SOFT C^{*}-ALGEBRAS

CARLA FARSI
Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309-0395, USA (farsi@euclid.colorado.edu)

(Received 15 May 2000)

Abstract

In this paper we consider soft group and crossed product C^{*}-algebras. In particular we show that soft crossed product C^{*}-algebras are isomorphic to classical crossed product C^{*}-algebras. We also prove that large classes of soft C^{*}-algebras have stable rank equal to infinity.

Keywords: soft C^{*}-algebras; soft crossed products; soft relations
AMS 2000 Mathematics subject classification: Primary 46L80; 46L55

1. Introduction

Soft C^{*}-algebras, first introduced by Blackadar in [1], arise naturally from well-known examples of classical C^{*}-algebras. More precisely we have the following definition.

Definition 1.1. For given $\varepsilon \in[0,2], \ell, k \in \mathbb{N}$, and a set of monomials $\left\{r_{p}\right\}_{p=1, \ldots, k}$ in ℓ variables, the universal C^{*}-algebra $A_{\varepsilon}\left(\ell,\left\{r_{p}\right\}_{p=1, \ldots, k}\right)$ generated by unitaries a_{1}, \ldots, a_{ℓ} satisfying the conditions $\left\|r_{p}\left(a_{1}, \ldots, a_{\ell}\right)-1\right\| \leqslant \varepsilon$ for all $p=1, \ldots, k$ is called a soft C^{*}-algebra.

The two-dimensional soft torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right), \varepsilon \in \mathbb{R}, 0 \leqslant \varepsilon<2$, was later introduced in [3] by Exel, who showed that $K_{j}\left(C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)\right)$ is naturally isomorphic to $K_{j}\left(C^{*}\left(\mathbb{Z}^{2}\right)\right), j=0,1$. $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)$ is the universal C^{*}-algebra generated by two unitaries u_{ε} and v_{ε} subject to the relation $\left\|u_{\varepsilon} v_{\varepsilon}-v_{\varepsilon} u_{\varepsilon}\right\| \leqslant \varepsilon$. Elliott, Exel and Loring [2] considered $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ (where σ denotes the flip automorphism), determined its K-theory, and expressed it in terms of soft crossed products. In this paper we will look at some examples of soft C^{*}-algebras and crossed products and study some of their properties. Soft group C^{*}-algebras are, roughly speaking, universal C^{*}-algebras obtained by 'softening' classical group relations, and they are defined in the following way.

Definition 1.2. Let Γ be a finitely generated and finitely presented group given in terms of generators and relations by

$$
\Gamma=\left\langle g_{i}, i=0, \ldots, n-1 \mid r_{p}\left(g_{0}, \ldots, g_{n-1}\right)=1, p=1, \ldots, P\right\rangle
$$

where the r_{p} are monomials in g_{0}, \ldots, g_{n-1} and their inverses. Then the (parametrized) soft group C^{*}-algebra $C_{\varepsilon, \Theta}^{*}(\Gamma), \Theta=\left\{\rho_{p}\right\}_{p=1, \ldots, P}, \rho_{p} \in \mathbb{T}, \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{P}\right) \in \mathbb{R}^{P}$,
$0 \leqslant \varepsilon_{p} \leqslant 2, \forall p=1, \ldots, P$, is defined to be the universal C^{*}-algebra generated by unitaries u_{0}, \ldots, u_{n-1} subject to the 'softened' relations $\left\|r_{p}\left(u_{0}, \ldots, u_{n-1}\right)-\rho_{p}\right\| \leqslant \varepsilon_{p}$, $p=1, \ldots, P$. To simplify the notation we will drop Θ when $\Theta=\{1\}_{p=1, \ldots, P}$ and ε when $\varepsilon=0$.

Note that in general one needs to show the existence of a representation realizing the given relations to deduce the existence of $C_{\varepsilon, \Theta}^{*}(\Gamma)$. Throughout this paper, we will implicitly assume that all the Γ and Θ are chosen so that the existence of a representation satisfying the given relations is guaranteed. Note also that different C^{*}-algebras could arise from 'softening' different presentations of Γ.

Roughly speaking, soft crossed products are universal C^{*}-algebras obtained by 'softening' classical crossed product relations (see Definition 2.2). One of our results, Theorem 3.1, is a characterization of soft crossed products in terms of classical crossed products. Our proof is constructive. However, it is true that for any stable C^{*}-algebra D and for any separable group Γ, D is isomorphic to $A \rtimes_{\mathcal{G}} \Gamma$ for some action of Γ on some C^{*}-algebra A. (For example, take $A=D \otimes C_{0}(\Gamma)$, and \mathcal{G} be the product of the trivial action of Γ on D, to obtain $D \cong D \otimes \mathcal{K}\left(L^{2}(\Gamma)\right) \cong A \rtimes_{\mathcal{G}} \Gamma$.) But we prove that large classes of soft C^{*}-algebras have stable rank equal to infinity (Corollary 4.6). Hence soft C^{*}-algebras are in general not stable (Corollary 4.7). Therefore Theorem 3.1 offers new insights on the structure of soft crossed product C^{*}-algebras.

In more detail the contents of this paper are as follows. In $\S 2$ we define soft crossed products and look at some examples. In $\S 3$ we prove Theorem 3.1, our crossed product characterization. In $\S 4$ we derive some properties of soft C^{*}-algebras (cf. Propositions 4.1 and 4.2 and Theorem 4.3). Although our results are stated for the finitely generated case, they can be easily extended to countable generated groups and C^{*}-algebras. In the sequel, all the (universal and non-universal) C^{*}-algebras are assumed to be unital, unless obviously otherwise.

2. Soft crossed products: examples

Definition 2.1. Let Γ be a finitely generated group, and let $\bar{\Gamma}$ be a finite set of generators for Γ. A $(\Gamma, \bar{\Gamma})$-representation $\mathcal{A}_{\bar{\Gamma}}$ of Γ on a C^{*}-algebra A is, by definition, the restriction to $\bar{\Gamma}$ of an action \mathcal{A} of Γ on A.

When there is no danger of confusion, we will call a $(\Gamma, \bar{\Gamma})$-representation, a representation.

The following is a slight generalization of the definition of soft crossed products given in [2].

Definition 2.2. Let A be a unital C^{*}-algebra generated by a set $\left\{a_{i}\right\}_{i \in I}, I$ finite, and Γ a discrete group generated as a group by $\bar{\Gamma}=\left\{g_{j}\right\}_{j \in J}, J$ finite, acting on A via the representation $\mathcal{A}_{\bar{\Gamma}}$. For any $\varepsilon=\left(\varepsilon_{i, j}\right)_{i \in I, j \in J}, 0 \leqslant \varepsilon_{i, j} \leqslant 2, \forall i \in I, \forall j \in J$, and $\Theta=\left\{\rho_{i, j}\right\}_{i \in I, j \in J}, \rho_{i, j} \in \mathbb{T}$, the parametrized soft crossed product C^{*}-algebra $A \rtimes_{\mathcal{A}_{\bar{\Gamma}}}^{\varepsilon, \Theta} \Gamma$ associated with the representation $\mathcal{A}_{\bar{\Gamma}}$, is the universal C^{*}-algebra generated by a copy of A and a unitary element u_{g} for each g in Γ subject to the following relations:
(i) $\left\|u_{g_{j}} a_{i} u_{g_{j}}^{*}-\rho_{i, j} \mathcal{A}_{\bar{\Gamma}}\left(g_{j}\right)\left(a_{i}\right)\right\| \leqslant \varepsilon_{i, j}, \forall i \in I, j \in J$; and
(ii) $u_{g} u_{h}=u_{g h}, \forall g, h \in \Gamma$.

To simplify the notation, we will drop Θ when $\Theta=\{1\}$, and ε when $\varepsilon=0$.
As for $C_{\varepsilon, \Theta}^{*}(\Gamma)$, parametrized crossed products exist only whenever there is a concrete realization of the given relations.
In the remainder of this section we will look at some examples. The three-dimensional non-commutative torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right)$ is the universal C^{*}-algebra generated by three unitaries $u_{\varepsilon}, v_{\varepsilon}$ and z_{ε} subject to the relations

$$
\left\|u_{\varepsilon} v_{\varepsilon}-v_{\varepsilon} u_{\varepsilon}\right\| \leqslant \varepsilon_{1}, \quad\left\|u_{\varepsilon} z_{\varepsilon}-z_{\varepsilon} u_{\varepsilon}\right\| \leqslant \varepsilon_{2}, \quad\left\|v_{\varepsilon} z_{\varepsilon}-z_{\varepsilon} v_{\varepsilon}\right\| \leqslant \varepsilon_{3} .
$$

Proposition 2.3. $C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right)$ is isomorphic to $W_{\varepsilon} \rtimes_{\mathcal{T}} \mathbb{Z}$, where W_{ε} is the universal C^{*} algebra generated by unitaries $u_{\ell}, v_{\ell}, \ell \in \mathbb{Z}$, subject to the relations

$$
\left\|u_{\ell} v_{\ell}-v_{\ell} u_{\ell}\right\| \leqslant \varepsilon_{1}, \quad\left\|u_{\ell+1}-u_{\ell}\right\| \leqslant \varepsilon_{2}, \quad\left\|v_{\ell+1}-v_{\ell}\right\| \leqslant \varepsilon_{3}, \quad \forall \ell \in \mathbb{Z},
$$

and $\mathcal{T}: W_{\varepsilon} \rightarrow W_{\varepsilon}$ is defined by $T\left(u_{\ell}\right)=u_{\ell+1}, T\left(v_{\ell}\right)=v_{\ell+1}, \forall \ell \in \mathbb{Z}$. (We denote by T the automorphism associated with the generator 1 of \mathbb{Z} in \mathcal{T}.)

Proof. In $C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right)$ put $U_{\ell}=z_{\varepsilon}^{\ell} u_{\varepsilon} z_{\varepsilon}^{-\ell}$, and $V_{\ell}=z_{\varepsilon}^{\ell} v_{\varepsilon} z_{\varepsilon}^{-\ell}, \forall \ell \in \mathbb{Z}$. Note that $\| U_{\ell} V_{\ell}-$ $V_{\ell} U_{\ell} \| \leqslant \varepsilon_{1}$ and also $\left\|U_{\ell+1}-U_{\ell}\right\| \leqslant \varepsilon_{2},\left\|V_{\ell+1}-V_{\ell}\right\| \leqslant \varepsilon_{3}, \forall \ell \in \mathbb{Z}$. Therefore there exists a (unique) morphism $\zeta: W_{\varepsilon} \rightarrow C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right)$ such that $\zeta\left(u_{\ell}\right)=U_{\ell}$, and $\zeta\left(v_{\ell}\right)=V_{\ell}, \forall \ell \in \mathbb{Z} . \zeta$ can be extended to $W_{\varepsilon} \rtimes_{\mathcal{T}} \mathbb{Z}$ by setting $\zeta(W)=z_{\varepsilon}$, where W is the unitary implementing the automorphism T associated with the generator 1 of \mathbb{Z}. Conversely, in $W_{\varepsilon} \rtimes_{\mathcal{T}} \mathbb{Z}$, the unitaries u_{0}, v_{0} and W satisfy the same relations as $u_{\varepsilon}, v_{\varepsilon}$ and z_{ε} in $C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right)$. Hence there exists a (unique) morphism $\eta: C_{\varepsilon}^{*}\left(\mathbb{Z}^{3}\right) \rightarrow W_{\varepsilon} \rtimes_{\mathcal{T}} \mathbb{Z}$ such that $\eta\left(u_{\varepsilon}\right)=u_{0}, \eta\left(v_{\varepsilon}\right)=v_{0}$ and $\eta\left(z_{\varepsilon}\right)=W$. Clearly ζ and η are each other's inverses.

More generally we can define the $n+1$-dimensional non-commutative torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{n+1}\right)$ as the universal C^{*}-algebra generated by unitaries $u_{j}, j=1, \ldots, n$, and z subject to the relations

$$
\left\|u_{j} u_{k}-u_{k} u_{j}\right\| \leqslant \varepsilon_{j, k}, \quad\left\|z u_{j}-u_{j} z\right\| \leqslant \varepsilon_{0, j}, \quad \forall j, k \in\{1, \ldots, n\} .
$$

Proposition 2.4. The C^{*}-algebra $C_{\varepsilon}^{*}\left(\mathbb{Z}^{n+1}\right)$ is isomorphic to the C^{*}-algebra $W_{\varepsilon, n} \rtimes_{\mathcal{T}}$ \mathbb{Z}, where $W_{\varepsilon, n}$ is defined to be the universal C^{*}-algebra generated by unitaries $u_{j, \ell}$, $j=1, \ldots, n$, and $\ell \in \mathbb{Z}$, subject to the relations $\left\|u_{j, \ell+1}-u_{j, \ell}\right\| \leqslant \varepsilon_{0, j}, \forall j, \ell$, and $\| u_{j, \ell} u_{k, \ell}-$ $u_{k, \ell} u_{j, \ell} \| \leqslant \varepsilon_{j, k}, \forall j, k, \ell$, and $\mathcal{T}: W_{\varepsilon, n} \rightarrow W_{\varepsilon, n}$ is given by $T\left(u_{j, \ell}\right)=u_{j, \ell+1}$. (We denote by T the automorphism corresponding to the generator 1 of \mathbb{Z} in \mathcal{T}.)

Proof. In $C_{\varepsilon}^{*}\left(\mathbb{Z}^{n+1}\right)$ put $U_{j, \ell}=z^{\ell} u_{j} z^{-\ell}, j=1, \ldots, n, \ell \in \mathbb{Z}$. Note that $\| U_{j, \ell} U_{k, \ell}-$ $U_{k, \ell} U_{j, \ell} \| \leqslant \varepsilon_{j, k}$ and also $\left\|U_{j, \ell+1}-U_{j, \ell}\right\| \leqslant \varepsilon_{0, j}$. Therefore there exists a (unique) mor$\operatorname{phism} \zeta: W_{\varepsilon, n} \rightarrow C_{\varepsilon}^{*}\left(\mathbb{Z}^{n+1}\right)$ such that $\zeta\left(u_{j, \ell}\right)=U_{j, \ell}, \forall j, \ell, \zeta$ can be extended to $W_{\varepsilon, n} \rtimes \mathcal{T} \mathbb{Z}$
by setting $\zeta(W)=z$, where W is the unitary implementing T. On the other hand, in $W_{\varepsilon, n} \rtimes_{\mathcal{T}} \mathbb{Z}$, the elements $u_{j, 0}$, and W satisfy the relations satisfied by u_{j} and z, so there exists a (unique) morphism $\psi: C_{\varepsilon}^{*}\left(\mathbb{Z}^{n+1}\right) \rightarrow W_{\varepsilon, n} \rtimes_{\mathcal{T}} \mathbb{Z}$ such that $\psi\left(u_{j}\right)=u_{j, 0}$ and $\psi(z)=W$. Clearly ζ and ψ are each other's inverses.

Proposition 2.4 can be easily modified to give a characterization of the parametrized soft C^{*}-algebras $C_{\varepsilon, \Theta}^{*}\left(\mathbb{Z}^{n+1}\right)$.

3. Soft crossed products

We will now state and prove our crossed product characterization result.
Theorem 3.1. Let B be a finitely generated and finitely polynomially presented C^{*}-algebra. Let Γ be a finitely generated and finitely presented group and $\mathcal{D}_{\bar{\Gamma}}$ be a representation of Γ on B by monomial automorphisms ($\bar{\Gamma}$ is a finite set of generators for $\Gamma)$. Then there is an action \mathcal{G} of Γ on a C^{*}-algebra A such that

$$
B \underset{\mathcal{D}_{\bar{\Gamma}}}{\stackrel{\varepsilon}{\rtimes}} \Gamma \cong A \rtimes_{\mathcal{G}} \Gamma .
$$

Proof. Suppose that B is generated by the unitaries $b_{j}, j=1, \ldots, m$, subject to the polynomial relations $r_{k}, k \in \mathbb{F}, \mathbb{F} \subseteq \mathbb{N}, \mathbb{F}$ finite. Let Γ be given in multiplicative notation by $\Gamma=\left\langle g_{0}, \ldots, g_{n-1} \mid z_{p}\left(g_{0}, \ldots, g_{n-1}\right)=1, \forall p \in \mathbb{P}\right\rangle, \mathbb{P} \subseteq \mathbb{N}$ finite, $\bar{\Gamma}=\left\{g_{0}, \ldots, g_{n-1}\right\}$.

Also assume that $\mathcal{D}_{\bar{\Gamma}}$ is given on the generators by (for simplicity of notation let $\left.\mathcal{D}_{\bar{\Gamma}, \ell}:=\mathcal{D}_{\bar{\Gamma}}\left(g_{\ell}\right)\right) \mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right)=P_{j, \ell}\left(b_{1}, \ldots, b_{m}\right)$ and $r_{k}\left(\mathcal{D}_{\bar{\Gamma}, \ell}^{s}\left(b_{1}\right), \ldots, \mathcal{D}_{\bar{\Gamma}, \ell}^{s}\left(b_{m}\right)\right)=0, \forall \ell=$ $0, \ldots, n-1, j=1, \ldots, m, k \in \mathbb{F}, \forall s \in \mathbb{Z}$. Define A to be the universal C^{*}-algebra generated by unitaries $a_{j, g}$ and $a_{j, g}^{\{\ell\}}, j=1, \ldots, m, \ell=0, \ldots, n-1, g \in \Gamma$, subject to the relations $r_{k}\left(a_{1, g}, \ldots, a_{m, g}\right)=0, r_{k}\left(a_{1, g}^{\{\ell\}}, \ldots, a_{m, g}^{\{\ell\}}\right)=0$, and $\left\|a_{j, g g \ell}-a_{j, g}^{\{\ell\}}\right\| \leqslant \varepsilon_{j, \ell}$, $a_{j, g}^{\{\ell\}}=P_{j, \ell}\left(a_{1, g}, \ldots, a_{m, g}\right)$, for all $g \in \Gamma, \forall \ell=0, \ldots, n-1$, and $\forall j=1, \ldots, m$. Note that $B \rtimes_{\mathcal{D}_{\bar{\Gamma}}}^{\varepsilon} \Gamma$ is the universal C^{*}-algebra generated by a copy of B and unitaries $\omega_{0}, \ldots, \omega_{n-1}$ subject to the relations $z_{p}\left(\omega_{0}, \ldots, \omega_{n-1}\right)=1,\left\|\omega_{\ell} b_{j} \omega_{\ell}^{*}-\mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right)\right\| \leqslant \varepsilon_{j, \ell}, \forall p, j, \ell$. In $B \rtimes_{\mathcal{D}_{\bar{\Gamma}}}^{\varepsilon} \Gamma$ define the following elements $A_{j, g}$ and $A_{j, g}^{\{\ell\}}$:

$$
A_{j, g}=\omega_{g} b_{j} \omega_{g}^{*}, \quad A_{j, g}^{\{\ell\}}=\omega_{g} \mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right) \omega_{g}^{*}, \quad \forall j=1, \ldots, m, \quad g \in \Gamma, \quad \ell=0, \ldots, n-1
$$

where, if $g=g_{k_{1}}^{Z_{1}} \ldots g_{k_{q}}^{Z_{q}} \in \Gamma, Z_{j} \in \mathbb{Z}, j=1, \ldots, q$, in terms of the canonical generators of $\mathcal{A}_{\bar{\Gamma}}$, we put $\omega_{g}=\omega_{k_{1}}^{Z_{1}} \ldots \omega_{k_{q}}^{Z_{q}}$. Then

$$
\begin{aligned}
\left\|A_{j, g g_{\ell}}-A_{j, g}^{\{\ell\}}\right\| & =\left\|\omega_{g g_{\ell}} b_{j} \omega_{g g \ell}^{*}-\omega_{g} \mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right) \omega_{g}^{*}\right\| \\
& \leqslant\left\|\omega_{\ell} b_{j} \omega_{\ell}^{*}-\mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right)\right\| \leqslant \varepsilon_{j, \ell}, \quad \forall g, j, \ell .
\end{aligned}
$$

Moreover, $r_{k}\left(b_{1}, \ldots, b_{m}\right)=0$ and $r_{k}\left(\mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{1}\right), \ldots, \mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{m}\right)\right)=0$ imply that

$$
r_{k}\left(A_{1, g}, \ldots, A_{m, g}\right)=0, \quad r_{k}\left(A_{1, g}^{\{\ell\}}, \ldots, A_{m, g}^{\{\ell\}}\right)=0
$$

$\forall k \in \mathbb{F}, \forall \ell=0, \ldots, n-1$ and $\forall g \in \Gamma$. Notice also that $A_{j, g}^{\{\ell\}}=P_{j, \ell}\left(A_{1, g}, \ldots, A_{m, g}\right)$, $\forall \ell, j, g$.

Hence there exists a (unique) morphism $\phi: A \rightarrow B \rtimes_{\mathcal{D}_{\bar{\Gamma}}}^{\varepsilon} \Gamma$ such that $\phi\left(a_{j, g}\right)=$ $A_{j, g}$ and $\phi\left(a_{j, g}^{\{\ell\}}\right)=A_{j, g}^{\{\ell\}}, \forall \ell=0, \ldots, n-1, \forall j=1, \ldots, m, \forall g \in \Gamma$. Notice that this ensures the existence of a concrete representation for A, and hence its existence. Now define the following automorphisms $G_{t}: A \rightarrow A, t=0, \ldots, n-1$, by $G_{t}\left(a_{j, g}\right)=a_{j, g_{t} g}$ and $G_{t}\left(a_{j, g}^{\{\ell\}}\right)=a_{j, g_{t} g}^{\{\ell\}}$, for any j, g, ℓ. The automorphisms $G_{t}, t=0, \ldots, n-1$, satisfy $z_{p}\left(G_{0}, \ldots, G_{n-1}\right)=1$. Hence they determine an action \mathcal{G} of Γ on A. Since $A_{j, g_{t} g}=$ $\omega_{t} A_{j, g} \omega_{t}^{*}$ and $A_{j, g_{t} g}^{\{\ell\}}=\omega_{t} A_{j, g}^{\{\ell\}} \omega_{t}^{*}$, we can extend ϕ to $A \rtimes_{\mathcal{G}} \Gamma$ by setting $\phi\left(W_{t}\right)=\omega_{t}$, where we denote by W_{t} the unitary implementing $G_{t}, t=0, \ldots, n-1$. On the other hand, in $A \rtimes_{\mathcal{G}} \Gamma$, the elements $a_{j, 1}, a_{j, 1}^{\{\ell\}}$ and $W_{\ell}, j=1, \ldots, m, \ell=0, \ldots, n-1$, satisfy the following relations $\left\|W_{\ell} a_{j, 1} W_{\ell}^{*}-a_{j, 1}^{\{\ell\}}\right\| \leqslant \varepsilon_{j, \ell}$ and

$$
r_{k}\left(a_{1,1}, \ldots, a_{m, 1}\right)=0, \quad r_{k}\left(a_{1,1}^{\{\ell\}}, \ldots, a_{m, 1}^{\{\ell\}}\right)=0, \quad a_{j, 1}^{\ell}=P_{j, \ell}\left(a_{1,1}, \ldots, a_{m, 1}\right)
$$

$\forall j=1, \ldots, m, \forall \ell=0, \ldots, n-1$ and $\forall k \in \mathbb{F}$. Hence there exists a (unique) homomorphism $\psi: B \rtimes_{\mathcal{D}_{\bar{\Gamma}}}^{\varepsilon} \Gamma \rightarrow A \rtimes_{\mathcal{G}} \Gamma$ such that $\psi\left(b_{j}\right)=a_{j, 1}, \psi\left(\mathcal{D}_{\bar{\Gamma}, \ell}\left(b_{j}\right)\right)=a_{j, 1}^{\{\ell\}}$ and $\psi\left(\omega_{\ell}\right)=W_{\ell}$, $\ell=0, \ldots, n-1, j=1, \ldots, m$. Clearly ζ and ψ are each other's inverses.

Theorem 3.1 can of course be extended to parametrized soft crossed products C^{*} algebras.

4. Applications

In this section we will describe some additional properties of soft C^{*}-algebras. Firstly we will prove that soft C^{*}-algebras form right continuous fields. Additionally we will show that such fields are continuous for large classes of soft C^{*}-algebras. We will also prove that many soft C^{*}-algebras have infinite stable rank.

Proposition 4.1. For given $\ell, k \in \mathbb{N}$ and a set of monomials $\left\{r_{p}\right\}_{p=1, \ldots, k}$, the soft C^{*}-algebras $\left\{A_{\varepsilon}\left(\ell,\left\{r_{p}\right\}\right)\right\}_{\varepsilon \in[0,2]}$ form a right continuous field of C^{*}-algebras over $[0,2]$.

Proof. This proof is a generalization of the proof of Proposition 1.2 of [4]. Assume that all the norm inequalities defining A_{ε} are of type $\|a-b\| \leqslant \varepsilon$, with a and b unitaries. We will show that the field F of C^{*}-algebras having fibres $A_{\varepsilon}, \varepsilon \in[0,2]$, is right continuous. Let $\phi_{\varepsilon}: C^{*}\left(\mathbb{F}_{\ell}\right) \rightarrow A_{\varepsilon}$ be the canonical homomorphism (ℓ is the number of generators of A_{ε}) and $J_{\varepsilon}=\operatorname{ker} \phi_{\varepsilon}$. Right continuity amounts to showing that

$$
J_{\varepsilon}=J_{\varepsilon}^{+}, \quad \text { for } \varepsilon \in[0,2) \quad(\text { cf. }[\mathbf{4}])
$$

where J_{ε}^{+}is the ideal $\overline{\bigcup_{\alpha>\varepsilon} J_{\alpha}}$. By universality of A_{ε}, there is a homomorphism

$$
A_{\varepsilon}=C^{*}\left(\mathbb{F}_{\ell}\right) / J_{\varepsilon} \rightarrow C^{*}\left(\mathbb{F}_{\ell}\right) / J_{\varepsilon}^{+}
$$

sending generators to generators. Therefore $J_{\varepsilon} \subseteq J_{\varepsilon}^{+}$. As the other inclusion is trivial, we are done.

Note that the soft crossed products we consider in the proposition below are soft C^{*}-algebras as in Definition 1.1.

Proposition 4.2. The soft C^{*}-algebras $C^{*}\left(\mathbb{F}_{n}\right) \rtimes_{\mathcal{A}_{\bar{\Gamma}}}^{\varepsilon, \Theta} \mathbb{Z}, \varepsilon \in[0,2]$, where $\mathcal{A}_{\bar{\Gamma}}$ is the identity representation of \mathbb{Z} on $C^{*}\left(\mathbb{F}_{n}\right)$, form continuous fields of C^{*}-algebras over $[0,2]$.

Proof. For simplicity take $\Theta=\{1\}$. By Theorem 3.1, $C^{*}\left(\mathbb{F}_{n}\right) \rtimes_{\mathcal{A}_{\bar{\Gamma}}}^{\varepsilon} \mathbb{Z}$ is isomorphic to the crossed product $A \rtimes_{\mathcal{G}} \mathbb{Z}$. Here A denotes the universal C^{*}-algebra generated by unitaries $w_{j}^{i}, i=1, \ldots, n, j \in \mathbb{Z}$, subject to the relations $\left\|w_{j}^{i}-w_{j+1}^{i}\right\| \leqslant \varepsilon$. If w denotes the unitary implementing $\mathcal{G}(1), A \rtimes_{\mathcal{G}} \mathbb{Z}$ is then the universal C^{*}-algebra generated by unitaries $w_{j}^{i}, i=1, \ldots, n, j \in \mathbb{Z}$, and w subject to the relations $\left\|w_{j}^{i}-w_{j+1}^{i}\right\| \leqslant \varepsilon$, $w w_{j}^{i} w^{*}=w_{j+1}^{i}$. By using the methods of [4], the conclusion follows.

In a similar way, one can show that soft parametrized rotation algebras [5] form continuous fields of C^{*}-algebras over $[0,2]$.

Now we will show that the stable rank of large classes of soft C^{*}-algebras is equal to infinity. Stable rank is defined in [7], for example. We will start by considering Exel's non-commutative torus.

Theorem 4.3. The soft non-commutative torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right), 0<\varepsilon<2$, has stable rank equal to infinity.

Proof. For any $N \in \mathbb{N}$, there exists a unital surjective homomorphism ψ from $C^{*}\left(\mathbb{F}_{2}\right)$ to $C\left([0,1]^{N^{2}}\right) \otimes M_{N+1}(\mathbb{C})$ (Theorem 1 in $\left.[\mathbf{6}]\right)$. This is sufficient to ensure that the stable rank of $C^{*}\left(\mathbb{F}_{2}\right)$ is infinity as surjective homomorphisms do not increase stable rank (Theorem 4.3 in $[\mathbf{7}])$. To show that the stable rank of the soft torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)$ is also infinity, we only need to show that ψ factors through $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)$. To do so, first note that ψ sends the two generators of $C^{*}\left(\mathbb{F}_{2}\right)$ to the unitaries u and v in the proof of Theorem 1 of $[\mathbf{6}]$. By comparing the proof of Theorem 1 of $[\mathbf{6}]$ and that of Lemma 3 of $[\mathbf{6}]$, we see that we can take $u=\exp (2 \pi \mathrm{i} X)$ and $v=Y$. As noted by the author, for any $\delta>0$, we can choose in the proof of Lemma 3 of $[\mathbf{6}]$ self-adjoint generators $\left\{a_{1}, \ldots, a_{n}\right\}$ for $A=C\left([0,1]^{N^{2}}\right)$ such that the norm of the element $X_{0}=\left(x_{i, j}\right)$ in $M_{N}(A)$ (where $X=X_{0} \oplus 1 \in M_{N+1}(A)$) is smaller than δ and thus $\left\|\exp \left(2 \pi \mathrm{i} X_{0}\right)-1\right\| \leqslant|\exp (2 \pi \delta)-1|$. Hence, for any $\varepsilon>0$, there exist self-adjoint generators for A such that $\|u-1\| \leqslant \varepsilon / 2\left(\right.$ note that $\left.u=\exp \left(2 \pi \mathrm{i} X_{0}\right) \oplus 1\right)$ and so $\|u v-v u\| \leqslant \varepsilon$. Therefore ψ factors through $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)$.

Corollary 4.4. Non-commutative tori (with at least one parameter $\varepsilon>0$) have stable rank equal to infinity.

Proof. Apply Theorem 4.3 of [7] and Theorem 4.3.

In the spirit of Theorem 3.1, the soft non-commutative torus $C_{\varepsilon}^{*}\left(\mathbb{Z}^{2}\right)$ is also isomorphic $D_{\varepsilon} \rtimes_{\mathcal{S}} \mathbb{Z}$, with D_{ε} the universal C^{*}-algebra generated by unitaries $w_{j}, j \in \mathbb{Z}$, subject to $\left\|w_{j+1}-w_{j}\right\| \leqslant \varepsilon$, and \mathcal{S} shifts j by one (cf. $[\mathbf{3}, \mathbf{4}]$). Now, by Theorem 4.3 and $[\mathbf{7}], D_{\varepsilon}$ also has stable rank equal to infinity. An independent proof of this last fact is also given below.

Proposition 4.5. The C^{*}-algebra $D_{\varepsilon}, 0<\varepsilon<2$, has stable rank equal to infinity.
Proof. D_{ε} can be characterized, by taking logarithms, as the C^{*}-algebra generated by a unitary v and self-adjoint operators $h_{j}, j \in \mathbb{Z}$, subject to $\left\|h_{j}\right\| \leqslant 2 \cos (\varepsilon / 2)$. Then, by using this characterization, it is easily seen that D_{ε} admits $C[0, \cos (\varepsilon / 2)]^{N}$ as a quotient (for any $N \in \mathbb{N}$), which has stable rank $N[\mathbf{7}]$. By Theorem 4.3 of [7], we are done.

Corollary 4.6. Any (soft) C^{*}-algebra surjecting onto a C^{*}-algebra having stable rank equal to infinity has stable rank equal to infinity.

Proof. Apply Theorem 4.3 of [7].
Corollary 4.7. Any (soft) C^{*}-algebra having stable rank equal to infinity is not stable.
Proof. By [7], any stable algebra has stable rank equal to either 1 or 2.
Acknowledgements. We are very thankful for the referee's very useful and sharp comments on previous versions of this paper.

References

1. B. Blackadar, Shape theory for C^{*}-algebras, Math. Scand. 56 (1985), 249-275.
2. G. Elliott, R. Exel and T. Loring, The soft torus, III, The flip, J. Operat. Theory 26 (1991), 333-344.
3. R. ExEL, The soft torus and applications to almost commuting matrices, Pac. J. Math. 160 (1993), 207-217.
4. R. Exel, The soft torus, II, A variational analysis of commutator norms, J. Funct. Analysis 126 (1994), 259-273.
5. C. FArsi, Soft non-commutative toral C^{*}-algebras, J. Funct. Analysis 151 (1997), 35-49.
6. M. Nagisa, Stable rank of some full group C^{*}-algebras of groups obtained by the free product, Int. J. Math. 8 (1997), 375-382.
7. M. A. Rieffel, Dimension and stable rank in the K-theory of some C^{*}-algebras, Proc. Lond. Math. Soc. 46 (1987), 301-333.
