MOMENT SEQUENCES AND THE BERNSTEIN POLYNOMIALS¥*
Sheldon M. Eisenberg

(received September 26, 1968)

1. Introduction. The Bernstein polynomials

MB

(1.1) B (%) = (5 () (1 -0

k=0

and the Bernstein power series

0
(1.2) P o(f,x) = 3 (528 (}) K"
n k n

have been the subject of much research (e.g. [1; 2; 3; 6; 7; 8]). It is
the purpose of this paper to demonstrate the relationship between these
linear operators and certain classes of moment sequences defined
below.

Let {a/n(x)} be a sequence of real-valued functions defined on

[0,1]. Denote by (hnk(x)) and (an(x)) respectively the Hausdorff

and quasi- Hausdorff matrices generated by {an(x)} [4, Chapter 11].

Then
n-k
{ (k)A ozk(x), 0< k<n
(1.3) h k(x) =
n t 0 s k>n
and
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(1.4)

(k)Ak_na(X), k > n,
n n -

where, for any non-negative integers n and p,

™Mo

(1.5) Apoz (x) = (-'l)j (P)a (x) .
n J nt+)

1]

j=0

The sequence {an(x)} is called a generalized moment sequence

if there exists a function B(x,t), of bounded variation in t for each
x¢[0,1], such that for all x¢[0,1]

(1.6) o () = f:)tndﬁ(x,t), n=0,1,2,...

When {an(x)} is a sequence of constant functions, (1.6) becomes the

usual definition of moment sequence [6, page 57].

The sequence {a (x)} is called totally monotone if NS (x) >0
n n z

for all x€[0,1] and all integers n, p > 0.

Let {ozn(x)} be a generalized moment sequence. For all functions,

f, defined on the interval [0,1] associate the linear operator

0
k
(1.7) H (f,x) = kfo £, (=)

with the matrix (1.3), and associate the linear operator

0
(1.8) Qn(f,x) = = f(k'—k—n)an(x)

k=0

with the matrix (1.4).
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Now we consider the operators H and Q and demonstrate
n n

that they are generalizations of (1.1) and (1.2) respectively. We show
that the uniform convergence of {Hn(f ,x)} to f(x) on [0,1], for all

feC[0,1], characterizes a class of totally monotone generalized
moment sequences and we raise the question of how many of these
sequences exist. Finally we discuss a similar result for the operator
Qn on the interval [0,a], 0 <a < 1.

In the sequel, let ek(x) = xk for k = 0,1,... .
2. The operator Hn' The n-th order Bernstein polynomial

(1.1) is a special case of the operator Hn and is obtained when

0, 0<t<x

B(x,t) =

-~
%
IA

t< 1.

For this choice of the function B we see, from the Stieltjes integral

-k - k
(1.6) and from {1.5), that a = %" and An ak(x) = (1—x)n kx .

To prove the main result of this section (Theorem 2.2), we need
the following lemma (the proof of which follows readily from (1.5) and

(1.6)).

LEMMA 2.1. Let {azn(x)} be a generalized moment sequence.

If B(x,t) is the function having {an(x)} as its moment sequence, then

(2.1) aPo (x) = f:) (1 - 0Pt%dp (x, t)
and

o n. n-k
(2.2) kE:O () a o (x) = ay(x)

for all non-negative integers n and p.

THEOREM 2.2. I {Q’n(x)} is a totally monotone generalized
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moment sequence, then a necessary and sufficient condition that
lim H (f,x) = f(x) uniformly on [0,1], for each fe C[0,1], is
n EEEE—

n—> oo

(%) = % for j=0,1,2 and xe€[0,1].
Proof. Since {o (x)} is totally monotone, Hn is a positive
—_— n

linear operator (i.e. f(x) > 0 for all xe [0,1] implies Hn(f,x) > 0).

By a theorem of Korovkin [5, page 14], we need only show that the
sequence {Hn(ej;x)} converges to aj(x) uniformly on [0,1] for

j=0,1,2. First we see from (1.7), (1.3), and (2.2) that

(2.3) Hn(eo,x) = a/O(x).

Secondly, we have from (1.7), (1.3), and (2.1)

n
K -k
H, ,x) = = = () a" ¢ x
n 1 k=0 n 'k k
n-1 1 1-k
n- n-1-
B Gl a o 4%
n-1
n-1 1 n-1-k k+1
= ) 1-n t dp(x,t)
k=0 0

1

[1 tdp(x, t)
‘0

where B(x,t) is the function having {« (x)} as its generalized moment
n

sequence. Hence

(2.4) Hn(e1 ,X) = ai(x) .

In a similar manner, we obtain
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n-1 1
(2.5) Hn(eZ:x) = az(x) + ;ai(x).

It follows from (2.3), (2.4), and (2.5) that

(2.6) lim H (f,x) = f(x) uniformly on [0,1] for each fe C[0,1],
n
n-—>w

if and only if a(x) = % for j=0,1,2.

Theorem 2.2 shows that the convergence properties of the
operator I-In depend only on the first three terms of the moment sequence

{ozn(x)} , which must be 1, x, and x2 . Thus the following question
should be answered: What totally monotone generalized moment sequences
{ozn(x)} have ao(x) =1, ai(x) = x, and az(x) = x2 for all xe[0,1]?
It is conjectured that {xn} is the only sequence and that Theorem 2.2

characterizes the Bernstein polynomials. The question is answered in
part by the following lemma.

LEMMA 2.3. Let {)\n} be a sequence of real numbers such that

n
{)\nx } is a totally monotone generalized moment sequence. I

)\0 = )\1 =1, then )\n = 1 for all non-negative integers n.

n
Proof. Since {)\nx } is totally monotone, we have

(2.7) Al x) = x(-n %) >0
n n 1

n +

for all x¢[0,1]. It follows from (2.7) that for all non-negative
integers n

(2.8) ngnﬂgxngi.

Also

(2.9) 2t = = S0 - x4 Aupx) 2 0
405
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In particular, at x = 1 in (2.9) we see

. - + > 0.
(2.10) )‘n 2)\1'1+1 )\n+2 -

The result follows from (2.8) and (2.10) by mathematical induction.

3. The operator Qn. When {an(x)} is a generalized moment
1
f g@_{§_,_t) by « ,(x).

sequence, we will denote

0 -1
Let xe[0,1] and
o, 0<t<1-x
Blx,t) =
1-x, 1 -x<t < 1.

Evaluating the Stieltjes integrals (1.6) and (1.5), we obtain

- H k-
an(x) = (1—x)n+1 for all n > O, Ak 1'lozn(x) = (1-x)n x 2

, and
a 1(x) =1 for xe[0,1], «a 1('1) = 0. Here Qn is the Bernstein
power series (1.2). The main result of this section is the following
theorem.

THEOREM 3.41. Let {ozj(x)} be a generalized moment sequence,

B(x,t) the function having {aj(x)} as its moment sequence, and

0 < a< 1. Suppose, for xe[0,a],

(3.1) a_,(x) is finite,

(3.2) B (x,t) is increasing in t,

and

(3.3) B(x,0) = lim B(x,t) = 0.
t->0+

A necessary and sufficient condition that lim Qn(f ,x) = f(x) uniformly
n-> o

j+1
on [0,a] for each fe C[0,1] is aj(x) = (1-x)J for

j=-1,0,1 (xe[0,a]).
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The proof of Theorem 3.1 depends on the following lemmas.
The first and third are easy computations. The second requires the
first and is discussed in [4, page 282].

LEMMA 3.2. X ye[0,1), then for all non-negative integers n,

1 ®
k, k-n
(3.4) —_— = = () y
(1_Y)n+1 K=n n

LEMMA 3.3. If conditions (3.1), (3.2), and (3.3) are satisfied,
then

(3.5) fi dile.t) . 5 (l;) Ak'nan(x)

for all xe[0,a].

LEMMA 3.4. I k and n are positive integers, k > 2, then

k k+n, _ k+n-1  k+n-2 k k+n

(k)‘ k+n (k—2)+ (k

) .
(k+n)2

(3.6)
(k+n)2

Proof of Theorem 3.41. It follows from (3.2) and (2.1) that
{aj(x)} is totally monotone. Hence Qn is a positive linear operator

(see (1.8)). By (3.5), (4.4), and (1.8) we have

(3.7) Q (eq,x) = a,(x).

Using the same arguments we have employed before, (3.4), and (3.5),
we can easily obtain

(3.8) Q (e, ,x) = a, x)- a(x) .

Now
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Now

0 2
- k-
Qle.x = = & &2
n 2 k n n
k=n
0 2
k k+n k
= kfo (T{Tn) ( L) A an(X)
- ;0 (L)Z (k+n) f’l (" - t)ktndﬁ(x £
k1 k+n n 0
1 n 2  k#  k+n K+
= t = ( ) (1-1t) dp(x,t)
fO k=1 k4n+1 n
1 n 2 k  kin k+1
> t = ( ) (1-1¢) dp(x, t)
fO k=0 k4n n
1 © ket k+2
= [z () -9 s,
0 k=0
1
S AT — dplx,0)
0 [1-(1-1)]
= a_i(x) - Zaro(x) + oy (%) .
Hence
(3.9) Qn(e2 yX) > oz_i(x) - Zao(x) + ai(x) .

Also, using (3.6) and repeating the above argument, we see
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00 2
Qle,x = [P 2 ) (T u-0%apen
n 0 k=0
= f1 ¢ ; k;—ﬁ'i (le:n-zz) (1-t)kdp(x,t)
0 k=2 " )
. fl S oe K &MY ok ap, 1)
0 k=1 (k+n)2 k
1 n O kin k+2
< [Tt = () (-1 "dp(x, )
0 k=0
s f1 i ; k+1+1 (k:n) -0 ape b
0 k=0 n
2 ,
< f1 (%L dp(x,t) + % fi 1%2 dg (x,t)
0 0
= a0 - 2a () + oa(x) + Tle,(x) - a ().
Thus
(3.10) Q (e, %) < a () - 2a(x) +a ) + =l () - o).

It follows from (3.9) and (3.10) that

(3.11) lim Qn(ez,x) = 0_1(3{) - ZCYO(X) + ai(x).

n->oo

j+1
Now, if aj(x) = (1-x)J for j = -1,0,1, we see from (3.7),

(3.8), and (3.11) that
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(3.12) lim Qn(ek,x) = ek(x) for k = 0,1, 2.

n-> oo

By Korovkin's theorem [5, page 14], (3.12) is sufficient for the
convergence of {Qn(f,x)} to f(x) uniformly on [0, a] for all

feCl0,1].

Conversely, suppose {Qn(f,x)} converges uniformly to f(x)

on [0,a] for all fe C[0,1]. From (3.7), (3.8), and (3.11) respectively

we see
lim Qn(eo,x) =1 = 0_1(X)»
n-- oo
lim Qn\ei,x) = x = a_i(x) - ao(x),
n-» oo
and
lim Q (e_,x) = x2 = a (x) - 2a.(x) + o (x).
ne oo n 2 -1 0 1

The result now follows.

Since the function B(x,t) which generates the Bernstein power

series (see the beginning of Section 3} satisfies {3,2) and (3.3) and
a_1(x) =1 for all x¢ [O ,1), we see from Theorem 3.1 that

Q0
im oz (5D (i) (- )
n—+>o Kk=n

(3.13)

uniformly on [0,a] for all fe C[0,1], 0 < a < 1. The result (3.13)
is a special case of a theorem of Cheney and Sharma [3, page 242].

Meyer-Kdnig and Zeller [7] considered the operator
(3.14) Pn(f,x) = = f(T
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But (3.14) is essentially (1.2) and the convergence properties of these
two operators are the same (see [7, Theorem 1, page 91]).

We remark that if Theorem 2.2 does in fact characterize the
Bernstein polynomials, Theorem 3.1 will characterize the Bernstein

power series.

The author is indebted to the referee for many helpful suggestions.
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