
22 The OCaml Platform

So far in Part II, we've gone through a number of libraries and techniques you can

use to build larger scale OCaml programs. We'll now wrap up this part by examining

the tools you can use for editing, compiling, testing, documenting and publishing your

own projects.

The OCaml community has developed a suite of modern tools to interface it with

IDEs such as Visual Studio Code, and to generate API documentation and implement

modern software engineering practices such as continuous integration (CI) and unit

or fuzz testing. All you need to do is to specify your project metadata (for example,

library dependencies and compiler versions), and the OCaml Platform tools that we'll

describe next will do much of the heavy lifting.

Using the Opam Source-Based Package Manager

opam is the o�cial package manager and metadata packaging format that is used in the

OCaml community. We've been using it in earlier chapters to install OCaml libraries,

and we're going to take a closer look at how to use opam within a full project next.

You've almost certainly done this already at this point in the book, but in case you've

skipped straight to this chapter make sure you �rst initialize opam's global state.

$ opam init

By default, opam doesn't require any special user permissions and stores all of the

�les it installs in ~/.opam, such as the current build of the OCaml compiler if you didn't

have one pre-installed when you initialized opam.

You can maintain multiple development environments with di�erent packages and

compilers installed, each of which is called a �switch� � the default one can be

found under ~/.opam/default. Run opam switch to see all the di�erent sandboxed

environments you have available:

$ opam switch
switch compiler description
default ocaml.4.13.1 default

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

22.1 Choosing an OCaml Compiler Version 389

22.1 A Hello World OCaml Project

Let's start by creating a sample OCaml project and navigating around it. Dune has a

basic built-in command to initialize a project template that is suitable to get us started.

$ dune init proj hello
Success: initialized project component named hello

Dune will create a hello/ directory and populate it with a skeleton OCaml project.

This sample project has the basic metadata required for us to learn more about the

opam package manager and the dune build tool that we've used earlier in the book.

22.1.1 Setting Up an Opam Local Switch

The next thing we need is a suitable environment for this project, with dune and any

other library dependencies available. The best way to do this is to create a new opam

sandbox, via the opam switch create command. If you specify a project directory

argument to this command, then it creates a �local switch� that stores all the dependen-

cies within that directory rather than under ~/.opam. This is a convenient way to keep

all your build dependencies and source code in one place on your �lesystem.

Let's make a local switch for our hello world project now:

$ cd hello
$ opam switch create .

This invokes opam to install the project dependencies (in this case, just the OCaml

compiler and dune as we didn't specify any more when initializing the project). All of

the �les from the local switch will be present under _opam/ in the working directory.

You can �nd the dune binary that was just compiled inside that directory, for example:

$./_opam/bin/dune --version
3.0.2

Since opamwill install other binaries and libraries in the local switch as your project

grows, you will need to add the switch to your command-line path. You can use opam

env to add the right directories to your local shell path so that you can invoke the locally

installed tools:

$ eval $(opam env)

If you prefer not to modify your shell con�guration, then you can also invoke

commands via opam exec to modify the path for the subcommand speci�ed in the

remainder of the command line.

$ opam exec -- dune build

This executes dune build with the opam environment variables added to the com-

mand invocation, so it will pick up the locally built dune from your project. The double

dash in the command line is a common Unix convention that tells opam to stop pars-

ing its own optional arguments for the remainder of the command, so that they don't

interfere with the command that is being executed.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

390 The OCaml Platform

22.1.2 Choosing an OCaml Compiler Version

When creating a switch, opam analyses the project dependencies and selects the newest

OCaml compiler that is compatible with them. Sometimes though, you will want to

select a speci�c version of the OCaml compiler, perhaps to ensure reproducibility or

to use a particular feature. You can use opam switch list-available to get a full list

of all the compilers that are available.

ocaml-system 4.13.1 The OCaml compiler
(system version, from outside
of opam)

ocaml-base-compiler 4.13.1 Official release 4.13.1
ocaml-variants 4.13.1+options Official release of OCaml 4.13.1

You'll �nd many more versions present than the snippet above, but notice that there

are three di�erent types of OCaml compiler packages present.

ocaml-system is the name opam uses for the pre-existing version of the OCaml

compiler that was already installed on your machine. This compiler is always fast to

install since nothing needs to be compiled for it. The only thing needed to create a

system switch is to have the right version of OCaml already installed (e.g. via apt

or Homebrew) and to pass the same version to the switch creation as an additional

argument.

For example, if you have OCaml 4.13.1 installed, then running this command will

use the system compiler:

$ opam switch create . 4.13.1

On the other hand, if you didn't have that system compiler installed, then the

compiler will need to be built from scratch. The command above would select the

ocaml-base-compiler package in this case, which contains the full OCaml compiler

source code. It will take a little longer than ocaml-system, but you have much more

�exibility about the choice of versions. The default operation of opam switch create

is to calculate the latest supported compiler version from your project metadata and

use that one for the local switch.

If you always want to locally install a particular compiler, then you can re�ne the

package description:

$ opam switch create . ocaml-base-compiler.4.13.1

Sometimes, you will also need to add custom con�guration options to the compiler,

such as the flambda optimiser. There are two packages that handle this: ocaml-variants

is a package that detects the presence of various ocaml-option packages to activate

con�guration �ags. For example, to build a compiler with flambda, you would:

$ opam switch create . ocaml-variants.4.13.1+options
ocaml-option-flambda

You can specify multiple ocaml-option packages to cover all the customization

your project needs. See the full set of option packages by using:

$ opam search ocaml-option

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

22.1 De�ning Libraries as Collections of Modules 391

22.1.3 Structure of an OCaml Project

Back in Chapter 5 (Files, Modules, and Programs), we looked at what a simple program

with a couple of OCaml modules looks like. Let's now look at the set of �les in our

hello/ application to examine a fuller project structure.

.
|-- dune-project
|-- hello.opam
|-- lib
| |-- dune
|-- bin
| |-- dune
| `-- main.ml
`-- test

|-- dune
`-- hello.ml

Some observations about this structure:

• The dune-project �le marks the root of the project, and is used for writing down

some key metadata for the project (more on that later).

• The hello.opam �le contains metadata for registering this software as an opam

project. As we'll see, we won't need to edit this manually because we can generate

the �le via dune.

• There are three source directories, each with its own dune �le specifying the build

parameters for that part of the codebase. The trio of lib, bin and test makes

good sense for a project that is primarily an executable, rather than a reusable

library. In that case, you would might use these directories as follows:

� The lib directory would contain the bulk of the source.

� The bin directory would contain a thin wrapper on top of the code in libwhich

actually launches the executable.

� The test directory has the bulk of the tests for lib, which, following the advice

in Chapter 18.1.2 (Where Should Tests Go?), are in a separate directory

from the source.

Now we'll talk about the di�erent parts of this structure in more detail.

22.1.4 De�ning Module Names

A matching pair of ml and mli �les de�ne an OCaml module, named after the �le and

capitalized. Module names are the only kind of name you refer to within OCaml code.

Let's create a Msg module in our skeleton project inside lib/.

$ echo 'let greeting = "Hello World"' > lib/msg.ml
$ echo 'val greeting : string' > lib/msg.mli

A valid OCaml module name cannot contain dashes or other special characters other

than underscores. If you need to refresh your memory about how �les and modules

interact, refer back to Chapter 5 (Files, Modules, and Programs).

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

392 The OCaml Platform

22.1.5 De�ning Libraries as Collections of Modules

One or more OCaml modules can be gathered together into a library, providing a

convenient way to package up multiple dependencies with a single name. A project

usually puts the business logic of the application into a library rather than directly

into an executable binary, since this makes writing tests and documentation easier in

addition to improving reusability.

Libraries are de�ned by putting a dune �le into a directory, such as the one generated

for us in lib/dune:

(library
(name hello))

Dunewill treat all OCamlmodules in that directory as being part of thehello library

(this behavior can be overridden by a modules �eld for more advanced projects). By

default, dune also exposes libraries aswrapped under a single OCaml module, and the

name �eld determines the name of that module.

In our example project, msg.ml is de�ned in lib/dunewhich de�nes a hello library.

Thus, users of our newly de�ned module can access it as Hello.Msg. You can read

more about wrapping and module aliases in Chapter 26.4.4 (Wrapping Libraries with

Module Aliases). Although our hello library only currently contains a single Msg

module, it is common to have multiple modules per library in larger projects. Other

modules within the hello library can simply refer to Msg.

You must refer to library names in a dune �le when deciding what libraries to

link in, and never individual module names. You can query the installed libraries

in your current switch via ocamlfind list at your command prompt, after running

opam install ocamlfind to install it if necessary:

$ ocamlfind list
afl-persistent (version: 1.2)
alcotest (version: 1.5.0)
alcotest.engine (version: 1.5.0)
alcotest.stdlib_ext (version: 1.5.0)
angstrom (version: 0.15.0)
asn1-combinators (version: 0.2.6)
...

If there's a public_name �eld present in the dune library de�nition, this determines

the publicly exposed name for the library. The public library name is what you specify

via the libraries �eld in other projects that use your project's libraries. Without

a public name, the de�ned library is local to the current dune project only. The

(libraries) �eld in the lib/dune �le is empty since this is a trivial standalone library.

22.1.6 Writing Test Cases for a Library

Our next step is to de�ne a test case in test/dune for our library. In Chapter 18

(Testing), we showed you how to embed tests within a library, using the inline test

mechanism. In this section, we'll show you how to use dune's test stanza to create a

test-only executable, which is useful when you're not using inline tests.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

22.1 Building an Executable Program 393

Let's start by writing a test as a simple assertion in test/hello.ml.

let () = assert (String.equal Hello.Msg.greeting "Hello World")

We can use the test dune stanza to build an executable binary that is run when you

invoke dune runtest (along with any inline tests de�ned within libraries). We'll also

add a dependency on our locally de�ned hello library so that we can access it. The

test/dune �le looks like this:

(test
(libraries hello)
(name hello))

Once you run the tests via dune runtest, you can �nd the built artifacts in

_build/default/test/ in your project checkout.

$ ls -la _build/default/test
total 992
drwxr-xr-x 7 avsm staff 224 27 Feb 16:13 .
drwxr-xr-x 9 avsm staff 288 27 Feb 15:23 ..
drwxr-xr-x 4 avsm staff 128 27 Feb 15:23 .hello.eobjs
drwxr-xr-x 3 avsm staff 96 27 Feb 16:12 .merlin-conf
-r-xr-xr-x 1 avsm staff 495766 27 Feb 16:13 hello.exe
-r--r--r-- 1 avsm staff 64 27 Feb 16:13 hello.ml
-r--r--r-- 1 avsm staff 28 27 Feb 15:23 hello.mli

We deliberately de�ned two �les called hello.ml in both lib/ and test/. It's

completely �ne to de�ne an executable hello.exe (in test/) alongside the OCaml

library called hello (in lib/).

22.1.7 Building an Executable Program

Finally, we want to actually use our hello world from the command-line. This is de�ned

in bin/dune in a very similar fashion to test cases.

(executable
(public_name hello)
(name main)
(libraries hello)))

There has to be a bin/main.ml alongside the bin/dune �le that represents the entry

module for the executable. Only that module and the modules and libraries it depends

on will be linked into the executable. Much like libraries, the (name) �eld here has to

adhere to OCaml module naming conventions, and the public_name �eld represents

the binary name that is installed onto the system and just needs to be a valid Unix or

Windows �lename.

Now try modifying bin/main.ml to refer to our Hello.Msg module:

let () = print_endline Hello.Msg.greeting

You can build and execute the command locally using dune exec and the

local name of the executable. You can also �nd the built executable in

_build/default/bin/main.exe.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

394 The OCaml Platform

$ dune build
$ dune exec -- bin/main.exe
Hello World

You can also refer to the public name of the executable if it's more convenient.

$ dune exec -- hello
Hello World

The dune exec and opam exec command we mentioned earlier in the chapter both

nest, so you could append them to each other using the double-dash directive to separate

them.

$ opam exec -- dune exec -- hello --args

This is quite a common thing to do when integrating with continuous integration

systems that need systematic scripting of both opam and dune (a topic we'll come to

shortly in this chapter).

22.2 Setting Up an Integrated Development Environment

Now that we've seen the basic structure of the OCaml project, it's time to setup an

integrated development environment. An IDE is particularly useful for OCaml because

it lets you leverage the information that's extracted by OCaml's rich type-system. A

good IDE will provide you with the facilities to browse interface documentation, see

inferred types for code, and to jump to the de�nitions of external modules.

22.2.1 Using Visual Studio Code

The recommended IDE for newcomers to OCaml is Visual Studio Code1 using the

OCaml Platform plugin2 . The plugin uses the Language Server Protocol to communi-

cate with your opam and dune environment. All you need to do is to install the OCaml

LSP server via opam:

opam install ocaml-lsp-server

Once installed, the VSCode OCaml plugin will ask you which opam switch to use.

Just the default one should be su�cient to get you going with building and browsing

your interfaces.

What Is The Language Server Protocol?

The Language Server Protocol de�nes a communications standard between an editor

or IDE and a language-speci�c server that provides features such as auto-completion,

de�nition search, reference indexing and other facilities that require specialized support

from language tooling. This allows a programming language toolchain to implement

all this functionality just once, and then integrate cleanly into the multiplicity of

1 https://code.visualstudio.com
2 https://marketplace.visualstudio.com/items?itemName=ocamllabs.ocaml-platform

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=ocamllabs.ocaml-platform
https://doi.org/10.1017/9781009129220.025

22.2 Browsing Interface Documentation 395

IDE environments available these days � and even go beyond conventional desktop

environments to web-based notebooks such as Jupyter.

Since OCaml has a complete and mature LSP server, you'll �nd that an increasing

number of IDEs will just support it out of the box once you install the ocaml-lsp-server.

It integrates automatically with the various tools we've used in this book, such as

detecting opam switches, invoking dune rules, and so on.

22.2.2 Browsing Interface Documentation

The OCaml LSP server understands how to interface with dune and examine the build

artifacts (such as the typed .cmt interface �les), so opening your local project in VS

Code is su�cient to activate all the features. Try navigating over to bin/main.ml, where

you will see the invocation to the hello library.

let () = print_endline Hello.Msg.greeting

First perform a build of the project to generate the type annotation �les. Then

hover your mouse over the Hello.Msg.greeting function � you should see some

documentation pop up about the function and its arguments. This information comes

from the docstrings written into the msg.mli interface �le in the hello library.

Modify the msg.mli interface �le to contain some signature documentation as

follows:

(** This is a docstring, as it starts with "**", as opposed to normal
comments that start with a single star.

The top-most docstring of the module should contain a description
of the module, what it does, how to use it, etc.

The function-specific documentation located below the function
signatures. *)

(** This is the docstring for the [greeting] function.

A typical documentation for this function would be:

Returns a greeting message.

{4 Examples}

{[print_endline greeting]} *)
val greeting : string

Documentation strings are parsed by the odoc3 tool to generate HTML and PDF

documentation from a collection of opam packages. If you intend your code to be used

by anyone else (or indeed, by yourself a few months later) you should take the time to

annotate your OCaml signature �les with documentation. An easy way to preview the

HTML documentation is to build it locally with dune:

3 https://github.com/ocaml/odoc

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://github.com/ocaml/odoc
https://doi.org/10.1017/9781009129220.025

396 The OCaml Platform

$ opam install odoc
$ dune build @doc

This will leave the HTML �les in _build/default/_doc/_html, which you can

view normally with a web browser.

22.2.3 Autoformatting Your Source Code

As you develop more OCaml code, you'll �nd it convenient to have it formatted to a

common style. The ocamlformat tool can help you do this easily from within VSCode.

$ echo 'version=0.20.1' > .ocamlformat
$ opam install ocamlformat.0.20.1

The .ocamlformat �le controls the autoformatting options available, and �xes the

version of the tool that is used. You can upgrade to a newer ocamlformat version when-

ever you want, but it is a manual process to avoid an upstream release auto-reformatting

your project code without your intervention. You can examine the formatting options

via ocamlformat --help � most of the time the defaults should be �ne.

Once you've got ocamlformat con�gured, you can either format your project from

within VSCode (shift-alt-F being the default), or by running:

$ dune build @fmt

This will generate a set of reformatted �les in the build directory, which you can

accept with dune promote as you did earlier in the testing chapter.

22.3 Publishing Your Code Online

With your IDE all set up you'll quickly develop useful OCaml code and want to share

it with others. We'll now go through how to de�ne opam packages, set up continuous

integration and publish your code.

22.3.1 De�ning Opam Packages

The only metadata �le that is really required to participate in the open-source OCaml

ecosystem is an opam �le in your source tree. Each opam �le de�nes a package � a

collection of OCaml libraries and executable binaries or application data. Each opam

package can de�ne dependencies on other opam packages, and includes build and

testing directions for your project. This is what's installed when you eventually publish

the package and someone else types in opam install hello.

A collection of opam �les can be stored in an opam repository to create a pack-

age database, with a central one for the OCaml ecosystem available at https:

//github.com/ocaml/opam-repository. The o�cial (but not exclusive) tool used

for manipulating opam �les is the eponymous opam package manager4 that we've been

using throughout this book.

4 https://opam.ocaml.org

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://github.com/ocaml/opam-repository
https://github.com/ocaml/opam-repository
https://opam.ocaml.org
https://doi.org/10.1017/9781009129220.025

22.3 Generating Project Metadata from Dune 397

How Do We Name OCaml Modules, Libraries and Packages?

Much of the time, the module, library, and package names are all the same. But there

are reasons for these names to be distinct as well:

• Some libraries are exposed as multiple top-level modules, which means you need a

di�erent name for that collection of modules.

• Even when the library has a single top-level module, you might want the library

name to be di�erent from the module name to avoid name clashes at the library

level.

• Package names might di�er from library names if a package combines multiple

libraries and/or binaries together.

It's important to understand the di�erence between modules, libraries and packages

as you work on bigger projects. These can easily have thousands of modules, hundreds

of libraries and dozens of opam packages in a single codebase.

22.3.2 Generating Project Metadata from Dune

The hello.opam �le in our sample project is currently empty, but you don't need to

write it by hand � instead, we can de�ne our project metadata using the dune build

system and have the opam �le autogenerated for us. The root directory of an OCaml

project built by dune has a dune-project �le that de�nes the project metadata. In our

example project, it starts with:

(lang dune 3.0)

The line above is the version of the syntax used in your build �les, and not the actual

version of the dune binary. One of the nicest features of dune is that it is forwards-

compatible with older metadata. By de�ning the version of the dune language that you

are currently using, future versions of dune will do their best to emulate the current

behavior until you choose to upgrade your project.

The rest of the dune-project �le de�nes other useful project metadata:

(name hello)
(documentation "https://username.github.io/hello/")
(source (github username/hello))
(license ISC)
(authors "Your name")
(maintainers "Your name")
(generate_opam_files true)

The �elds in here all represent project metadata ranging from textual descriptions,

to project URLs, to other opam package dependencies. Go ahead and edit the metadata

above to re�ect your own details, and then build the project:

$ dune build

The build command will update the hello.opam �le in your source tree as well,

keeping it in sync with your changes. The �nal part of the dune-project �le contains

dependency information for other packages your project depends on.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

398 The OCaml Platform

(package
(name hello)
(synopsis "A short description of the project")
(description "A short description of the project")
(depends
(ocaml (>= 4.08.0))
(alcotest :with-test)
(odoc :with-doc)))

The (package) stanza here refers to opam packages, both for the name and for the

dependency speci�cations. This is in contrast to the dune �les which refer to ocaml�nd

libraries, since those represent the compilation units for OCaml code (whereas opam

packages are broader collections of package data).

Notice that the dependency speci�cation can also include version information. One

of the key features of opam is that each repository contains multiple versions of

the same package. The opam CLI contains a constraint solver that will �nd versions

of all dependencies that are compatible with your current project. When you add a

dependency, you can therefore specify lower and upper version bounds as required by

your use of that package. The with-test and with-doc are further constraints that only

add those dependencies for test and documentation generation respectively.

Once you've de�ned your opam and dune dependencies, you can run various lint

commands to check that your metadata is consistent.

$ opam dune-lint
$ opam lint

The opam-dune-lint plugin will check that the ocaml�nd libraries and opam pack-

ages in your dune �les match up, and o�er to �x them up if it spots a mismatch.

opam lint runs additional checks on the opam �les within your project.

22.3.3 Setting up Continuous Integration

Once you have your project metadata de�ned, it's a good time to begin hosting it online.

Two of the most popular platforms for this are GitHub5 and GitLab6 . The remainder

of this chapter will assume you are using GitHub for simplicity, although you are

encouraged to check out the alternatives to �nd the best solution for your own needs.

When you create a GitHub repository and push your code to it, you can also add an

OCaml GitHub Action that will install the OCaml Platform tools and run your code

across various architectures and operating systems. You can �nd the full documentation

online at the Set up OCaml7 page on the GitHub marketplace. Con�guring an action

is as simple as adding a .github/workflows/test.yml �le to your project that looks

something like this:

name: Hello world workflow
on:
pull_request:

5 https://github.com
6 https://gitlab.com
7 https://github.com/marketplace/actions/set-up-ocaml

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://github.com
https://gitlab.com
https://github.com/marketplace/actions/set-up-ocaml
https://doi.org/10.1017/9781009129220.025

22.3 Releasing Your Code into the Opam Repository 399

push:
jobs:
build:
strategy:
matrix:
os:
- macos-latest
- ubuntu-latest
- windows-latest

ocaml-compiler:
- 4.13.x

runs-on: ${{ matrix.os }}
steps:
- name: Checkout code
uses: actions/checkout@v2

- name: Use OCaml ${{ matrix.ocaml-compiler }}
uses: ocaml/setup-ocaml@v2
with:
ocaml-compiler: ${{ matrix.ocaml-compiler }}

- run: opam install . --deps-only --with-test
- run: opam exec -- dune build
- run: opam exec -- dune runtest

This work�ow�lewill run your project onOCaml installations onWindows,macOS

and Linux, using the latest patch release of OCaml 4.13. Notice that it also runs the test

cases you have de�ned earlier on all those di�erent operating systems as well. You can

do an awful lot of customization of these continuous integration work�ows, so refer to

the online documentation for more options.

22.3.4 Other Conventions

There are a few other �les you may also want to add to a project to match common

conventions:

• A Makefile contains targets for common actions such as all, build, test or clean.

While you don't need this when using VSCode, some other operating system

package managers might bene�t from having one present.

• The LICENSE de�nes the terms underwhich your code ismade available. Our example

defaults to the permissive ISC license, and this is generally a safe default unless

you have speci�c plans for your project.

• A README.md is a Markdown-formatted introduction to your library or application.

• A .gitignore �le contains the patterns for generated �les from the OCaml tools

so that they can be ignored by the Git version control software. If you're not

familiar with using Git, look over one of the tutorials one such as GitHub's git

hello world8 .

8 https://guides.github.com/activities/hello-world/

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://guides.github.com/activities/hello-world/
https://doi.org/10.1017/9781009129220.025

400 The OCaml Platform

22.3.5 Releasing Your Code into the Opam Repository

Once your continuous integration is passing, you are all set to try to tag a release of

your project and share it with other users! The OCaml Platform supplies a convenient

tool called dune-release which automates much of this process for you.

$ opam install dune-release

The �rst thing you need to do is to create a CHANGES.md �le in your project in

Markdown format, which contains a header per version. This is typically a succinct

summary of the changes between versions that can be read by users. For our �rst

release, we might have:

v1.0.0

- Initial public release of our glorious hello world
project (@avsm)

- Added test cases for making sure we do in fact hello world.

Commit this �le to your repository in the root. Before you proceed with a release,

you need to make sure that all of your local changes have been pushed to the remote

GitHub repository, and that your working tree is clean. You can do this by using git:

$ git clean -dxf
$ git diff

This will remove any untracked �les from the local checkout (such as the _build

directory) and check that tracked �les are unmodi�ed. We should now be ready to

perform the release! First create a git tag to mark this release:

$ dune-release tag

This will parse your CHANGES.md �le and �gure out the latest version, and create a

local git tag in your repository after prompting you. Once that succeeds, you can start

the release process via:

$ dune-release

This will begin an interactive session where you will need to enter some GitHub

authentication details (via creating a personal access token). Once that is completed,

the tool will run all local tests, generate documentation and upload it to your GitHub

pages branch for that project, and �nally o�er to open a pull request to the central opam-

repository. Recall that the central opam package set is all just a normal git repository,

and so your opam �le will be added to that and your GitHub account will create a PR.

At this point, you can sit back and relaxwhile the central opam repository test system

runs your package through a battery of installations (including on exotic architectures

you might not access to, such as S390X mainframes or 32-bit ARMv7). If there

is a problem detected, some friendly maintainers from the OCaml community will

comment on the pull request and guide you through how to address it. You can simply

delete the git tag and re-run the release process until the package is merged. Once it is

merged, you can navigate to the <ocaml.org> site and view it online in an hour or so.

It will also be available in the central repository for other users to install.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.025

22.4 Learning More from Real Projects 401

Creating Lock Files for Your Projects

Before you publish a project, you might also want to create an opam lock �le to

include with the archive. A lock �le records the exact versions of all the transitive

opam dependencies at the time you generate it. All you need to do is to run:

$ opam lock

This generates a pkgname.opam.locked �le which contains the same metadata as

your original �le, but with all the dependencies explicitly listed. Later on, if a user

wants to reconstruct your exact opam environment (as opposed to the package solution

they might calculate with a future opam repository), then they can pass an option

during installation:

$ opam install pkgname --locked
$ opam switch create . --locked

Lock �les are an optional but useful step to take when releasing your project to the

Internet.

22.4 Learning More from Real Projects

There's a lot more customization that happens in any real project, and we can't cover

every aspect in this book. The best way by far to learn more is to dive in and compile

an already established project, and perhaps even contribute to it. There are thousands

of libraries and executable projects released on the opam repository which you can

�nd online at https://ocaml.org.

A selection of some include:

• patdiff is an OCaml implementation of the patience di� algorithm, and is a nice

self-contained CLI project using Core. https://github.com/janestreet/

patdiff

• The source code to this book is published as a self-contained monorepo with all the

dependencies bundled together, for convenient compilation. https://github.

com/realworldocaml/book

• Flow is a static typechecker for JavaScript written in OCaml that uses Base andworks

on macOS, Windows and Linux. It's a good example of a large, cross-platform

CLI-driven tool. https://github.com/facebook/flow

• Octez is an OCaml implementation of a proof-of-stake blockchain called Tezos,

which contains a comprehensive collection9 of libraries such as interpreters for

a stack language, and a shell that uses Lwt to provide networking, storage and

cryptographic communications to the outside world. https://gitlab.com/

tezos/tezos

• MirageOS is a library operating system written in OCaml, that can compile code to a

9 https://tezos.gitlab.io/shell/the_big_picture.html#packages

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://ocaml.org
https://github.com/janestreet/patdiff
https://github.com/janestreet/patdiff
https://github.com/realworldocaml/book
https://github.com/realworldocaml/book
https://github.com/facebook/flow
https://gitlab.com/tezos/tezos
https://gitlab.com/tezos/tezos
https://tezos.gitlab.io/shell/the_big_picture.html#packages
https://doi.org/10.1017/9781009129220.025

402 The OCaml Platform

variety of embedded and hypervisor targets. There are 100s of libraries all written

using dune in a variety of ways available at https://github.com/mirage.

• You can �nd a number of standalone OCaml libraries for unicode, parsing and com-

puter graphics and OS interaction over at https://erratique.ch/software.

https://doi.org/10.1017/9781009129220.025 Published online by Cambridge University Press

https://github.com/mirage
https://erratique.ch/software
https://doi.org/10.1017/9781009129220.025

