Prevalence of inadequate micronutrient intakes of Canadian long-term care residents

Heather H. Keller1,2*, Christina Lengyel3, Natalie Carrier4, Susan E. Slaughter5, Jill Morrison2, Alison M. Duncan6, Catriona M. Steele7,8, Lisa Duizer9, K. Stephen Brown10, Habib Chaudhury11, Minn N. Yoon12, Veronique Boscart1,13, George Heckman1 and Lita Villalon4

1Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON N2J 0E2, Canada
2Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
3Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
4École des sciences des aliments, de nutrition et d’études familiales, Faculté des sciences de la santé et des services communautaires, Université de Moncton, Moncton, NB E1A 3E9, Canada
5Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada
6Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
7Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
8Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
9Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
10Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1 Canada
11Department of Gerontology, Simon Fraser University, Vancouver, BC V6B 5K3, Canada
12School of Dentistry, University of Alberta, Edmonton, AB T6G 1C9, Canada
13Conestoga College, Schlegel Centre for Advancing Seniors Care, Kitchener, ON, N2G 4M4, Canada

(Submitted 27 June 2017 – Final revision received 14 December 2017 – Accepted 20 December 2017 – First published online 15 February 2018)

Abstract

This study determines the prevalence of inadequate micronutrient intakes consumed by long-term care (LTC) residents. This cross-sectional study was completed in thirty-two LTC homes in four Canadian provinces. Weighed and estimated food and beverage intake were collected over 3 non-consecutive days from 632 randomly selected residents. Nutrient intakes were adjusted for intra-individual variation and compared with the Dietary Reference Intakes. Proportion of participants, stratified by sex and use of modified (MTF) or regular texture foods, with intakes below the Estimated Average Requirement (EAR) or Adequate Intake (AI), were identified. Numbers of participants that met these adequacy values with use of micronutrient supplements was determined. Mean age of males (n = 197) was 85·2 (SD 7·6) years and females (n = 435) was 87·4 (SD 7·8) years. In all, 33 % consumed MTF; 78·2 % (males) and 76·1 % (females) took at least one micronutrient pill. Participants on a MTF had lower intake for some nutrients (males = 4; females = 8), but also consumed a few nutrients in larger amounts than regular texture consumers (males = 4; females = 1). More than 50 % of participants in both sexes and texture groups consumed inadequate amounts of folate, vitamins B6, Ca, Mg and Zn (males only), with >90 % consuming amounts below the EAR/AI for vitamin D, E, K, Mg (males only) and K. Vitamin D supplements resolved inadequate intakes for 50–70 % of participants. High proportions of LTC residents have intakes for nine of twenty nutrients examined below the EAR or AI. Strategies to improve intake specific to these nutrients are needed.

Key words: Dietary energy: Macronutrients: Nutrient adequacy: Long-term care

Poor food intake is common among older adults living in long-term care homes (LTC), yet our knowledge of actual food intake and adequacy with respect to Dietary Reference Intake (DRI) recommendations is limited1–3. Inadequate intake, including micronutrients, can lead to diverse functional changes that are detrimental to health and cognitive function4,5. Although malnutrition in LTC has been well described6–7, micronutrient malnutrition is under-investigated. A first step towards

Abbreviations: AI, Adequate Intake; DRI, Dietary Reference Intake; EAR, Estimated Average Requirement; ICC, intra-class correlation; LTC, Long-term care home(s); M3, Making the Most of Mealtimes; ONS, oral nutritional supplement.

* Corresponding author: H. H. Keller, email hkeller@uwaterloo.ca
improving micronutrient status is determining the micronutrient adequacy of the consumed diet. This evidence is necessary as the foundation for recommendations with respect to menu planning policies, raw food cost and adequate labour to produce nutrient-dense meals in LTC. Specifically, the distribution of resident nutrient intakes is required for menu planning at the home level to meet the DRIs and prevent deficiencies.

Prior research on food intake is based on small, convenience samples with relatively inaccurate methods for collecting intake, including relying on staff to record consumption. Data on nutrient intake is not typically adjusted for intra-individual variation nor is it based on a comprehensive panel of micronutrients. Further, studies have yet to determine if current micronutrient supplement use mitigates an inadequate diet or if differences exist in nutrient consumption because of the requirement for a texture modified diet, despite the known increased vulnerability of these residents. The Making the Most of Mealtimes (M3) prevalence study was designed to overcome these challenges and provide a better assessment of dietary intake in LTC. The purpose of this study was to determine the prevalence of inadequate micronutrient intakes consumed by LTC residents, comparing adequacy by diet texture and use of micronutrient supplements (e.g. pills).

Methods

Sampling, subjects and recruitment

Four provinces in Canada (Alberta, Manitoba, Ontario, New Brunswick) were included in the M3 study; eight LTC homes were purposively selected within each province to provide diversity in profit status, size, and cultural distinctiveness (e.g. predominately Jewish residents with Kosher meals). To be eligible for inclusion in this cross-sectional study, LTC had to have at least fifty residents who required more than 2h of nursing care per day for basic activities of daily living, be in operation for more than 6 months and be supportive of the M3 data collection procedures. Within each LTC, two to four units were randomly selected for inclusion and if available, a unit dedicated to the care of residents with dementia was included. From these units, eligible residents were identified by trained home staff, that then used a random number list to approach residents who were interested in hearing more about the study. Up to forty interested, eligible and randomly identified residents were provided as a list to researchers who then completed informed written consent until a quota of twenty residents per home was reached. Inclusion criteria were as follows: medically stable (not recent or impending hospitalisation, not palliative), typically ate in the dining room, consumed food orally (residents with artificial feeding were excluded), were 65 years of age and older, and they or their alternative decision maker (ADM) provided informed consent to participate. Further details about the LTC, the protocol for recruitment and sample representativeness have been previously documented. Sample size estimation needed to take into account the provincial and home clusters and the intra-class correlation (ICC) of food intake among residents within the same facility (e.g. residents in the same home are more likely to have similar intakes) to estimate median energy intake with a 95% CI of ±234–284 kJ (56–68 kcal). Thus, twenty residents per home was considered a sufficient sample to estimate micronutrient intake in the M3 study.

Data collection

Only data collection pertinent to this analysis will be described; details of all procedures can be found in the protocol. All food and beverage intake for 3 non-consecutive days (2 weekdays and 1 weekend day), at meals and between meals was recorded by trained research staff (two per province). In-person training was completed with each provincial coordinator who subsequently trained research assistants. Food weigh scales (V22PWE3T; Ohaus) were identical among provinces and calibration was completed daily during data collection. Main plate food products were weighed before and waste weighed after consumption; any additional servings and condiments provided by staff were also recorded. Consumption of side dishes, snacks and beverage intake was estimated and before collection in each home, dishware was measured to determine volume. Use of salt at the table was not estimated. Morning and afternoon snack consumption was reported to researchers by residents, family, or staff and the evening snack and any other food consumed until midnight was recorded by staff. The complete menus with portion sizes and home recipes were provided to the researchers for nutrient analysis using the ESHA Food Processor Nutrition analysis software version 10.14.1 (ESHA Research). The Canadian Nutrient File was also used where appropriate for fortified and other foods specific to the Canadian food supply. Food and beverage intakes were entered into ESHA after each meal for each participant to ensure a thorough and accurate reporting and analysis; if required, LTC staff was asked to clarify ingredients or any substitutions that may have occurred. Where recipes were not available, researchers followed a standardised protocol to identify potential substitutes (e.g. other recipe from a home in the same province; recipe for a similar product from another province; or generic recipe from the internet based on product ingredients). Nutrient profiles of commercial products used were also accessed. Research assistants crosschecked data entry for accuracy and data were reviewed centrally to confirm completeness.

Before each meal, researchers also asked licensed nursing staff dispensing medications if prescribed oral nutritional supplements (ONS; e.g. commercial high protein/energy milkshakes) were provided and taken with medications; amount and type of ONS was recorded. Use of these nutritional supplements was included in the food/beverage estimation of
nutrient intake. Micronutrient supplement (e.g. pill) use on the
day of data collection was confirmed, with brands and type/
dose of nutrient recorded from the medication record. Only
values from formulations that could be confirmed with con-
fidence were used in this analysis (10.8% not included: inject-
able nutrients, multivitamins where brand was not specified or
any nutrient pill where dose was not recorded and/or could not
reasonably be inferred (e.g. when unit was clearly recorded
incorrectly)).

The medical record was also reviewed for each participant to
determine their sex, birthdate, most current body weight, diet
prescriptions (e.g. high-fibre diet, diabetic diet), prescribed diet
texture (categorised using International Dysphagia Diet Stan-
dardisation Initiative (IDDSI) framework\(^{(25)}\) based on descrip-
tion in medical record and confirmation at meals as: regular, soft
and bite sized, minced and moist, pureed, liquidised), diag-
noses (total number and any dementia diagnosis), and use of
prescription medication (total number). An ulna measure-
ment\(^{(24)}\) was taken by the provincial project coordinator and
used to estimate BMI. This coordinator also interviewed staff
that worked with residents to complete key aspects from the
LTC InterRAI, and specifically for this analysis the Cognitive
Performance Scale (CPS) and the Activities of Daily Living scale
(ADL). The CPS was used to describe resident cognitive status.
It is a seven-point scale, where 0 represents no cognitive
impairment and 6 represents very severe cognitive impairment
with the person unable to make daily decisions, make them-
selves understood or eat independently\(^{(25)}\). The ADL score has a
maximum of 28 and higher scores indicate increased
dependency for various activities of daily living\(^{(26)}\). Finally,
the Edinburgh Feeding Evaluation in Dementia Questionnaire
(Ed-FED-Q), a valid measure of eating challenges at mealtimes,
was collected by observation at three meals. Scores range from
10 to 30 and the average across the three observed meals was
calculated for each resident, where higher scores indicate more
eating challenges\(^{(27)}\).

Statistical analyses

Only participants whose food intake was observed over at least
six mealtimes (equivalent to 2 d) were used in this analysis
\((n = 632; 519 (82.1\%) had all nine meals, 98 (15.5\%) had seven to
eight meals, and 15 (2.4\%) had six meals). Participant charac-
teristics were summarised (mean values and standard devia-
tions, frequency) and compared by sex group and regular and
modified textures using Student’s \(t\) test, or the \(\chi^2\) test. A \(P\) value
for statistical significance was set at \(< 0.01\) due to the number of
comparisons completed (Table 1; test statistics and \(P\) values
provided in text).

Food and fluid intake data were stratified by sex and diet
texture for comparison with the DRI. Modified texture for this
analysis was defined as those consuming ‘liquidised’, ‘pureed’
or ‘minced and moist’ texture (IDDSI 3–5), whereas the regular
category included ‘soft and bite sized’ (IDDSI 6) and ‘regular’
(IDDSI 7) consumers. To enable comparison of nutrient intakes
to the DRI\(^{(28)}\) usual intake of nutrients was estimated by
adjusting 3-d average intakes for intra-individual variation
according to the method outlined by the National Research
Council\(^{(28,29)}\). The first comparison to the DRI was based on
all food, beverage and ONS consumed. A second comparison
to the DRI was completed, with micronutrients from micro-
nutrient pills added to the adjusted food/beverage/ONS intake
values for those participants consuming these preparations.
Percentiles of the distribution of intake were determined for
each sex and for regular and modified texture diet groups to
determine prevalence of inadequacy. Median, quartile 1 (Q1) and
quartile 3 (Q3) values are reported. The distribution of nutrient
intake from food/beverage/ONS was used to deter-
mine the proportion of participants with inadequate intake for
those nutrients with an Estimated Average Requirement (EAR)
using the EAR cut-point method\(^{(26)}\). For nutrients with an
Adequate Intake (AI; vitamin K, K, Na), the proportion of
participants falling below the AI with respect to their intake is
reported. The number of participants, whose intake surpassed
the EAR/AI with micronutrient supplements, is also reported.
Median intake and proportion below the EAR/AI were com-
pared for modified texture and regular texture consumers using
Wilcoxon Mann Whitney and chi-square tests. All analyses
were performed using SAS\(^{(26)}\) software package version 9.4
(SAS Institute).

Ethics

All study participants or alternative decision makers for residents
provided their written consent to participate. This protocol
received clearance from ethics boards at the University of
Waterloo, University of Alberta (Pro00050002), University
of Manitoba (J2014:139), Université de Moncton (1415-022) and
University Hospital Network, University of Toronto (16-5051-DE).
Some individual LTC homes also required ethics review by a
local/regional committee.

Results

Participant characteristics are provided in Table 1. Modified
texture consumers were 33% (208/632) of the sample. Female
participants consuming modified texture foods had a lower BMI
than women consuming regular texture foods and women had
lower average BMI than men (women’s mean: 22.7 (SD 4.8) kg/m\(^2\);
male mean: 26.2 (SD 6) kg/m\(^2\); \(t = 6.38, \text{ } P < 0.001\)). In females,
protein intake in g/kg body weight was significantly higher
and energy intake significantly lower for those consuming a
modified texture as compared with those consuming a regular
texture (energy: \(t = 6.97, \text{ } P = 0.004\); protein: \(t = 4.39, \text{ } P < 0.001\)). The proportion of participants with dementia was significantly higher for females consuming a modified texture
(81.2\%) as compared with females consuming regular texture
foods (59.6\%; \(\chi^2 = 19.65, P < 0.001\); OR 2.92; 95% CI 1.8, 4.75).
CPS scores were higher (greater cognitive impairment) across
both sexes for those consuming modified texture foods as
compared with those consuming regular texture foods (male: \(t = 5.53, P < 0.001\); female: \(t = 11.26, P < 0.001\)). Similarly,
higher ADL (more dependency) and Ed-FED-Q (more eating
challenges) were seen in those consuming modified texture foods
as compared with those consuming regular texture foods.
Table 1. Making the Most of Mealtimes sample description and comparisons by sex and food texture (Mean values and standard deviations; percentages; n 632)

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>197</td>
<td>127 70</td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>297 138</td>
</tr>
<tr>
<td>BMI (kg/m²)†</td>
<td>7.6</td>
<td>7.8 7.4</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>8.0 7.5</td>
</tr>
<tr>
<td>MeN (kJ/d)</td>
<td>85.2</td>
<td>84.9 85.7</td>
</tr>
<tr>
<td></td>
<td>87.4</td>
<td>87.3 87.8</td>
</tr>
<tr>
<td>So</td>
<td>7.6</td>
<td>7.8 7.4</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>8.0 7.5</td>
</tr>
<tr>
<td>Sex (%)</td>
<td>52.5</td>
<td>55.5 53.0</td>
</tr>
<tr>
<td></td>
<td>54.0</td>
<td>55.5 53.0</td>
</tr>
<tr>
<td>Number of medications prescribed (%)</td>
<td>0–4 drugs</td>
<td>53.0 55.1 50.0</td>
</tr>
<tr>
<td></td>
<td>52.5</td>
<td>55.5 53.0</td>
</tr>
<tr>
<td></td>
<td>16.2</td>
<td>12.6 22.9</td>
</tr>
<tr>
<td></td>
<td>23.7</td>
<td>21.9 27.5</td>
</tr>
<tr>
<td>≥ 5 drugs</td>
<td>30.5</td>
<td>32.3 27.1</td>
</tr>
<tr>
<td></td>
<td>26.9</td>
<td>30.3 19.6</td>
</tr>
<tr>
<td>≥10 drugs</td>
<td>51.8</td>
<td>40.9 71.4</td>
</tr>
<tr>
<td>Cognitive Performance Scale Resources</td>
<td>2.6</td>
<td>2.2 3.5</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>2.4 4.3</td>
</tr>
<tr>
<td>% Moderate/severe impairment (score ≥3)</td>
<td>1.7</td>
<td>1.6 1.7</td>
</tr>
<tr>
<td>ADL Score (max. 28)§</td>
<td>51.3</td>
<td>40.9 71.4</td>
</tr>
<tr>
<td>Mean</td>
<td>12.0</td>
<td>11.3 13.3</td>
</tr>
<tr>
<td>So</td>
<td>1.7</td>
<td>1.3 2.7</td>
</tr>
<tr>
<td>% Moderate/severe impairment (score ≥3)</td>
<td>1.7</td>
<td>1.6 2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diet and nutrition</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONS prescribed (%)</td>
<td>30.5</td>
<td>21.3 47.1</td>
</tr>
<tr>
<td>Number of micronutrient supplements prescribed</td>
<td>21.8</td>
<td>17.3 30.0</td>
</tr>
<tr>
<td>Mean</td>
<td>13.7</td>
<td>17.3 7.1</td>
</tr>
<tr>
<td>So</td>
<td>1.7</td>
<td>1.3 1.0</td>
</tr>
<tr>
<td>Number of micronutrients prescribed (%)</td>
<td>51.8</td>
<td>80.3 53.3</td>
</tr>
<tr>
<td>Strike and sized</td>
<td>12.7</td>
<td>19.7 14.9</td>
</tr>
<tr>
<td>Minced and moist</td>
<td>28.9</td>
<td>75.7 19.5</td>
</tr>
<tr>
<td>Pureed</td>
<td>8.6</td>
<td>24.3 11.7</td>
</tr>
<tr>
<td>Liquidised</td>
<td>54.0</td>
<td>54.2 54.0</td>
</tr>
<tr>
<td>Any diet prescription (%)</td>
<td>41.1</td>
<td>40.9 41.4</td>
</tr>
<tr>
<td>Energy intake (kJ/d)</td>
<td>7186 4</td>
<td>7276 7 7022 8</td>
</tr>
<tr>
<td>So</td>
<td>1220.0 1251.8 1149.8 1106.7 974.4 1317.1</td>
<td></td>
</tr>
<tr>
<td>Energy intake (kcal/d)</td>
<td>1717 6</td>
<td>1739 2 1678 5 1479 2 1507 3 1418 7</td>
</tr>
<tr>
<td>So</td>
<td>291.6 299.2 274.8 264.5 232.9 314 8</td>
<td></td>
</tr>
<tr>
<td>Protein intake (g/d)</td>
<td>64 7</td>
<td>65.1 63.9 54.1 54.2 54.0</td>
</tr>
<tr>
<td>So</td>
<td>12.8 12.21 13.8 11.8 10.0 15.0</td>
<td></td>
</tr>
<tr>
<td>Protein intake (g/kg per d)</td>
<td></td>
<td>0.88 0.85 0.93 0.90 0.85 1.00</td>
</tr>
<tr>
<td>So</td>
<td>0.23 0.18 0.30 0.27 0.22 0.35</td>
<td></td>
</tr>
<tr>
<td>Fibre intake (g/d)</td>
<td>13.9</td>
<td>14.5 12.7</td>
</tr>
<tr>
<td>So</td>
<td>3.2 3.3 2.4 3.3 3.1 3.6</td>
<td></td>
</tr>
</tbody>
</table>

Values are significantly different between males and females: * P < 0.01.
Values are significantly different between modified and regular texture categories, within sex group: † P < 0.01.
‡ Regular textures include ‘regular’ and ‘soft and bite sized’ (IDDSI categories 7 and 6); modified textures include ‘minced and moist’, ‘pureed’ and liquidised (IDDSI 5, 4 and 3).
§ Missing values: ADL Score, n 627; BMI, n 620; CPS score, n 627.
|| kg of body weight.
Micronutrient intake of long-term care residents

1051

for both sexes. Those consuming modified textures for both sex groups were more likely to receive ONS than those consuming regular textures (male: $\chi^2=14.27, P<0.001$; OR 3.3; 95% CI 1.75, 6.22; female: $\chi^2=44.42, P<0.001$; OR 4.22, 95% CI 2.73, 6.53). Micronutrient supplement use was significantly different across texture comparisons for both sexes with those consuming regular textures being prescribed more vitamin/minerals than those consuming modified textures (male: $t=3.71, P<0.001$; female: $t=3.20, P=0.002$). The online Supplementary Table S1 provides a summary of the proportion of residents taking various micronutrient supplements and the dosage provided. About three-quarters of participants were consuming at least one formulation, with single nutrients being the most common including: vitamin D, vitamin B12, Ca, Fe and vitamin C.

Tables 2 and 3 provide median (Q1, Q3) micronutrient intakes from food/beverage/ONS intake for males and females, respectively, for those consuming regular or modified texture diets. For males (Table 2), median values for the following nutrients were significantly lower for modified textures v. regular texture participants: folic acid, Fe, Se and Na. Vitamin C, D, Ca and Zn were consumed in higher amounts for modified texture diets.

Table 2. Nutrient analysis of food intake only and food intake with micronutrient supplements added for males on regular (n 127) and modified (n 70) texture diets

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>EAR</th>
<th>Diet texture</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>% of individuals below EAR/AI</th>
<th>n§</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Number of individuals > EAR because of supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A RAE (µg)</td>
<td>625</td>
<td>Regular</td>
<td>619</td>
<td>721.9</td>
<td>825.9</td>
<td>26.8</td>
<td>120</td>
<td>634.5</td>
<td>723.6</td>
<td>829.0</td>
<td>1</td>
</tr>
<tr>
<td>Modified</td>
<td>594</td>
<td>724.8</td>
<td>970.8</td>
<td>30.0</td>
<td>67</td>
<td>590.1</td>
<td>718.9</td>
<td>927.9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁ (mg)</td>
<td>1 Regular</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>7.9</td>
<td>1.4</td>
<td>119</td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>0</td>
</tr>
<tr>
<td>Modified</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>4.3</td>
<td>67</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₂ (µg)</td>
<td>11 Regular</td>
<td>1.2</td>
<td>2.0</td>
<td>2.5</td>
<td>2.4</td>
<td>119</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>1.2</td>
<td>2.0</td>
<td>2.3</td>
<td>2.1</td>
<td>67</td>
<td>1.7</td>
<td>2.0</td>
<td>2.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₆ (mg)</td>
<td>12 Regular</td>
<td>25.1</td>
<td>26.4</td>
<td>30.5</td>
<td>3.3</td>
<td>124</td>
<td>22.6</td>
<td>26.3</td>
<td>30.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>21.3</td>
<td>24.9</td>
<td>29.0</td>
<td>2.8</td>
<td>70</td>
<td>21.3</td>
<td>24.9</td>
<td>29.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁₂ (µg)</td>
<td>75 Regular</td>
<td>611</td>
<td>90.2**</td>
<td>110.4</td>
<td>34.6***</td>
<td>116</td>
<td>64.2</td>
<td>92.6**</td>
<td>124.5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>87.7</td>
<td>120.0</td>
<td>154.8</td>
<td>14.3</td>
<td>66</td>
<td>87.7</td>
<td>125.4</td>
<td>156.9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>320 Regular</td>
<td>228.8</td>
<td>266.6**</td>
<td>335.0</td>
<td>73.2**</td>
<td>122</td>
<td>231.1</td>
<td>272.6**</td>
<td>359.4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>177.1</td>
<td>219.2</td>
<td>257.1</td>
<td>91.4</td>
<td>68</td>
<td>176.8</td>
<td>219.2</td>
<td>256.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D (µg)</td>
<td>2 Regular</td>
<td>3.3</td>
<td>3.9</td>
<td>4.6</td>
<td>3.2</td>
<td>119</td>
<td>3.6</td>
<td>4.6</td>
<td>504.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>3.4</td>
<td>4.2</td>
<td>5.1</td>
<td>4.3</td>
<td>66</td>
<td>3.7</td>
<td>5.1</td>
<td>520.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin E α-tocopherol (mg)</td>
<td>6 Regular</td>
<td>4.4</td>
<td>5.6**</td>
<td>7.2</td>
<td>94.7††</td>
<td>124</td>
<td>7.2</td>
<td>31.1</td>
<td>50.4</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>5.4</td>
<td>7.1</td>
<td>8.7</td>
<td>90.0</td>
<td>70</td>
<td>6.5</td>
<td>31.1</td>
<td>34.4</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg (mg)</td>
<td>350 Regular</td>
<td>220.6</td>
<td>258.6</td>
<td>295.4</td>
<td>98.4</td>
<td>120</td>
<td>222.8</td>
<td>260.0</td>
<td>300.3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>211.5</td>
<td>249.0</td>
<td>274.6</td>
<td>98.6</td>
<td>67</td>
<td>210.9</td>
<td>248.5</td>
<td>272.6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na (µg)</td>
<td>580 Regular</td>
<td>976.7</td>
<td>1098.6</td>
<td>1258.8</td>
<td>4.7</td>
<td>125</td>
<td>976.7</td>
<td>1098.6</td>
<td>1258.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>956.3</td>
<td>1165.5</td>
<td>1371.5</td>
<td>1.4</td>
<td>70</td>
<td>956.3</td>
<td>1165.5</td>
<td>1371.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (mg)</td>
<td>4700 Regular</td>
<td>2110.2</td>
<td>2482.7</td>
<td>2795.7</td>
<td>100.0</td>
<td>122</td>
<td>2142.0</td>
<td>2561.2</td>
<td>2851.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>2157.5</td>
<td>2513.4</td>
<td>2749.0</td>
<td>100.0</td>
<td>68</td>
<td>2139.6</td>
<td>2501.1</td>
<td>2729.8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se (µg)</td>
<td>47 Regular</td>
<td>78.8</td>
<td>89.2**</td>
<td>99.1</td>
<td>1.6</td>
<td>122</td>
<td>79.3</td>
<td>89.3**</td>
<td>99.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>63.6</td>
<td>72.4</td>
<td>88.6</td>
<td>2.9</td>
<td>68</td>
<td>63.6</td>
<td>72.4</td>
<td>87.4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na (µg)</td>
<td>120 Regular</td>
<td>1989.5</td>
<td>2340.8**</td>
<td>2602.9</td>
<td>1.6</td>
<td>125</td>
<td>1989.9</td>
<td>2340.8**</td>
<td>2599.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>1652.6</td>
<td>2064.0</td>
<td>2348.8</td>
<td>1.7</td>
<td>70</td>
<td>1652.6</td>
<td>2062.6</td>
<td>2353.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (mg)</td>
<td>9.4 Regular</td>
<td>7.3</td>
<td>8.3*</td>
<td>9.4</td>
<td>34.9</td>
<td>115</td>
<td>7.4</td>
<td>8.3</td>
<td>9.4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Modified</td>
<td>7.7</td>
<td>8.6</td>
<td>10.0</td>
<td>6.0</td>
<td>66</td>
<td>7.7</td>
<td>8.6</td>
<td>10.0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EAR, Estimated Average Requirement; Q, quartiles; AI, Adequate Intake; RAE, Retinol Activity Equivalent; DFE, Dietary Folate Equivalent; DR, Dietary Reference Intake.

Median of nutrient intake is significantly different between regular and modified texture diets. * $P<0.05$, ** $P<0.01$.

Proportion of individuals below the EAR/AI is significantly different between regular and modified texture diets: † $P<0.05$, †† $P<0.01$.

Food intake only includes food and fluids from meals and snacks, and oral nutritional supplements.

§ Represents sample size with known supplement use where detail on dose was available.

DRI unavailable, value is the AI for specified nutrient.

DRI for males 51–70 years is different from >70 years; Ca, EAR = 800 mg; Na, AI = 1300 mg.
males as compared with regular texture consumers. High proportions of male residents had intakes from food/beverages/ ONS below the EAR/AI for regular and modified textures for: vitamin B₆, folate, vitamins D, E, K, Mg, K and Zn. Vitamin A and C (for regular texture only) were consumed at levels below the EAR by >25% of males. A significantly higher proportion of males on modified texture foods were below the EAR than regular texture consumers for folate. But a significantly higher proportion of males receiving regular texture foods were below the EAR as compared with modified texture consumers for vitamins C, D, Ca and Zn. Intake increased to above the EAR for vitamin D (regular n 85/127; modified texture n 38/70) and Ca (regular texture n 23/127) with micronutrient supplement use.

For females (Table 3), modified texture consumers had significantly lower intakes as compared with regular texture consumers for the following nutrients: vitamin B₁₂, B₆, niacin, folate, vitamin K, Fe, Se and Na. Vitamin C intake was significantly higher for modified texture female consumers as compared with regular texture consumers. High proportions of female residents had intakes from food/beverages/ONS below the EAR/Al for regular and modified textures for: vitamin B₁₂, folate, vitamins D, E, K, Ca, Mg and K. Vitamin A and Zn intakes as compared with regular texture consumers.

Table 3. Nutrient analysis of food intake only and food intake with micronutrient supplements added for females on regular (n 297) and modified (n 138) texture diets

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>EAR Diet Textures</th>
<th>Q1 Median Q3 % of individuals below EAR/AI n‡§</th>
<th>Food intake only‡</th>
<th>Food intake and micronutrient supplements</th>
<th>Number of individuals > EAR because of supplementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A RAE (µg)</td>
<td>500</td>
<td>492.2 604.6 7283 27.6 290</td>
<td>492.2 611.2 752.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁ (mg)</td>
<td>0-9</td>
<td>1.0 1.2** 1.4 13.1†† 190</td>
<td>1.0 1.2** 1.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₂ (mg)</td>
<td>0-9</td>
<td>1.4 1.7** 2.0 2.0†† 288</td>
<td>1.4 1.8** 2.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>11</td>
<td>19.4 21.9** 24.5 1.0†† 294</td>
<td>19.4 21.9** 24.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₆ (mg)</td>
<td>1-3</td>
<td>15.5 19.7 24.6 12.3 137</td>
<td>16.1 19.7 24.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Folate DFE (µg)</td>
<td>320</td>
<td>199.1 239.8** 283.6 87.5†† 289</td>
<td>202.0 243.5** 295.5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁₂ (µg)</td>
<td>2 Regular</td>
<td>127.9 175.3 216.2 96.4 133</td>
<td>128.1 175.6 220.4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>60 Modified</td>
<td>64.0 87.5** 116.0 18.9 267</td>
<td>66.4 89.6* 125.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Vitamin D (µg)</td>
<td>10 Regular</td>
<td>3.5 4.7 6.4 9.7 296</td>
<td>7.8 30.5** 53.5</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Vitamin E a-tocopherol (mg)</td>
<td>12 Regular Modified</td>
<td>3.8 4.5 6.9 5.7 269</td>
<td>3.9 4.5 5.7</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
were below the EAR for more than 25% of female participants for both textures. Vitamin B₃, Cu and Se intakes were below the EAR for >25% of modified texture consumers only. Significantly higher proportions of females on modified texture diets were below the EAR/AI than regular texture consumers for vitamins B₁, B₂, niacin, folate, Cu, Fe, P, Se and Na. Females consuming a regular texture had a higher proportion below the AI as compared with modified texture consumers for vitamin K. Intake increased to above the EAR for vitamin D (regular n 206/297; modified texture n 72/138) and Ca (regular n 66/297; modified texture n 11/138) with micronutrient supplement use.

Discussion

The M3 study provided an opportunity to examine adequacy of nutrient intake in LTC residents and for the first time, how this is affected by food texture modifications and use of vitamin/mineral supplements. Poor food intake in LTC is well known, but until now, rigorous evidence to demonstrate the extent of nutrient inadequacy has been limited. Differences between consumption of modified and regular textures were identified; males had fewer differences and four nutrients higher in modified texture consumers, whereas females had several nutrients (8/20) where modified texture consumers ate significantly less than regular texture participants. Similarly, there were more statistically significant differences in the proportion below the EAR/AI for modified texture consumers than regular food consumers for females, with modified textures having higher proportions below the EAR/AI for all but one nutrient. Males had few differences, with modified texture consumers having lower proportions below the EAR/AI for four nutrients, as compared with regular texture food consumers. This difference by sex and texture can be largely explained by the significantly lower energy intake of females consuming a modified texture diet as compared with regular texture female participants. Several nutrients were inadequate (<EAR) or below the AI for both textures for at least 50% of the participants for both sexes: vitamins D, E, K, B₁₂, folate, Ca, Mg and K. Of greatest concern were nutrients where 90% consumed less than the EAR/AI: vitamin D, E, K, Mg (males only) and K. Vitamin D micronutrient supplement use improved inadequate intakes for 50–70% of residents and Ca supplementation improved intake for approximately 20% of regular texture consumers, but other micronutrient inadequacies were not resolved with micronutrient formulations, due to their infrequent use (online Supplementary Table S1).

A Canadian study (n 48) conducted in one province compared 3 d of food record intake of residents in five LTC homes to the EAR(50). Proportions of males with intakes below the EAR/AI were very similar to the current study with a few exceptions; fewer men in this smaller study were at risk for inadequate intakes of vitamin A, E and Mg, whereas more were at risk for folate, B₁₂, B₂ and Zn when compared with the M3 sample. Females in this smaller study had the same or higher proportions below the EAR/AI as compared with the M3 sample, potentially due to the low energy intake of these residents. Noted differences may also be due to more complete nutrient databases used in the M3 study, including foods fortified with folate(30), improvements in menu planning since 2008 and a larger, more diverse sample, where modified textures were analysed separately. In a single Swedish nursing home study (n 52) (10), although the EAR cut-point was not used, the authors note that mean intakes for vitamins D, E, folic acid and Se were <60% of Swedish recommendations at baseline before an intervention, which is in line with the M3 findings on inadequacy for these nutrients. Further, absolute intake values for nine nutrients were consistent with the current study; however, intakes of vitamin A, B₁₂, Na and Ca (females only) were higher in this Swedish sample, whereas mean intakes of vitamin D, E (males only), C, folate (as folic acid), Fe and Se were lower than in the M3 sample(10). Finally, a Finnish study that collected 3 d of weighed food intake data in twenty-three female residents from the same home identified that food intake generally met recommendations, with vitamin D, E and folic acid the only nutrients potentially inadequate, when compared with the Finnish requirements(15). As energy intake was on average lower (5042 kJ (1205 kcal)) than the M3 sample, differences are not due to increased intake overall, but may be due to the use of the Finnish requirements which were lower than the DRI for several nutrients. Actual values of nutrients consumed were not provided to make direct comparisons to the M3 sample. Differences in these international studies may also be due to use of different nutrient databases, which are known to vary in quality(31) as well as differences in food supply, micronutrient content of the soil (e.g. Se), fortification practices and menu planning strategies, including use of nutrient-dense foods. As all of these smaller studies are almost a decade old, M3 provides updated data on the intake of residents in LTC.

A prior analysis of menus from the M3 study homes, comparing regular and pureed texture menus(32) identified that several nutrients were provided at levels below DRI recommendations for both texture groups (vitamins B₆, vitamin D, vitamin E, vitamin K, folate, Ca, Mg, K and Zn). Thus, it is not surprising that intake of participants was largely inadequate for many of these nutrients in this study. However, this analysis of M3 data identified that some nutrients were consumed at higher levels for modified texture consumers as compared with regular texture consumers. Although this may seem counterintuitive, it may be explained in two ways. First, as demonstrated in this analysis, modified texture consumers were more likely to consume ONS, which provides not only energy and protein, but also micronutrients. Second, the analysis of menus(32) found that pureed menus generally provided lower amounts of nutrients than regular menus, except for vitamin D, Ca and K. This was attributed to use of pureed recipes that were enhanced with milk, skimmed milk powder or cheese to promote nutrient density(32), explaining the intake differences noted in this analysis. Higher vitamin C levels for modified textures may be due to the standard of care in some provinces that ensures that final portion size for modified textures are the same as the regular texture (e.g. ½ cup of peas)(32); more product needs to be pureed (e.g. ¾ cup) to result in the same final portion size as the regular texture. Well planned menus that meet the recommended daily allowance are essential to promoting AI of
residents in LTC. The lower intake for some nutrients by modified texture consumers in this analysis can also be attributed to eating challenges and greater disability and cognitive impairment (Table 1). Even if a menu met the DRI, these challenges would still result in potentially inadequate diets. A prior M3 analysis demonstrated that eating challenges and assistance are important predictors of energy and protein intake when site, staff, dining room and resident-level factors are considered. Person-centred care practices, being on a dementia-focused unit, malnutrition and dietitian involvement were also predictive of intake. Other research has also noted the multifactorial nature of poor food intake in LTC and thus the need for multifactorial strategies beyond quality and nutrient density of the food provided.

Micronutrients consumed at levels below the EAR may not advance to micronutrient deficiency and the implications of low intake in this population are unclear. Deficiency of a nutrient is dependent on absorption and utilisation, disease states and interaction with medications, and for vitamin D, exposure to the sun. Deficiency is best identified through functional changes due to inadequate intake or utilisation of a nutrient, especially as some nutrients have insufficient biomarkers. Further, the DRI were designed for healthy individuals to prevent deficiency or diseases associated with deficiency. For this population of typically frail older adults with various disease conditions, the DRI may not apply. Interventions that demonstrate improved health and functional measures with increased nutrient intake are needed to further understand the implications of low intake in this population. In addition to use of ONS, there are typically three ways in which nutrient intake can be improved: nutrient-dense food, micronutrient supplement use, or fortification of the nutrient in staple foods. Prior work suggests that use of nutrient-dense ingredients can increase micronutrient content of LTC menus, meaning that iatrogenic micronutrient malnutrition due to inadequate intake is not inevitable for most nutrients in this population. In addition to careful menu planning, recipes can be further enhanced with nutrient-dense ingredients to promote intake. For example, energy and protein enhancements have been documented to improve intake. Micro-nutrient supplement use for most nutrients occurred in <15% of participants in this study, excepting for vitamin D, Ca and B12. With two-thirds to three-quarters of the sample being prescribed vitamin D, it is apparent that guidelines for supplementing this nutrient for LTC residents are resulting in practice change. Vitamin D inadequacy was resolved for a good portion of participants because of this provision of micronutrient pills, whereas relatively few residents consumed B12 at levels less than the EAR without vitamin pill use. Micronutrient supplements may be underutilised in LTC due to concerns for toxicity; residents bearing the cost of these formulations as they are not covered by drug benefit programs; persons with dysphagia having challenges with pill consumption; and increased burden placed on care staff during medication administration. Injectable forms of nutrients provided on a monthly or less frequent basis may be a strategy to overcome some of these challenges. Fortification of selected nutrients like vitamin D and Ca in key food products has been demonstrated to be effective. However, there are several potential barriers to fortification of food in LTC.

Limitations

Sites were purposively selected and cannot be considered representative of all homes in the four provinces included in the M3 study. Nutrient analysis of food intake is complex and fraught with challenges and despite the use of rigorous methods, there are still limitations to this work. To promote efficiency, only estimation was required of side dishes and beverages as well as snacks; the evening snack was noted by LTC staff and the reporting was less accurate. Not all LTC had detailed recipes for modified texture products and some commercial products did not have a full nutrient analysis for all micronutrients considered. Also, LTC staff may not have followed standardised recipes. Nutrient analysis is only as accurate as the database used for foods and ingredients, and errors can occur when converting units and household measures to weights, and assigning weight change factors of raw ingredients due to cooking the food. Further, databases are known to be inaccurate for some nutrients. Finally, micronutrient adjustments for supplement usage may be inaccurate due to poor recording of type of formulation and dosage, as well as known overages and shortages in these products. The exclusion of approximately 10% of vitamin/mineral use as it was injectable or because dose was unavailable is another limitation of this work.

Future work

This analysis is consistent with prior research that has identified that some but not all nutrients are consumed below recommendations by residents living in LTC. Future work should examine if products that are enhanced with use of nutrient-dense ingredients are appealing to LTC consumers and can promote micronutrient intake sufficiently to minimise the proportion of residents with intakes below the EAR/AI. Further, research demonstrating that adequate consumption of micronutrients delays progression or improves conditions linked to key nutrients (e.g. B vitamins and neurological problems), is also needed. This research will also help to fully understand the implications of inadequate intake in LTC residents.

Conclusions

This analysis of the M3 data from 632 residents living in thirty-two LTC using weighed and estimated food records for 3 non-consecutive days, demonstrated that 9/20 micronutrients examined were consumed in amounts below recommendations by a high proportion of participants regardless of sex or texture. Except for vitamin D, micronutrient supplements failed to improve this inadequacy. Consumers of modified texture foods (minced and moist, pureed or liquidised) had lower median intake for some (males = 4; females = 8) nutrients, potentially due to eating challenges and low energy intake (for women), as compared with regular food texture consumers. Interventions to target micronutrients that are consumed below
recommendations, especially those that are low for almost all of the sample (vitamin D, E, K, Mg and K), are required.

Acknowledgements

The authors thank the research assistants, provincial coordinators, dental hygienists and project managers for their significant contributions to the M3 project. The authors would also like to express the gratitude to the long-term care homes, staff, residents, and families who participated in the M3 study.

The M3 project was funded by the Canadian Institutes of Health Research (Operating Grant 2014 no. 326892). Funders had no involvement in the design, analysis or writing of this article.

The primary author, H. H. K. is the primary investigator for M3 and developed the article. J. M. conducted all data analyses and provided tables of results. Co-authors are co-investigators on the M3 project and reviewed and provided input for this manuscript based on their specific research expertise.

The authors declare that there are no conflicts of interest.

Supplementary material

For supplementary material/s referred to in this article, please visit https://doi.org/10.1017/S0007114518000107

References

