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SOME SPECIAL CLASSES OF CARTAN MATRICES 

A. P. OGG 

Let A = (Aij)\^ij^i be a Cartan matrix, i.e., Au = 2 for all i and Ay is 
an integer ^ 0 for / ¥= j , with AX]• = 0 if Ajt = 0. The size / of A is called its 
rank, for Lie-theoretic reasons, and may be larger than its matrix rank. We 
associate to A its Dynkin diagram, with vertices 1, 2, . . . , /, with A^A^ 
lines joining / toy, and with an arrow pointing from / toy if A^/A^ < 1, 
i.e., pointing toward the shorter root (see below). The Cartan matrix A is 
indecomposable if its diagram is connected, and symmetrizable if there exist 
positive rational numbers qh . . . , q\ with 

qiAjj = qjAjj for all / andy*. 

Symmetrizability is automatic if the diagram contains no cycle. We 

assume throughout this paper that A is symmetrizable, and so "Cartan 

matrix" always means "symmetrizable Cartan matrix". If A is indecom­

posable, then the symmetrizing numbers qh ... ,q\ are unique up to a 

proportionality constant, since if qt is known, and / is connected toy, then 
qj is known. We normalize to have qt = \/kb where kh . . . , k\ are positive 
integers without common factor. 

Let 

R = Rz= Az-a, 

be the free Z-module on a\, . . . , a/ (the simple roots); similarly 

*Q = ,4 Q«,--

Let ( , ) denote the symmetric bilinear form on RQ defined by 

(«/> « / ) = ( l / ^ M ; / = (OLp CLi). 

The length (squared) of a is \a\2 = (a, a); in particular (ah at) = 2/kr We 
put 

at = 2 OLj/faj, az) = kiCLi (1 = i = I). 

Thus (alr, dj) = Atj. The Weyl group W of A is the group of linear 
automorphisms of R (or RQ) generated by the reflections s\,...,sh 

where 

Received February 13, 1983 and in revised form September 21, 1983. 

800 

https://doi.org/10.4153/CJM-1984-047-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-047-2


CARTAN MATRICES 801 

Sj(a) = a - (ah a)ah 

i.e., Si(<Xj) = cLj — AyOLj. It is a Coxeter group, generated by involutions 
$! , . . . ,£/ , with relations generated by (fysy-)

W/>' = 1, where m/; = 2, 3, 4, 6, 
or oo as A^A^ is 0, 1, 2, 3, or è 4 (and mZ7 = oo means "no relation"). We 
have (w(a), w(fi) ) = (a, /?), for w e W7. 

Let g = Q(A) be the Kac-Moody algebra attached to A, i.e., the Lie 
algebra (say over C) with 3/ generators Eh Fn /// (1 = / = /) and 
relations 

i) [Hh Ej] = AijEj [Hh Fj] = -AijFj 
[Eh Fj] = Sift [Hh Hj] = 0, 

ii) (ad Ei)x~AiJ(Ej) = 0 = (ad Fz)
1"/,'/(JFy) (for i ¥= j). 

(In the general case, one must divide by a certain radical. But Gabber and 
Kac [4] proved that the radical is 0 in the symmetrizable case, which we 
are assuming.) Then 

q = \) 0 1 1 qa, 

where 

£, = A c • H, 

is abelian of dimension /, and Qa is defined as follows, for 

/ 
a = 2J cial 7̂  0 in R. 

i = \ 

If all Cj = 0, then Qa is the space generated by all multiple commutators 

[XU...,X„] = [Xl,[X2,...,X„]], 

with n = c\ -h . . . + c/, in which £z appears cz times among Xh . . . , Xzz; if 
all cz ^ 0, then it is generated by all such expressions in which Ff appears 
— Cj times, and it is 0 if a is mixed (some ct > 0 and some cy < 0). We call 
a a root and write a e A, if a ¥= 0 and ga T̂  0, i.e., 

m (a) = dim Qa > 0. 

If a G A and w ^ W, then w(a) G A; in fact 

m(a) = m(w(a) ). 

We call a a real root and write a G AR if « = w(az) for some / = 1, . . . , /; 
then m (a) = 1, since g,a> = C • Et has dimension 1. The set of imaginary 
roots is A7 = A - AR. If 
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/ 
(x = ZJ CjOti G R, 

i 

we write a > 0 or a G R + if all ct = 0 and some cl > 0. Then A is the 
disjoint union of A+ = A n R + and — A + , i.e., a root is unmixed, and 
the set A7 = A+ n A7 of positive imaginary roots is invariant under the 
action of W. Furthermore, a root 

a = ZJ CjOLj 
i 

is connected, i.e., the subdiagram of the Dynkin diagram of A, obtained by 
retaining only those vertices / for which ct ^ 0, is connected. Thus, if a G 
A/ , then w(a) is positive and connected for all w G W, and Kac [5] has 
shown that this necessary condition is also sufficient, if A is indecompos­
able, so the set of imaginary roots is in a sense known, although nothing 
seems to be known in any generality about the multiplicities m(a). 

Let A be a Cartan matrix. It is finite if the form (, ) is positive definite, 
i.e., g is of finite dimension, i.e., W îs finite, i.e., A7 is empty; cf. [9] for this 
and for the other definitions and assertions in this paragraph. The Cartan 
matrix A is Euclidean if it is indecomposable and if the form is positive 
semidefinite, i.e., if A is singular and every principal submatrix Ail\ 
obtained by striking out the z'th row and column, if finite (possibly 
decomposable). If A is Euclidean, then it has a principal null root 

y = 2 ctah 
i 

where the cl are positive integers without common factor, which generates 
the radical of the form and such that the imaginary roots are precisely the 
integer multiples of y; in this case the dimensions of the imaginary root 
spaces are known ( [8] ). The Cartan matrix A is hyperbolic if it is 
indecomposable, not finite and not Euclidean, with every indecomposable 
constituent of every principal submatrix finite or Euclidean. Then A is 
nonsingular and the form ( , ) has signature (/ — 1, 1), and if any principal 
submatrix has a Euclidean constituent, then this constituent is the entire 
submatrix. Moody has shown that the imaginary roots a of a hyperbolic 
Cartan matrix are characterized by the condition (a, a) ^ 0; in view of the 
later and more general result of Kac mentioned above, one can rephrase 
this result as follows: if A is hyperbolic and a G R, a ¥= 0, satisfies (a, a) 
^ 0, then a is unmixed (say positive) and connected, and since w(a) has 
the same properties for any w G W, we have a G A7. In Section 2 of this 
paper we give some further results on hyperbolic Cartan matrices, 
including the fact that they are characterized by the property that the dual 

. V V . 

basis to a ] , . . , ai consists of negative vectors. 
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Thus the hyperbolic Cartan matrices are the best understood ones, after 
the finite and Euclidean ones, although even for them nothing seems to be 
known about the multiplicities. Unfortunately, there are very few 
hyperbolic matrices, since their rank is at most 10, as we show in Section 
3, and as was proved long ago by Chein [2]. 

It follows that there are only finitely many hyperbolic Cartan matrices 
of rank ^ 3, since then AljAJl g 4 whenever /' ¥= j . Thus it seems desirable 
to find a weaker concept with a wider class of examples, and we can do 
this by retaining the requirement of connectivity but giving up that of 
unmixedness. Accordingly, we shall call an indecomposable Cartan matrix 
A good if every element of R+ which is small (i.e., (a, a,-) = 0 for all /'; cf. 
Section 1) is connected and hence an imaginary root. Equivalently, A is 
good if A7 is a semigroup under addition. If any principal submatrix of A 
is finite or Euclidean, then A is good, so this class is very wide. A 
convenient family of examples is given by the superaffine (our term) 
Cartan matrices introduced by Feingold and Frenkel [3], obtained by 
extending the extended Dynkin diagram of a finite simple Lie algebra 
once more, in the simplest possible way, i.e., by connecting a new vertex 
— 1 to 0 by a simple bond. All of these matrices are good, but only 
twenty-six of them are hyperbolic. In Section 4, we show that the Weyl 
group of a superaffine matrix of rank 4 (or rather a subgroup of index 2) 
can be realized in a natural way as a modular group over an imaginary 
quadratic number field. 

1. Generalities. Let T + be the set of all a e R+ with w(a) > 0 for 
all w G W\ thus T + D A7 . If a e R +, we say a is small if w(a) = a for 
all w e W. The set Ts of small elements of R+ is contained in T + ; both 
T + and Ts are semigroups under addition. If 

/ 
a = Zu CJOLJ e i? + , 

we call 
/ 

h (a) = 2 Ci 
i=\ 

its height. 

PROPOSITION 1. Each W-orbit in T + contains a (unique) small element. If 
a G R+, and s ; (a) = a for 1 ^ / ^ / (i.e., (at•, a) = 0 for all /'), then a is 
small. 

Proof. Any Jf-orbit contains an element a of minimal height; then Sj(a) 
^ a for all /', so it is enough to prove the second statement. If w G W, let 
w = s^s^ . . . sik be an expression of minimal length k. Then the set $M of 
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all yS e A with w (/?) < 0 has exactly k elements, namely 

P\ = «zv Pi = slxal2, . . . , 

Pk = Sil...sik^aik 

(cf. [6], for example), and we find by induction that 

k 

w(a) = a + 2 tf/A- = a, 
7 = 1 

where a, = —(a,, a) = 0. 
Thus we have 

(1) r + = U W - a, 
a e r ; 

a disjoint union; the stability group of a in Wis the group generated by all 
st with (a,, a) = 0. We have 

(2) (a,j8) ^ O i f a , ^ e T + . 

(Since (w(a), w(/?) ) = (a, /}), we can assume that a is small, in which case 
(2) is obvious.) Note that T + is empty if A is finite, so we may as well 
assume that A is not finite in this section. 

PROPOSITION 2. T + is the semigroup generated by A7 . 

Proof. It is enough to show that any small element a > 0 is a sum of 
positive imaginary roots. Write 

a = px + . . . + ph 

where fi e A + and k is minimal. If the /},- are all imaginary, then we are 
done, so assume that pk (say) is real, and let w denote the /^-reflection, 
i.e., 

Hy) = y ~ (Pi, y)Pk-

If / < k, then (ft, pk) ^ 0, since otherwise 

w(ft) i= ft + ft 
and so Pl 4- Pk is a root and we can lower k. (Here we use the properties of 
root strings; cf. [9].) Thus 

(a, Pi) g (Ph Pi) = 2, 

so w(a) is lower than a, a contradiction. 

We call an indecomposable Cartan matrix A good if every element of 
Ts is connected, and hence an imaginary root, by the result of Kac 
mentioned in the introduction. Equivalently, A is good if and only if 
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T = A/ , by (1), i.e., A7 is a semigroup under addition. If A is finite, 
Euclidean, or hyperbolic, then A is good. (If A is finite, then T + is empty, 
and if A is Euclidean, then T+ consists of the multiples ny, n ^ 1, of the 
principal null root y, whose support is all of S = {1, 2 , . . . , / } ; one might 
prefer to exclude these cases from the class.) 

If A is bad, then there is a disconnected a = a' + a" in Ts ; here we 
suppose that a' and a" G 7?+ have disjoint supports S' and 5"', with 

(ah cLj) = 0 for / G 5" and y G S"'. 

If (V, a,-) > 0, then /* G S", so 

(a", a,-) = 0 and (a, a,-) = (a', az) > 0, 

contrary to a being small. Thus af and a" are both small, and in particular 
there are imaginary roots with support contained in 5" and in S". This 
shows that no principal submatrix A^ is finite, since if it were finite, then 
either S' or 5"' is contained in the complement S ^ of / in S, and cannot 
support an imaginary root. Also, A^ cannot be Euclidean, since then we 
would have (say) 5" c S^l\ so a' is a multiple of the principal null root yf 

of A^l) and hence has support equal to all of S^\ and then S" = {/'} 
cannot support an imaginary root. Thus; 

PROPOSITION 3. Let A be an indecomposable Cartan matrix. If any 
principal submatrix of A is finite or Euclidean, then A is good. 

Remark. Let A be good and let 

a = ZJ CiOLj G T^ with (a, a) = 0. 
i 

Then (a, at) = 0 for / G S", the support of a. Then the submatrix A' of A 
with support S' (obtained by striking out t h e / h row and column of A for 
ally £ 5") is Euclidean (cf. [9], Proposition 4) and a is a multiple of the 
principal null root y' of A'. Any such small null root a will be discovered 
by a glance at the diagram of A; the union of the J^-orbits of such 
a is then the set of all null positive roots, i.e., of all a G A7 with 
(a, a) = 0. 

2. Nonsingular and hyperbolic Cartan matrices. If A is nonsingular, i.e., 
if the form ( , ) is nondegenerate, then we can express the properties 
discussed above most conveniently in terms of the antidual basis 
coj, . . . , 60/ to « ! , . . . , «/ of RQ: 

(3) (w/, a]) = -By. 

We write a G R as 
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/ / / 
(4) a = 2 J clal = ZJ c}at = 2 ^i^i-

i=\ i=\ i=\ 

Thus Cj e Z, Cj = Cj/kj, and 

a} = - ( a , a}') = - 2 ^//9 G Z 

y 

and a e Ts if and only if all cl ^ 0 (and not all 0) and all at = 0. 
We take now A to be hyperbolic (hence nonsingular). Let 

R{
Q = 2 Q • «y 

denote the root space of the principal submatrix A{1\ for 1 § i ^ /. The 
form ( , ) is nondegenerate of signature (/ — 1, 1) on RQ, and ^ 0 on each 
/?Q ; more precisely, it is > 0 on RQ if A{l) is finite, and â 0, with a 
1-dimensional radical (generated by the principal null root y,) if A{1) is 
Euclidean. If A^l) is finite, then 

RQ = Q • «,• © * # 

(orthogonal direct sum), so (co„ co,) < 0. If A{l) is Euclidean, then the 
principal null root y, must be a multiple of co„ so co, e RQ and (to,, co,) 
= 0. Thus (côj, co,) = 0 in either case, so by [9], each co, is unmixed. We 
have 

CO, = - 2 (<*>/, W^aJ, 

and so for fixed /', the (co,, co7) are either all ^ 0 or all ^ 0. If A{1) is finite, 
then (co,, co,) < 0 and so (co„ coy) ^ 0 for all j \ i.e., co, > 0. If A{1) is 
Euclidean, then we have 

-(CO,, OLj) = 2 (W/, U^Aji > 0, 

with each Aj{ S 0, so at least one and hence all (co„ coy) are < 0, and we 
have again co, > 0. Thus each co, is positive, if A is hyperbolic. 

Conversely, let A be indecomposable and nonsingular, with co, > 0 for 
each /. Put as before S = {1, . . . , /} and SU) = S ~ {/}; if C is a 
component of S^\ then C U {/*} is connected. We are given that (co„ co7) ^ 
0 for all / and j . Suppose that (co„ co,) = 0 for some / ¥= j . Then 

co, - - 2 («/, coA:)o .̂, 
A*7 

and so 
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0 = (co„ a-) = - 2 (wz-, toA.)^7, 

with each term ^ 0 and hence = 0. Thus (to,-, coA) = 0 if ^ < 0 and 
hence (by induction) if k is connected toy in S ( / ). Thus (cop ojk) = 0 for all 
/c in the component C in S ^ containing^'. Now choose k with (co/7 cô  ) < 0; 
then /c andy are in different components of S^l\ so we can connect k to / in 
S^J) and j to / in S^k\ Centering the argument above about j , then about /c, 
instead of /', we get that (coy, coA) = 0, since (wy, coz) = 0, and then (coA, co,) 
= 0 since (coA, coy) = 0, a contradiction. Thus in fact 

(co„ coy) < 0 for all i * 7. 

Now let a <E 7?(/) with (a, a) ^ 0; we will show that a is then a multiple 
of to/ and so (a, a) = 0. We can assume that a > 0, since if a = a + — a~ 
(with a^ positive and with disjoint supports), then 

(a, a) = (a + , a + ) + (a~, a " ) - 2(a + , a " ) ^ 0, 

and so 

(<x + , a + ) + (a" , a - ) ë 2(a + , a " ) ^ 0, 

so at least one of the terms on the left is ^ 0. Assume then that a > 0, and 
that a has minimal height among such elements. Then a is small, for if 
(a, oij) > 0 for some 7, then j ¥= /, and 

s j (a) = a — (a, «7 )«7 ^ ^ ( / ) , 

so the positive part of Sj(a) satisfies our condition and has smaller height. 
Thus 

a = 2 ajWj e R{i) with a, ^ 0. 
J 

Since a, appears in coy for y 7̂  /, we must have <2y = 0. Hence a is a multiple 
of co,, as claimed. (z) 

Thus either ( , ) > 0 on RQ , so A ((/) is finite, or ( , ) ^ 0 on R^\ with a 
1-dimensional radical generated by coz. According to Moody [9, Proposi­
tion 4], ^4(z) is Euclidean in this second case, provided it is indecomposa­
ble. Now the support of coz is S^l\ as shown above, so if A(<1) is 
decomposable, then 

Co, = a' + a", 

where a', a" are positive with disconnected supports and hence with 
(a\ a") = 0. Then 

0 = (co„ co7) = (a\ a') + (a", a"\ 

with each term ^ 0 and hence = 0. But then a' and a" are proportional to 
co„ which is clearly not the case. Thus we have proved: 
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THEOREM 1. Let A be nonsingular and indecomposable. Then A is 
hyperbolic if and only ifcoj > Ofor all i. If so, then (to,-, coy) < Ofor all i ¥= j , 
(con a?/) < 0 if A^ is finite, and (<oz-, cor) = 0 if A^l) is Euclidean. 

Remarks. If A is hyperbolic, then Ts consists of all 

a = 2J alœl with ax• e Z i^ 0 

which are integral (have integral ^-coefficients cz-). Another way to express 
the result of the theorem is to say that A is hyperbolic if and only if the 
inverse matrix ( (co„ coy)) to ( (a , , a y ) ) has all entries ^ 0. If ^ is 
nonsingular, indecomposable, and neither finite nor hyperbolic, then some 
of the coz are mixed, but there will be imaginary roots [9] and hence Ts 

is not empty, so there will exist linear combinations 

ZJ alul > 0 with each al è 0. 
i 

Finally, we try to characterize the real roots a of a hyperbolic Cartan 
matrix A by their length (a, a); obviously, if a is a real root, then 

(a, a) = (ah at) = 2/kl for some /. 

Taking k to be the maximum of k\, . . . , kh the smallest length of a real 
root is 21k. 

PROPOSITION 4. If a G R and (a, a) = Ilk, then a is a real root. In 
particular, if A is a symmetric hyperbolic Cartan matrix, then 

AR = {a e R:(a, a) = 2}. 

Proof Suppose that a is mixed: a 
positive, with disjoint supports. Then 

21k = (a + , a + ) + (a" , a " ) 

where each term on the right is ^ 0. If a+ = c^ has a one-point support, 
then Cj = 1 and the other two terms are 0. Then A^ is Euclidean, and a~ 
is a positive multiple of the principal null root yz. But then (a + , a~) < 0, 
since (ah yt) < 0, a contradiction. Hence a + , and similarly a~, has at least 
two points in its support. Then a + and a~ lie in finite root spaces and so 
have length ^ 21k, a contradiction. Hence a is unmixed, say 

a = 2J Cja; > 0. 
i 

We assume that ct > 0 for more than one /, since otherwise a = at• <E A R . 
Since 

a — a , where a and a are 

2(a \ a~), 

https://doi.org/10.4153/CJM-1984-047-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-047-2


CARTAN MATRICES 809 

2J Ci(a, at) = (a, a) > 0, 
i 

we must have (a, af) > 0 for some /. Then st(a) is still unmixed, by the 
above, and hence still positive, but lower. Continuing in this manner, we 
reduce the support eventually to a single point, and hence have a real 
root. 

3. Superaffine Cartan matrices. These Cartan matrices were introduced 
in [3]. Changing the notation, we let A = (^4//-)î /-j/- /̂ denote a finite 
indecomposable Cartan matrix, associated to a finite simple Lie algebra g 
and a choice of Cartan subalgebra f) and simple roots « ! , . . . , « / ; ( , ) 
denotes the usual inner product, normalized so that the longer roots have 
(squared) length (a, a) = 2. Thus 

Atj = 2(ah aj)/(ah «/). 

Let 9 be the highest root and put fi0 = — 0, and /?,- = at for 1 S /' â /. 
Then the associated affine Cartan matrix is 

A = {^ij)o^iJ^h 

where 

Ay = 2(/?„ /?,)/(/?„ A). 

The matrix v4 is also called Euclidean of type I, and its imaginary root 
spaces all have dimension /; cf. [8]. 

Write 

/ / 

0 = 2ii niai = ^a niai> 
7=1 l = \ 

where nt e Z>o and nt = rij/ki. We extend the form to 

R = ,4 z • «.-
(or to 7?Q) by 

(«/, Oty) = (\/kt)Aip 

where k$ = 1; note that ag is a formal symbol, i.e., i? ~ Z / + 1 , and we 
must not identify a0 with — 6. Let 

/ / 
y = «o + 0 = ^ j «/a, = ^ «z-az-

/ = 0 / = 0 

be the principal null root of A ; it generates the radical of ( , ). Another 
way to say this: we have a natural map <f>:R —» R, projecting a0 to — 0, 
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with kernel Z • y and with 

( a , ar) = ((j>a, (j>ar). 

The Dynkin diagram of A is the extended Dynkin diagram of A\ it is 
given in all cases in the appendix of Bourbaki [1], together with many 
other useful facts, including the highest root 0. We extend once more, in 
the simplest way, with a simple bond joining a new index — 1 to 0, to get 
the associated superaffine Cartan matrix A = 04//)-1^/,/^/: 

- 1 0 . . . 0 

0 

We put k-\ = 1 and extend the form ( , ) to the formal sum 

/ 

R = 2 z • en 

V 
by (at, OLJ) = Aip where as always az- = ktar 

The matrix A is good, by Proposition 3, because A(~l) = A is 
Euclidean, or because A^ = A\ + A is finite. It is nonsingular; in fact 

det A = - d e t A. 

Here, let C; be the z'th column of A, and replace Q by 

Remark. Since A is nonsingular, the formal elements a _ ] , . . . , a/ 
define independent functional on £}, the span of 7/0, . . . , / / / , by 

«/(#/) = A 7" 

and we may identify them. This gives a natural definition of the extended 
algebra \)e = t); cf. [6]. The Weyl group W of A can be regarded as the 
group of automorphisms of r/ = $ generated by s0, . . . , sh cf. [6], so we 
have 

w -D w ^ w, 

https://doi.org/10.4153/CJM-1984-047-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-047-2


CARTAN MATRICES 811 

where W resp. W resp. J^is the group generated by the reflections sf with 
/' =̂  — 1 resp. /* è 0 resp. / ' ^ 1. 

The antidual basis co_}, . . . , <o/ to a _ b . . . , «/ is as follows. Clearly 

(5) (o_! = y, w0 = «_, + 2 Y; 

note that co0 is a root and co-\ is a null root. Let 771, . . . , 17/ be the dual 
basis (with plus sign) to a b . . . , «/ in 7?Q: 

( r , , , ^ ) = Ô,y (1 g / , 7 g / ) . 

By the classical theory, we have (TJ,, Tiy) > 0 for all z',y ^ 1; the values are 
listed in the appendix of [1]. Now (j}h y) = 0, so 

(Vn «0) = -(Vh 0) = - « / ' = « ) W «0), 

and (rjj, a-\) = 0, so we have 

(6) CO, = Al^o - Tfc (1 g / ^ / ) . 

We do not necessarily have co, > 0, as we show next; A is in general not 
hyperbolic. 

Suppose for example that A = Ah i.e., g = §l/+i. If / = 1 we have 

/ 2 - 1 0 
A = 1 - 1 2 - 2 

\ 0 - 2 2 

studied in detail by Feingold and Frenkel, and certainly hyperbolic. For 
/ ^ 2 the diagram of A is 

0 

1 2 

-1 0 

/ 

\ \ \ 
/ l-\J 

&*' 
A glance at this diagram shows that A\l) is not finite or Euclidean for / 
large and (say) / near 1/2. Analytically, we can check that some <o7- is not 
positive, and so Aj is not hyperbolic, for / > 7, as follows. We have all 
kj = 1 and 9 = a\ + . . . + a/, so all nl• = 1. Then <o, = co0 — TJ, and 
so 

(o)h o)j) = - 2 -f (TJ,, Tjy) for ij ^ 1. 

Now 

(r,,,?,,) = i(l - 7 / ( / + 1)) fo r i i / § ) 

(cf. [1] ). If / is odd, take / = (/ + l)/2, getting 

(<oz, w/) = - 2 -f (/ + l)/4 = (/ - 7)/4, 

so w7 is not positive if / > 7. Similarly, if / is even, take / = 1/2, getting LC1 
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> 0 for / > 7. If / ë= 7, then At is hyperbolic; to check this, we need only 
verify that Af* is finite or affine (as it turns out) for 1 S= / ^ (/ + l)/2 
(using the symmetry /<->(/+ 1 — /') ). We find that A[X) = At+\ and A/(2) 

= D,+, are finite for all /, and i / 3 ) = E,+, for / = 5, 6, 7, and Âj 4) = £ 7 . 
The cases A = Bt (/ g 2), C,(/ ^ 3), /)/(/ i 
treated by the same methods; the result is: 

4), £6 , E-j, E%, F4, G2 can be 

THEOREM 2. There are exactly twenty-six superaffine Cartan matrices A 
which are hyperbolic. They are listed below, together with their Dynkin 
diagrams {which show that the twenty-six cases are indeed nonisomorphic). 

i)Ah 1 ^ / S 7. 

1 0 1 (/ = 1) 

i) Bh 2 ^ / g 8. 

- 1 0 2 1 (1=2) 
o o > 0=^=0 

0 
-o-

1 9 

3 
- o -

/ - 1 / 
o > o 

( / ^ 3) 

iii) C/:3 ^ / ^ 4. 

iv) Di'A ^ / 

1 Q 

2 3 / - Z 

I - 1 
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y)E6 

- 1 

^ 8 -

1 
o-

0 
-o -

1 
-o -

3 
-o— 

5 
-o-

6 
-o-

5 
—o-

-o=>= 

G% 

- 1 
o— 

1 
3D 

(The indexing is that of Bourbaki.) The factors Â^ are finite, except for 
Â{-]) =ÂandÀ1W = ElyR&%) = Ë:

8, Q ( 4 ) is the dual of F\, and A ( 8 ) = 

The same kind of reasoning (using the diagram) shows that any 
hyperbolic Cartan matrix A has rank / ^ 10; cf. [2]. Deleting any vertex 
from the diagram of A gives a finite or Euclidean diagram, i.e., an entry in 
a known list ([7], for example, has a list of all Euclidean diagrams, called 
affine in that paper); deleting any two vertices gives a finite diagram. The 
only finite or Euclidean diagram which contains a cycle is that for Ah 

/ ^ 2. Suppose that one of the principal submatrices, say A^\ has a cycle 
in its diagram. We can assume then that A^ has the diagram 

/ 2 3 
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and that 1 is connected to 2. Suppose now that / ^ 6, and that 1 is 
connected toy # 2 as well. If y = / resp. / — 1, then the diagram contains a 
3-cycle resp. a 4-cycle, contrary to / ^ 6; hencey = / — 2, and the diagram 
contains a y'-cycle, also impossible. Thus 1 is connected only to 2. The 
bond is simple, since otherwise we would get, after dropping 4 and 5: 

3 o 

/ 6, 
-o o 

not a finite diagram for / i^ 6. Thus: 

PROPOSITION 5. If A is hyperbolic of rank I ^ 6, and its diagram contains 
a cycle of length < I, then 

l / - 2 and I ^ 9. 

Suppose now that A is hyperbolic of rank / ^ 6 and is not superaffine 
(as we have just classified the hyperbolic superaffine Cartan matrices). 
Thus the diagram contains no cycle of length < /. Suppose that it 
contains a cycle of length /, say with diagram 

1 2 3 / 

possibly with multiple bonds. If there is a multiple bond, say from 1 to 2, 
then deleting 4 and 5 gives a finite diagram of rank = 4 with a multiple 
bond in the middle, necessarily F4: 

Otherwise we have ^4/-j , which is not hyperbolic. Thus, assuming now 
that A is of rank i^ 7 (and hyperbolic but not superaffine), there will be no 
cycle in the diagram. Then the diagram has an end, say 1, so the diagram 
for A^ is connected, either finite or Euclidean, and 1 is connected to only 
one other vertex. If A^ is Euclidean and not £ 6 , E-j, or E$, then its 
diagram is of one of the following forms (cf. [7] ): 
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where the arrow on any double bond can point in either direction. The 
vertex 1 cannot be connected to a vertex at either end of a double bond, 
since dropping two vertices at the other end must yield a finite diagram. 
By the same reasoning, the middle case does not occur. In the first case, we 
must get a finite diagram upon dropping the two vertices on the right, so 1 
is connected by a simple bond to one of the vertices on the left, and we 
have Bj-2 o r l t s dual (with the arrow on the double bond reversed), with / 
^ 10. The third case implies that A = D\-2 is superaffine. By the same 
reasoning, we find that A{}) = E6or ^ils n o t possible and that A{{) = £ 8 

implies that A is the dual of B%. Finally, if A{1) is finite (and inde­
composable), we find by the same sort of argument that A is again the dual 
of Z?/__2 with / ^ 10. Thus: 

T H E O R E M 3. Let A be a hyperbolic Cartan matrix of rank I. Then I = 10, 
and A is super affine or dual to super affine if I = 7. 

4. The Weyl group in some superaffine cases (rank ^ 4). Write a e RQ 
in the form 

(7) a = ay + c(a-X + y) + j8 (a, c e Q, fi <= RQ). 

Then a is integral, i.e., a <E R, if and only if a and c are in Z and /3 e R. 
Here 

y = co_! and ot-\ + y = £- i (y) 

are null roots orthogonal to RQ, SO we have 

(8) (a, a) = -lac + (ft ft, or 

(a , , a2) = ~axc2 ~ a2cx + ( f t , ft). 

Note that s-\ interchanges a and c, and leaves /? fixed, while sh . . . , s/ act 
on /? alone (as the finite Weyl group W). As for % w e have 

(a, a $ = («, «o) = - c + (A a0) = "<? " (A 0), 

and so 

(9) J o(«) = « + (c + (ft 0) )a0 

= a + (c + (ft 6) )(y - 6). 

Suppose now that / ^ 2. Let J ^ + be the even part of the Weyl group W 
of A and let K be the field of | W + | - t h roots of 1; thus [K:Q] = /, specifi­
cally K = Q resp. Q(/) resp. Q(p), where /' = -\f\ and p = ^ T , as 
A = A\ resp. ^ resp. ^2 o r G> By looking at a picture of the roots (e.g., 
on p. V-5 of [10] ), we see that there is a unique isometric isomorphism 

(10) cf>:RQ^K 
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with £(0) = 1. (The metric on K is (b, b) = 2bb, i.e., (/>,, b2) = ir(b\b2), 
and we know that {6, 6) = 2.) If D is the ring of integers of K, one finds by 
an easy calculation that 

(il) <x«) 
O (/I = AUA2) 
(1/(1 + j ) ) 0 (^ = B2) 
( 1 / 1 ( - p))£) (^ = G2). 

Now let / / ( iQ be the space of 2 X 2 Hermitian matrices over K, so a 
H(K) means 

• - ( * 5)-
where a, b e K; we give H(K) the inner product 

(a, a) = — 2 det (a). 

By (7) and (8), we have an isometric isomorphism 

(12) £:RQ^H(K)9 

carrying a, as in (7), to ( r ), where b = 4>(fi). The Weyl group W acts 

faithfully on this space (with its form), and so does the group G = 
PGL(2, £)), by 

(13) g • a = gag*. 

Each group preserves the set R of integral vectors; checking this for G uses 
the fact that <I>(R) is contained in the inverse different of K, by (11). Let 
W+ denote the subgroup of W consisting of all elements of determinant 1, 
and let G+ = PSL{2, £)); then 

{W\W+) = 2 = (G:G+). 

Now 

(a b) __ fc b) 
[\b c) ~ \b a)' 

if / = 1, but s-} <£ G if / - 2. The result is: 

PROPOSITION 6. Let 1=2. Then we have natural isomorphisms according 
to cases as follows: 

ï)W~GifA = Ax\ 
ii) WA

+ ~ G+ , if A = A2\ 
iii) W+ ~ G, if A = B2 or G2. 
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Proof. We have 

(P, 6) = b + b, and 

so by (9) we have 

<i4) 4 t i ) - ( ° + i;jc
 + ' - ' , - ' ) . 

If / = 1, then we have 

*-i = (? j)>*o = (i -!)^i = (i _?), 
and these three elements generate G, so we have W = G = PGL(2, Z) as 
in [3]. Since W is a Coxeter group, this gives a Lie-theoretic proof that the 
relations among these generators of G are what they are. 

The group W+ is generated by /, = sts-\, for /' = 0. Using (14), we 
find 

(15) ' < > = ( _ } j ) e G+. 

Thus, for / = 2, we have /0
 G G\ t>ut ^ - i £ G. We check according to 

cases whether t\ and t2 are in G or G+ . 
For A = 4̂2> the map <£>:i?Q ~ AT sends «j to — p and «2 t o — P- Now sj 

sends ot\ to — «i and a2 to a} + a2 = ^ s o o n K^ a c t s a s p H — p and — p 
i—> 1, i.e., b \-^ — b p. Thus 

/ a /A _ / c -pb) 
t]\b c) ~ \-pb a p 

so 

< • - ( - ? 8) e 6 t 

and similarly 

Thus G+ contains the three generators /0, / j , /2 °f M̂  + > a n d these 
three elements generate G+ , by a simple computation, so we have 
W+ = G+ . 

For yl = B2, the map <£ sends 0 = cq 4- 2a2 =^2(^1) t 0 1 a n d a i t 0 ^ 
since ^ fixes 0 and sends aj to — <x\, it acts as b t—> Z? on K Thus 

^U J = I* J' 

https://doi.org/10.4153/CJM-1984-047-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-047-2


818 A. P. OGG 

so 

'• -it'»)* "*. 
Similarly, s2 interchanges ot\ and 0, hence 1 and / in K, so s2 sends b to ib. 
Then 

One finds in this case that these three elements generate G, so we have 
W+ = G. 

Finally, lor A = G2, our map sends 6 = 3<x\ + 2a2 to 1 and a\ to l/(2p 
-f 1), so s\ fixes 1 and sends 2p + 1 to its negative, i.e., p to — (p -f 1) = 
p, and so 

The map sends «2 to — p, and s2 maps 0 onto 0 — a2, so s2 sends p to — p 
and 1 to 1 + p = — p, i.e., è to — pF, and we have 

<.-(-? 8><^ 
Again, these three elements generate (7, and we have W^ = G. 

Finally, in view of Proposition 4, we can make a few comments on the 
real roots in these cases. In the case / = 1, the set AR consists of the 
W-orbits of 

« - 1 = to(0Lo) = ( (J l ) 

and of 

«i = (? J). 
These two orbits are disjoint and fill up the set of all integral 

- b î ) 
of determinant — 1 (i.e., with (a, a) = 2), by Proposition 4 or by matrix 
calculation, as in [3]. 

If / = 2, then AR is covered by the orbits under W of a-\, a\, a2, and 
also by the orbits under W+ of these three elements, since each is fixed by 
an element of determinant — 1 (e.g. s\, s-\, s-\ respectively). If A = A2, 
then 

«2 =s\s2(ai) and a, = %?i(a0), 
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s o A R = W / + - a ^ 1 i s a single orbit and equal to the set of all a <E R with 
(«, a) = 2, i.e., of determinant — 1, by Proposition 4. If A = B2 resp. 
G2, then the short roots are a single orbit and are equal to the set of all 
a G R with (a, a) = 21k, where k = 2 resp. 3, by Proposition 4. The long 
roots form two orbits resp. one orbit, as one checks. They are the same as 
the set of all a e R with (a, a) = 2; this follows from the following rather 
artificial companion to Proposition 4 (the proof is much the same and will 
be left to the reader): 

PROPOSITION 7. Let A be hyperbolic, with kt = 1 for 2 tk i fk I, with 
k\ = 2 or 3, and with A^ finite. Then any a e R with (a, a) = 2 is a real 
root. 
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