im}\left(\rho_{\ell}\right)$ and vice-versa. This philosophy is stated more precisely as "big monodromy" if and only if $\operatorname{End}_{\overline{\mathbb{O}}}(J)=\mathbb{Z}$ and has been proven in the case of genus 1 by Serre [5] and in genus 2 by Zarhin [6].

In our case we are examining $\ell=2$ and the first term of our inductive limit, $J[2] \cong(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$. Applying our philosophy, we expect that the bigger the image of $\operatorname{Gal}\left(\overline{\mathbb{O}} /(\mathbb{O})\right.$, the harder it is for $\operatorname{End}_{\overline{(0)}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ to be normal with respect to this image. In other words, "big" image of $\operatorname{Gal}(\overline{(\mathbb{O} /} /(\mathbb{O}))$ implies "small" $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$, so if the image of $\operatorname{Gal}\left(\overline{\mathbb{O}} /(\mathbb{O})\right.$ is as big as possible (i.e., S_{n} or $\left.A_{n}\right)$, then $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ should be small as possible, i.e., \mathbb{F}_{2}.

Indeed, this is what Zarhin did for curves of the form $y^{2}=f(x)$. One might then be led to the conclusion that as we reduce the size of the image of $\mathrm{Gal}(\overline{\mathrm{O}} / \mathrm{O})$), i.e., the size of $\mathrm{Gal}_{\mathbb{Q}}(f(x))$, we can increase the size of $E n d_{\overline{0}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$. We state this bit of philosophy as a generalization of the idea of "big monodromy"

Big Monodromy Let $H \subsetneq G$ be transitive subgroups of S_{n} other than S_{n} and A_{n}. Then the set of G-normal algebras is properly contained in the set of H-normal algebras.

Our main result then comes as a bit of a surprise. Namely, the proper containments $\mathbb{Z} / 5 \mathbb{Z} \subsetneq D_{5} \subsetneq F_{20}$ do not imply proper containments F_{20}-normal algebras \subsetneq D_{5}-normal algebras $\subsetneq \mathbb{Z} / 5 \mathbb{Z}$-normal algebras. In fact, these latter three sets are equal.

$4 \operatorname{Gal}_{\mathbb{Q}}(f(x))$-Normal Subalgebras of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$

A naive method of determining the G-normal subalgebras of any $\operatorname{Mat}_{n}\left(\mathbb{F}_{p}\right)$ would be to list all subspaces of $\operatorname{Mat}_{n}\left(\mathbb{F}_{p}\right)$, use these spaces to generate algebras and then check if the resulting algebras remained G-normal. This method very quickly becomes too costly for practical implementation. In the case of $\mathrm{Mat}_{4}\left(\mathrm{~F}_{2}\right)$, there are 134732283882872625911 subspaces to check.

We can considerably narrow the number of subspaces to be checked by examining the $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-module structure of $\mathrm{Mat}_{4}\left(\mathbb{F}_{2}\right)$ more closely. In particular, all possibilities for $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ contain the cyclic subgroup $\mathbb{Z} / 5 \mathbb{Z}$, thus the set of $\mathbb{Z} / 5 \mathbb{Z}$-normal subspaces is sufficient to determine all $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal subspaces. Give $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ the structure of an $F_{2}[t]$-module by having t act on $\mathrm{Mat}_{4}\left(\mathbb{F}_{2}\right)$ via conjugation by a
generator of $\mathbb{Z} / 5 \mathbb{Z}$. This allows us to use modules over PIDs to determine all the $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal subspaces of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$.

4.1 $\mathbb{F}_{2}[t]$-Module Structure of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$

Using the standard basis $e_{i j}$ for $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$, one computes that the matrix that represents the action of t is given by

$$
T=\left[\begin{array}{llllllllllllllll}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Then via GAP4 [1],

$$
\operatorname{char}_{\mathbb{F}_{2}}(T, t)=(t-1)^{4}\left(t^{4}+t^{3}+t^{2}+t+1\right)^{3}
$$

and

$$
\min _{\mathbb{F}_{2}}(T, t)=t^{5}-1
$$

Thus we have the $\mathbb{F}_{2}[t]$-module decomposition of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$:

$$
\begin{equation*}
\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right) \cong \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1) \bigoplus_{i=1}^{3} \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right) \tag{4.1}
\end{equation*}
$$

Given our decomposition (4.1), we note that if W is an $\mathbb{F}_{2}[t]$-submodule of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$, then $W \cong W_{1} \oplus W_{2}$, where $W_{1} \subseteq \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1)$ is an $\mathbb{F}_{2}[t] /(t+1) \cong \mathbb{F}_{2}$-submodule and

$$
W_{2} \subseteq \bigoplus_{i=1}^{3} \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right)
$$

is an

$$
\mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right) \cong \mathbb{F}_{2^{4}} \text {-submodule }
$$

Thus, to enumerate all $\mathbb{F}_{2}[t]$-submodules, it suffices to enumerate all \mathbb{F}_{2}-subspaces of $\left(F_{2}\right)^{4}$ and all $\mathbb{F}_{2^{4}}$ subspaces of $\left(\mathbb{F}_{2^{4}}\right)^{3}$. Denote by $\left(\frac{k}{n, q}\right)$ the number of k-dimensional \mathbb{F}_{q}-subspaces of $\left(\mathbb{F}_{q}\right)^{n}$. Then we have

$$
\begin{aligned}
\mid \mathbb{F}_{2}[t]-\text { submodules of } \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1) \mid & =1+\left(\frac{1}{4,2}\right)+\left(\frac{2}{4,2}\right)+\left(\frac{3}{4,2}\right)+1 \\
& =1+15+35+15+1 \\
& =67
\end{aligned}
$$

$$
\begin{aligned}
\mid \mathbb{F}_{2}[t]-\text { submodules of } \bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right) \mid & =1+\left(\frac{1}{3,2^{4}}\right)+\left(\frac{2}{3,2^{4}}\right)+1 \\
& =1+237+237+1 \\
& =476
\end{aligned}
$$

We can further restrict the number of subspaces needed in $\bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1)$ by noting that we require the identity matrix to be one of our subspaces since id \in $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$.

By counting the number of \mathbb{F}_{2}-subspaces of $\left(\mathbb{F}_{2}\right)^{4}$ that contain the identity element, we need only consider 16 of the $67 \mathbb{F}_{2}$-subspaces of $\left(\mathbb{F}_{2}\right)^{4}$. Thus we have reduced our initial test of 134732283882873635911 subspaces to only having to check $16 \cdot 476=7616$ subspaces.

5 Description of Algorithm

In this section, we describe an algorithm for determining the $\mathbb{F}_{2}[t]$-subalgebras of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$. We write $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ as the row space $\left(\mathbb{F}_{2}\right)^{16}$, taking as basis the standard basis $\left\{e_{i j}\right\}$ of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$. For example, the identity matrix $i d$ corresponds to the row vector

$$
(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1)=e_{11}+e_{22}+e_{33}+e_{44} .
$$

Step 1: Obtain an explicit realization of decomposition (4.1).
Viewing $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ as a 16 -dimensional \mathbb{F}_{2}-vector space we computed the 16×16 matrix T associated with the action of $\mathbb{Z} / 5 \mathbb{Z}$ on $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$, i.e., the matrix associated with conjugation by the generator of $\mathbb{Z} / 5 \mathbb{Z}$ (to do this, we used our explicit representation of $\mathbb{Z} / 5 \mathbb{Z}$ in $\left.\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)\right)$.

Remark 5.1 Let G be a finite group, and let V be any finite dimensional G-vector space over F where $\operatorname{char}(F)$ does not divide the order of G. Consider the linear transformation $\phi: V \rightarrow V$ given by $v \mapsto \sum_{g \in G} g v$. The image of ϕ is then fixed elementwise by G. Conversely, if $v \in V$ is fixed by G, then $v=\sum_{g \in G} g v$. In other words, $V^{G}=\operatorname{Im}(\phi)$.

The remark tells us that the columns of the matrix $T^{4}+T^{3}+T^{2}+T+1$ span the subspace of elements fixed by T, i.e., by conjugation. We then reduce these to a basis, $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)^{Z / 5 Z}$. Upon examining this basis, one sees $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\left\{e_{11}, e_{22}, e_{33}, e_{44}\right\}$, as one might expect. In particular, the identity element is in $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)^{Z / 5 Z}$. We then have a basis for the $\bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1)$ part of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$. We seek to extend $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ to a basis for all of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$.

We could do this by randomly picking a vector out of the complement of the span of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and testing if this vector yields an invariant subspace, but we do slightly better in noting that

$$
\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)=\operatorname{Ker}(\phi) \bigoplus \operatorname{Im}(\phi)=\operatorname{Ker}(\phi) \bigoplus \operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)^{Z / 5 Z}
$$

and then calculating a basis for $\operatorname{Ker}(\phi)$. In our implementation, the vector

$$
v_{5}:=[0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0]
$$

generates an irreducible $\mathbb{Z} / 5 \mathbb{Z}$-subspace of in the complement of Mat $_{4}\left(\mathbb{F}_{2}\right)^{Z / 5 Z}$, which we denote $\left\langle v_{5}\right\rangle$. We then have an explicit basis for

$$
V^{\prime}:=\bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1) \bigoplus, \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right)
$$

which we wish to extend to $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$. We then take a random element in the complement of V^{\prime} and check to see if it yields an irreducible submodule. We repeat this until we have a basis of

$$
\bigoplus_{i=1}^{4} \mathbb{F}_{2}[t] /(t+1) \bigoplus_{i=0}^{3} \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+t+1\right)
$$

The decomposition we arrive at is given by

$$
\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right) \cong \bigoplus_{i=1}^{4} e_{i i} \bigoplus\left\langle v_{5}\right\rangle \bigoplus\left\langle v_{6}\right\rangle \bigoplus\left\langle v_{7}\right\rangle
$$

where

$$
\begin{aligned}
& v_{5}:=[0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0] \\
& v_{6}:=[0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0] \\
& v_{7}:=[1,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0] .
\end{aligned}
$$

We then calculate a list of all $\mathbb{F}_{2^{4}}$-subspaces of $\left(\mathbb{F}_{2^{4}}\right)^{3}$ and convert this to a list of bases for all invariant subspaces of the 12 dimensional part, $\bigoplus_{i=0}^{3} \mathbb{F}_{2}[t] /\left(t^{4}+t^{3}+t^{2}+\right.$ $t+1)$, of $\mathrm{Mat}_{4}\left(\mathbb{F}_{2}\right)$ using the explicit basis we obtained above.

Step 2: Enumerate the subspaces containing the identity in terms of Step 1.
We combine the above list of with the list of all subspaces of $\mathrm{Mat}_{4}\left(\mathrm{~F}_{2}\right)^{\mathrm{Z} / 5 \mathrm{Z}}$ containing the identity to get the list of all subspaces of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ which are $\mathbb{Z} / 5 \mathbb{Z}$-invariant.

Step 3: Determine which of the $\mathbb{F}_{2}[t]$-submodules are in fact $\mathbb{F}_{2}[t]$-subalgebras.
Using the list of Step 2, we generate all possible $\mathbb{F}_{2}[t]$-subalgebras of $\mathrm{Mat}_{4}\left(\mathbb{F}_{2}\right)$ by using all $\mathbb{F}_{2}[t]$-subspaces as generating sets. We then check which of these resulting algebras are $\mathbb{Z} / 5 \mathbb{Z}$-invariant.

Step 4: Check the list from Step 3 for F_{20} and D_{5} normalcy.
Given our list of all $\mathbb{Z} / 5 \mathbb{Z}$-normal subalgebras from Step 3, we check to see which are also F_{20} and D_{5}-normal.

6 Results of the Algorithm

Examining the output of the algorithm as implemented above in GAP4, we have that there are precisely five \mathbb{F}_{2}-subalgebras of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ that are $\mathbb{Z} / 5 \mathbb{Z}$-normal, up to choice of basis. They are given as follows where by $F\langle x, y\rangle$ we denote the F algebra generated by x and y

$$
\begin{aligned}
& A_{1}:=\mathbb{F}_{2}\left\langle\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right\rangle \\
& A_{2}:=\mathbb{F}_{2}\left\langle\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]\right\rangle \\
& A_{3}:=\mathbb{F}_{2}\left\langle\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\right\rangle \\
& A_{4}:=\mathbb{F}_{2}\left\langle\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right\rangle \\
& A_{5}:=\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

We sum up our results in the following theorem, which is the main result of this work.

Theorem 6.1 (Main Result) The algebras A_{i}, for $i=1 \ldots 5$, are the only F_{20}, D_{5}, and $\mathbb{Z} / 5 \mathbb{Z}$-normal subalgebras of $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$; moreover, they are all simultaneously F_{20}, D_{5} and $\mathbb{Z} / 5 \mathbb{Z}$-normal.

Proof Only the fact that all the algebras are in addition F_{20} and D_{5}-normal needs to be checked, but this can be done by hand, or by examining the output of Step 4 of the algorithm.

Corollary 6.2 Let C be the curve of genus 2 defined by $y^{2}=f(x)$, where $f(x) \in \mathbb{O}[x]$ is of degree 5 , square free, and irreducible. Then $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ is, up to choice of basis of $J[2]$, one of A_{1}, A_{2} or A_{3}.

Proof If $\mathrm{Gal}_{\mathbb{Q}}(f(x))=S_{5}$ or A_{5}, apply Zarhin, otherwise $\mathrm{Gal}_{\mathbb{Q}}(f(x))$ is one of F_{20}, D_{5}, or $\mathbb{Z} / 5 \mathbb{Z}$ and we can apply Theorem6.1. $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} are of dimensions $1,2,4,8$, and 16 respectively, while $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ is of dimension less than or equal to 4 since $\operatorname{rank}_{\mathbb{Z}}\left(\operatorname{End}_{\overline{0}}(J)\right) \leq 4[4]$.

$7 \quad A_{i}$ as $\operatorname{End}_{\overline{0})}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$

Furthermore, we show that that A_{1}, A_{2}, and A_{3} occur as $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ as follows. First a family of polynomials that give the prescribed Galois group is constructed. Then one uses MAGMA to determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ and subsequently $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$.

Remark 7.1 This method of searching is an extremely naive fishing expedition, since Mori proved in [3] that a generic hyperelliptic curve of arbitrary genus has the property that $\operatorname{End}_{\overline{0}}(J)=\mathbb{Z}$. Thus one expects such a search to generically fail, and it is perhaps surprising that this method yielded some results.

Example 7.2 For the polynomial $f(x)=x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$ we have via MAGMA that $\operatorname{End}_{\overline{\mathbb{Q}}}(J)=\mathbb{Z}$. Thus $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}=A_{1}$.

Example 7.3 The algebra A_{2} occurs for $f(x)=x^{5}-x^{4}-x^{3}-x^{2}+x+1$ as MAGMA gives us that

$$
\operatorname{End}_{\overline{\mathbb{Q}}}(J)=\mathbb{Z}\left\langle\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]\right\rangle,
$$

which, upon tensoring with \mathbb{F}_{2}, is conjugate to A_{2}. Note also that the characteristic polynomial of the above matrix is $x^{2}-x-1$ that has roots $\frac{1 \pm 5}{2}$. Thus $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}}(\mathbb{O})=$ ($0(\sqrt{5})$.

Example 7.4 Lastly, A_{3} occurs for the $f(x)=x^{5}+2$. We can see this in two ways. First, MAGMA gives us that

$$
\operatorname{End}_{\overline{\mathbb{O}}}(J)=\mathbb{Z}\left\langle\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 \\
1 & -2 & 0 & 1 \\
-3 & -1 & -1 & 0
\end{array}\right]\right\rangle
$$

Then one can tensor with \mathbb{F}_{2} and check conjugate conjugacy to A_{3}. Alternately, we can see from the above matrix representation of $\operatorname{End}_{\overline{\mathbb{0}}}(J)$ that $\operatorname{End}_{\overline{\mathbb{0}}}(J)=\mathbb{Z}\left[\zeta_{5}\right]$, where ζ_{5} is a primitive root of unity. The ζ_{5} comes from the fact that $(x, y) \mapsto\left(x \zeta_{5}, y\right)$ is an automorphism of the curve defined by $y^{2}=x^{5}+2$. Now note that $\mathbb{Z}\left[\zeta_{5}\right]$ is the integral closure of \mathbb{Z} in $\mathbb{O}\left(\zeta_{5}\right)$, and thus the ideal (2) factors in $\mathbb{Z}\left[\zeta_{5}\right]$ as a product of primes $(2) \mathbb{Z}\left[\zeta_{5}\right]=\mathfrak{P}_{1}^{\alpha_{1}} \ldots \mathfrak{P}_{r}^{\alpha_{r}}$. Since $\left(\mathbb{O}\left(\zeta_{5}\right)\right.$ is Galois over $\left.\mathbb{O}\right),(2) \mathbb{Z}\left[\zeta_{5}\right]=\left(\mathfrak{P}_{1} \ldots \mathfrak{P}_{r}\right)^{e}$ and $r e f=\phi(5)=4$. Furthermore, since 2 does not divide 5, (2) splits into the product of $\phi(5) / f$ prime ideals, where f is the order of $2(\bmod 5)$. Since $f=4,(2)$ does not split in $\mathbb{Z}\left[\zeta_{5}\right]$. Thus $\operatorname{End}_{\overline{\mathbb{O}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}=\mathbb{Z}\left[\zeta_{5}\right] \otimes_{\mathbb{Z}} \mathbb{F}_{2}=\mathbb{Z}\left[\zeta_{5}\right] /(2)$ has dimension $f=4$ over $\mathbb{Z} /(2) \mathbb{Z}=\mathbb{F}_{2}$. Since $\operatorname{End}_{\overline{\mathbb{0}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}$ is $\operatorname{Gal}_{\mathbb{Q}}(f(x))$-normal and A_{3} is the only algebra fitting this description, $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}=A_{3}$.

While this shows that all of the algebras A_{i} do in fact occur, it sidesteps the question nearest to the idea of Zarhin's result. Namely, given the Galois group, how much information can we get about $\operatorname{End}_{\overline{\mathbb{O}}}(J)$? The following table gives a partial answer in the genus 2 case.

$\operatorname{Gal}_{\mathbb{Q}}(f(x))$	A_{1}	A_{2}	A_{3}
F_{20}	$x^{5}+x^{4}+2 x^{3}+4 x^{2}+x+1$	$x^{5}-10 x^{2}+20 x-24$	$x^{5}+2$
D_{5}	$x^{5}+11 x+44$	$x^{5}-x^{3}-2 x^{2}-2 x-1$	
$\mathbb{Z} / 5 \mathbb{Z}$	$x^{5}+x^{4}-4 x^{3}-3 x^{2}+3 x+1$		

For instance, in the case that $\operatorname{Gal}_{\mathbb{Q}}(f(x))=F_{20}$, all of the A_{i} can occur and the idea of determining $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ from $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ fails.

Remark 7.5 The author conjectures that the table can be filled in, i.e., attempting to determine $\operatorname{End}_{\overline{\mathbb{Q}}}(J)$ via $\operatorname{Gal}_{\mathbb{Q}}(f(x))$ always fails in the genus 2 case. More precisely, the author conjectures that for the Galois groups $G=F_{20}, D_{5}, \mathbb{Z} / 5 \mathbb{Z}$, there exist polynomials $f_{G, i}(x)$ such that $\operatorname{Gal}_{\mathbb{Q}}\left(f_{G, i}\right)=G$ and $\operatorname{End}_{\overline{\mathbb{Q}}}(J) \otimes_{\mathbb{Z}} \mathbb{F}_{2}=A_{i}$ for $i=1,2,3$.

$8 A_{i}$ Intrinsically

We have the following lattice of algebras in $\operatorname{Mat}_{4}\left(\mathrm{~F}_{2}\right)$

Note that A_{3} is not a field as it contains zero divisors. However, as the reviewer pointed out, we do have a containment in $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$ as follows:

where we can take the field \mathbb{F}_{16} to be the algebra generated by the element

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] .
$$

$\operatorname{Now}, \operatorname{Gal}\left(\mathbb{F}_{16} / \mathbb{F}_{2}\right)=\mathbb{Z} / 4 \mathbb{Z}$, thus we can realize the semidirect product $F_{20}=\mathbb{Z} / 5 \mathbb{Z} \rtimes$ $\mathbb{Z} / 4 \mathbb{Z}$ as $F_{20}=\mathbb{Z} / 5 \mathbb{Z} \rtimes \operatorname{Gal}\left(\mathbb{F}_{16} / \mathbb{F}_{2}\right)$ and furthermore A_{4} is the centralizer of A_{2} in $\operatorname{Mat}_{4}\left(\mathbb{F}_{2}\right)$.

References

[1] The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.4. http://www.gap-system.org, 2004.
[2] P. Lockhart, On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc. 342(1994), no. 2, 729-752. doi:10.2307/2154650
[3] S. Mori, The endomorphism rings of some Abelian varieties. Japan. J. Math. (N.S.) 2(1976), no. 1, 109-130.
[4] D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, London, 1970.
[5] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves. Revised reprint of the 1968 original. Research Notes in Mathematics, 7, A K Peters, Wellesley, MA, 1998.
[6] Y. G. Zarhin, Abelian varieties, ℓ-adic representations and SL $_{2}$. Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), no. 2, 294-308.
[7] , Hyperelliptic Jacobians without complex multiplication. Math. Res. Lett. 7(2000), no. 1, 123-132.

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47907, U.S.A.
e-mail: butske@rose-hulman.edu

[^0]: Received by the editors January 4, 2009; revised June 29, 2009.
 Published electronically March 18, 2011.
 AMS subject classification: 11G10, 20C20.

