Weighted Convolution Operators on ℓ_{p}

David Borwein and Werner Kratz

Abstract. The main results deal with conditions for the validity of the weighted convolution inequality $\sum_{n \in \mathbb{Z}}\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p} \leq C^{p} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}$ when $p \geq 1$.

1 Introduction and Main Result

We suppose throughout that

$$
1 \leq p \leq \infty, \frac{1}{p}+\frac{1}{q}=1 ; \quad 1 \leq r \leq \infty, \frac{1}{r}+\frac{1}{s}=1
$$

and observe the convention that $q=\infty$ when $p=1$.
Given a two-sided complex sequence $x=\left(x_{n}\right)_{n \in \mathbb{Z}}$, we define

$$
\|x\|_{p}:=\left(\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}\right)^{1 / p} \text { for } 1 \leq p<\infty, \text { and }\|x\|_{\infty}:=\sup _{n \in \mathbb{Z}}\left|x_{n}\right|
$$

and we say that $x \in \ell_{p}$ if $\|x\|_{p}<\infty$. Given a two-sided complex sequence $a=\left(a_{n}\right)$ and a two-sided complex sequence $b=\left(b_{n}\right)$ of weights, we define the weighted convolution linear transformation $y=\left(y_{n}\right)=\lambda x$ by

$$
y_{n}:=(\lambda x)_{n}:=b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k},
$$

and aim to obtain sufficient conditions for λ to be a bounded operator on ℓ_{p}. In other words, our objective is to establish conditions under which there is a positive constant C such that for all $x \in \ell_{p}$,

$$
\begin{equation*}
\|y\|_{p} \leq C\|x\|_{p} \tag{1}
\end{equation*}
$$

in which case the operator norm of λ, defined as $\|\lambda\|_{p}:=\sup _{\|x\|_{p} \leq 1}\|\lambda x\|_{p} \leq C$. When $1 \leq p<\infty,(1)$ amounts to

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p} \leq C^{p} \sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p} \tag{2}
\end{equation*}
$$

Our main result is the following:
Received by the editors June 3, 2003.
This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

AMS subject classification: 40G10; 40 E 05 .
Keywords: convolution operators on ℓ_{p}.
(C)Canadian Mathematical Society 2005.

Theorem 1 If $1 \leq p \leq \infty, 1 \leq r \leq q, a \in \ell_{r}, b \in \ell_{s}$, then(1) holds for all $x \in \ell_{p}$ with $C=\|a\|_{r}\|b\|_{s}$.

Note that all the above concerns two-sided sequences. The situation is very different when one-sided sequences are considered. This amounts to having $a_{n}=b_{n}=$ $x_{n}=0$ for all $n<0$. In this case (2) reduces to

$$
\sum_{n=0}^{\infty}\left|b_{n} \sum_{k=0}^{n} a_{n-k} x_{k}\right|^{p} \leq C^{p} \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}
$$

and when $a_{n} \geq 0, A_{n}:=a_{0}+a_{1}+\cdots+a_{n}>0$ for $n \geq 0$, and $b_{n}:=1 / A_{n}$ for $n \geq 0$, we get the following known proposition about the Nörlund transform (see [1, Theorem 2] or [2, Theorem 1]).

Proposition 1 If $1<p<\infty$ and $n a_{n}=O\left(A_{n}\right)$ as $n \rightarrow \infty$, then there is a positive constant C such that

$$
\sum_{n=0}^{\infty}\left|\frac{1}{A_{n}} \sum_{k=0}^{n} a_{n-k} x_{k}\right|^{p} \leq C^{p} \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}
$$

2 Lemmas

We prove two lemmas.
Lemma 1 If $1<p<\infty$ and $\sum_{k \in \mathbb{Z}} c_{k} x_{k}$ is convergent whenever $\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}<\infty$, then $\sum_{k \in \mathbb{Z}}\left|c_{k}\right|^{q}<\infty$.

Proof This result is certainly known. It is essentially Example 2 in [3, p. 117] where the proof involves the Banach-Steinhaus theorem and knowledge of the form of the general continuous linear functional on ℓ_{p}. For completeness, we offer the following elementary non-functional analytic proof.

The hypothesis is equivalent to the pair of statements:

$$
\sum_{k=0}^{\infty} c_{k} x_{k} \text { is convergent whenever } \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty
$$

and

$$
\sum_{k=1}^{\infty} c_{-k} x_{-k} \text { is convergent whenever } \sum_{k=1}^{\infty}\left|x_{-k}\right|^{p}<\infty
$$

Suppose $\sum_{k=0}^{\infty}\left|c_{k}\right|^{q}=\infty$. Let $D_{n}:=\sum_{k=0}^{n}\left|c_{k}\right|^{q}$. Assume without loss in generality that $D_{0}>0$, and take

$$
x_{k}:= \begin{cases}\frac{\left|c_{k}\right|-1}{D_{k}} \frac{\left|c_{k}\right|}{c_{k}} & \text { when } c_{k} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Then by the Abel-Dini theorem,

$$
\sum_{k=0}^{\infty} c_{k} x_{k}=\sum_{k=0}^{\infty} \frac{\left|c_{k}\right|^{q}}{D_{k}}=\infty, \quad \text { while } \quad \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}=\sum_{k=0}^{\infty} \frac{\left|c_{k}\right|^{q}}{D_{k}^{p}}<\infty
$$

contrary to hypothesis. Thus we must have $\sum_{k=0}^{\infty}\left|c_{k}\right|^{q}<\infty$, and likewise $\sum_{k=1}^{\infty}\left|c_{-k}\right|^{q}<\infty$.

Lemma 2 If $1 \leq p<\infty, 1<r \leq q$, and some finite $t \geq 1$ is such that

$$
\sum_{n \in \mathbb{Z}}\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p}<\infty
$$

whenever $a \in \ell_{r}, b \in \ell_{t}, x \in \ell_{p}$, then $t \leq s$.
Proof Suppose, to the contrary, that $t>s$, and let $3 \varepsilon:=\frac{1}{s}-\frac{1}{t}$. Let

$$
\begin{aligned}
& a_{n}:= \begin{cases}(n+1)^{-\frac{1}{r}-\varepsilon} & \text { for } n \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& x_{n}:= \begin{cases}(n+1)^{-\frac{1}{p}-\varepsilon} & \text { for } n \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& b_{n}:= \begin{cases}(n+1)^{-\frac{1}{t}-\varepsilon} & \text { for } n \geq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $a \in \ell_{r} x \in \ell_{p}, b \in \ell_{t}$, but

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p} & =\sum_{n=0}^{\infty}\left((n+1)^{-\frac{1}{t}-\varepsilon} \sum_{k=0}^{n}(n+1-k)^{-\frac{1}{r}-\varepsilon}(k+1)^{-\frac{1}{p}-\varepsilon}\right)^{p} \\
& \geq \sum_{n=0}^{\infty}\left((n+1)^{-\frac{1}{t}-\varepsilon}(n+1)(n+1)^{-\frac{1}{r}-\varepsilon}(n+1)^{-\frac{1}{p}-\varepsilon}\right)^{p} \\
& =\sum_{n=0}^{\infty}(n+1)^{-1}=\infty
\end{aligned}
$$

3 Proof of the Theorem

Case 1: $1<p<\infty$. For inequality (2) to be meaningful and non-trivial, observe that for any n for which $b_{n} \neq 0, \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}$ has to be convergent whenever $\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}<\infty$. It thus follows from Lemma 1 that we must have $\sum_{k \in \mathbb{Z}}\left|a_{n-k}\right|^{q}=$
$\sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{q}<\infty$. This explains why we make the restriction $1 \leq r \leq q$ in the hypothesis, and Lemma 2 shows why it is not sufficient to require $b \in \ell_{t}$ for any $t>s$.

An application of Hölder's inequality yields

$$
\left|\sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p} \leq\|a\|_{r}^{r(p-1)} \sum_{k \in \mathbb{Z}}\left|a_{n-k}\right|^{(q-r)(p-1)}\left|x_{k}\right|^{p}
$$

and hence that

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|^{p} & \leq\|a\|_{r}^{r(p-1)}\|x\|_{p}^{p} \sum_{n \in \mathbb{Z}}\left|b_{n}\right|^{p}\left|a_{n-k}\right|^{(q-r)(p-1)} \\
& \leq\|a\|_{r}^{r(p-1)}\|x\|_{p}^{p} \cdot\|a\|_{r}^{(q-r)(p-1)}\|b\|_{s}^{p} \\
& =\|a\|_{r}^{p}\|b\|_{s}^{p}\|x\|_{p}^{p}
\end{aligned}
$$

since $\|x\|_{p}^{p}=\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}<\infty$ and $\|b\|_{s}^{s}=\sum_{n \in \mathbb{Z}}\left|b_{n}\right|^{s}<\infty$, and this establishes (1) with $C=\|a\|_{r}\|b\|_{s}$. Note that Hölder's inequality with $\tilde{r}=\frac{r}{(q-r)(p-1)}, \tilde{s}=\frac{s}{p}$ is used in the penultimate step above.
Case 2: $p=1, q=\infty$ or $p=\infty, q=1$. When $p=1$ the result follows by changing the order of summation in (2) and then applying Hölder's inequality, and when $p=\infty$ the desired conclusion is even more immediate.

We have shown that if $1 \leq p<\infty, 1<r \leq q, a \in \ell_{r}$, then (2) holds for all $x \in \ell_{p}$ provided $b \in \ell_{s}$, but may fail to hold if $b \in \ell_{t}$ with a finite $t>s$. In the following section we show by means of an example that if $1<p<\infty$, then (2) may hold for all $x \in \ell_{p}$ when $b \notin \ell_{t}$ for any finite $t>1$.

4 Example

Suppose $1<p<\infty$. Let $A_{n}:=a_{0}+a_{1}+\cdots+a_{n}$ for $n \geq 0$, where

$$
a_{n}:= \begin{cases}\frac{1}{n+1} & \text { for } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

let

$$
b_{n}:= \begin{cases}\frac{1}{A_{n}} & \text { for } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and let

$$
y_{n}:=\left|b_{n} \sum_{k \in \mathbb{Z}} a_{n-k} x_{k}\right|=\left|b_{n} \sum_{k=0}^{\infty} a_{k} x_{n-k}\right| \leq y_{1, n}+y_{2, n}
$$

where

$$
y_{1, n}:=\left|\frac{1}{A_{n}} \sum_{k=0}^{n} a_{k} x_{n-k}\right| \text { and } y_{2, n}:=\left|\frac{1}{A_{n}} \sum_{k=n+1}^{\infty} a_{k} x_{n-k}\right|
$$

Note that $\sum_{k \in \mathbb{Z}}\left|a_{k}\right|=\infty$ and $\|a\|_{r}^{r}=\sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{r}<\infty$ for all $r>1$. Suppose that the sequence $x=\left(x_{n}\right) \in \ell_{p}$. Since

$$
A_{n} \sim \log n \text { and } \frac{n a_{n}}{A_{n}} \sim \frac{1}{\log n}=O(1) \text { as } n \rightarrow \infty
$$

it follows from the Proposition that

$$
\sum_{n=0}^{\infty} y_{1, n}^{p} \leq C_{1} \sum_{k=0}^{\infty}\left|x_{k}\right|^{p} \leq C_{1}\|x\|_{p}^{p}
$$

Further, by Hölder's inequality,

$$
\begin{aligned}
\sum_{n=0}^{\infty} y_{2, n}^{p} & \leq\|x\|_{p}^{p} \sum_{n=0}^{\infty} \frac{1}{A_{n}^{p}}\left(\sum_{k=n+1}^{\infty} a_{k}^{q}\right)^{p-1} \leq\|x\|_{p}^{p} \sum_{n=0}^{\infty} \frac{1}{A_{n}^{p}}\left(\int_{n+1}^{\infty} \frac{d t}{t^{q}}\right)^{p-1} \\
& =(q-1)^{1-p}\|x\|_{p}^{p} \sum_{n=0}^{\infty} \frac{(n+1)^{(q-1)(1-p)}}{A_{n}^{p}}=(q-1)^{1-p}\|x\|_{p}^{p} \sum_{n=0}^{\infty} \frac{a_{n}}{A_{n}^{p}} \\
& =C_{2}\|x\|_{p}^{p}
\end{aligned}
$$

where $C_{2}=(q-1)^{1-p} \sum_{n=0}^{\infty} \frac{a_{n}}{A_{n}^{p}}<\infty$. Hence

$$
\sum_{n \in \mathbb{Z}} y_{n}^{p}=\sum_{n=0}^{\infty} y_{n}^{p} \leq 2^{p} \sum_{n=0}^{\infty}\left(y_{n, 1}^{p}+y_{n, 2}^{p}\right) \leq 2^{p}\left(C_{1}+C_{2}\right)\|x\|_{p}^{p}
$$

Thus (2) is satisfied but $b \notin \ell_{t}$ for any finite $t>1$, since $\|b\|_{t}^{t}=\sum_{n=0}^{\infty} \frac{1}{A_{n}^{t}}=\infty$.
A similar but slightly more complicated argument can be used to show that we could get the same result by taking for any real α,

$$
a_{n}:= \begin{cases}\frac{\log ^{\alpha}(n+1)}{n+1} & \text { for } n \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

in the example.

References

[1] D. Borwein and F. P. Cass, Nörlund matrices as bounded operators on l_{p}. Arch. Math. 42(1984), 464-469.
[2] D. Borwein. Nörlund operators on l_{p}. Canad. Math. Bull. 36(1993), 8-14.
[3] A. Wilansky, Functional Analysis. Blaisdell, New York, 1964.

Department of Mathematics University of Western Ontario
London, ON
N6A 5B7
e-mail: dborwein@uwo.ca
Abteilung Angewandte Analysis
Universität Ulm
89073 Ulm
Germany
e-mail: kratz@mathematik.uni-ulm.de

Abteilung Angewandte Analysis
Universität Ulm
89073 Ulm
e-mail: kratz@mathematik.uni-ulm.de

