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1. Introduction. Let G be a group. A precrossed G-module is a group homomorphism
3 : M —> G together with a group action (g, m) i-»8mofGon M I such that 3( gm) = g(3m)g~'.
The Peiffer commutator < m, m' > of two elements m, m' € M is denned as

< m, m' >=mm'm~'(3mm'rl .

If all Peiffer commutators are trivial, the precrossed G-module is said to be a crossed
G-module. The subgroup < M, M > generated by all Peiffer commutators is called the Peiffer
subgroup of M; it is the second term of a lower Peiffer central series (see below). The follow-
ing table indicates how these concepts reduce to more standard concepts when restrictions
are placed on 3 and G.

Concepts:
Restrictions:

3(M) = 1 3(M) = G ker(3) = 1 G = 1

precrossed
G-module
crossed
G- module
Peiffer
commutator
Peiffer
subgroup
Peiffer central
series

group with •
G-action
ZG-module central extension

ofG
commutator •

• •

• •

normal
subgroup of G
normal
subgroup of G
trivial element

trivial subgroup

•

group

abelian group

commutator

derived
subgroup
central
series.

Furthermore, any ZG-module A gives rise to a precrossed G-module 9: A x G —> G,
(a, g) i->g in which the action of G on the direct product M = A x i G is given by
g(a,g') = (ga,gg'g~[). In this example the Peiffer subgroup of M lies in the module A.
More precisely, < M, M >= IG.A where IG = ker(ZG —* Z) is the augmentation ideal of G.

Interest in precrossed G-modules stems from algebraic topology: a precrossed G-module
corresponds exactly to that low dimensional part of a CW-space which gives a presentation
of the fundamental group. Thus (pre)crossed modules arise in combinatorial group theory (see
[3] and [13] for references) and in low dimensional homotopy (see [1] and [3] for references);
they are also central to a body of work on nonabelian cohomology (see [6] and [10] for
references).
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It would be of interest to know just how much of the extensive algebraic theory on group
commutators extends to Peiffer commutators. For instance, it is shown in a substantial paper
of H. J. Baues and D. Conduche [2] that the Magnus-Witt result on the quotients of the
lower central series of a free group extends to a result on lower Peiffer central series. Fur-
thermore, it is shown in [7] that results of C. Miller [12] and J. Stallings [14] on homology
and central series of groups extend to Peiffer central series.

The aim of the present paper is to obtain a Peiffer commutator version of the result of P.
Hall [11] which states that yc+\G is finite whenever G/ZC(G) is finite (where yc+\(G) and
ZC(G) denote terms of the lower and upper central series of the group G). The appropriate
lower Peiffer central series was defined in [2], and a corresponding upper central series is
introduced below. We also obtain a Peiffer commutator version of J. Wiegold's bound [15]
on the order of y2(G) given that G/Zi(G) is of prime power order pa. Our proofs of the
Peiffer versions of these results rely on the finiteness of a nonabelian tensor product of
groups [8], which in turn relies on the transfer homomorphism in group homology.

2. Statement of results. Let 3 : M —> G be a precrossed G-module. Given two sub-
groups N and N ' of M, we let < N, N ' > denote the subgroup of M generated by the Peiffer
commutators < n, n ' > for n e N, n ' € N ' . We let << N, N ' >> denote the subgroup of M
generated by the Peiffer commutators < n, n ' > and < n', n > for n e N, n ' £ N ' . We say
that a subgroup N of M is G-invariant if gn e N for all g 6 G, n 6 N.

Recall from [2] that the lower Peiffer central series Pyn(M)(n > 1) is defined by induc-
tively setting

Pyi(M) = M,

pKn(M) = « M, Pyn-i(M) » for n > 2.

Note that Py2(M) is just the Peiffer subgroup < M, M >, and that Pyn(M) contains Pyn+\ (M).
We observe in Section 3 that each Pyn(M) is a G-invariant normal subgroup of M.

Let us define the Peiffer centre to be

PZ(M) = {a e M :< x, a > = 1 = < a, x > for all x e M).

More generally, given two subsets Z and F of M, define

V(Z, r ) = {a e M :< x, a >e Z and < a, x >e Z for all x e F}

Note that PZ(M) = V(l, M). We observe in Section 3 that, if Z and F are G-invariant normal
subgroups of M, then V(Z, F) is a G-invariant (but not necessarily normal) subgroup of M.

Let us define an upper Peiffer central series PZn(M)(n > 1) by inductively setting

PZo(M) = l,

PZ,(M) = PZ(M),

PZn(M) = f | V(PZi(M),Pyj(M)) (n > 1).
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In other words PZn(M) is the intersection of those subsets V(PZj(M),Pyj(M)) with
i + j = n, i > 0 , j > 1.

Observe (by induction) that PZn(M) is contained in PZn+i(M). In Section 3 we show
that each PZn(M) is a G-invariant normal subgroup of M, and that PZn(M) = M if and only
i f P y n + 1 ( M ) = l .

Following [2] we say that the precrossed module 3 : M —> G is Peiffer nilpotent of class n
if Pyn+i(M) = 1. Thus precrossed modules of Peiffer nilpotency class 1 are just crossed
modules, and as such were introduced by J. H. C. Whitehead (cf. [1] [3]) as an algebraic model
of homotopy 2-types. Precrossed modules of Peiffer nilpotency class 2 are an essential ingre-
dient in the algebraic model of homotopy 3-types introduced and developed by Baues in [1].

Our main results are:

THEOREM 1. For n > 0, if the quotient group M/PZn(M) is finite, then so too is the sub-
group Pyn+i(M).

THEOREM 2. //"|M/PZ(M)| = pa for some prime p, then | < M, M > | < pa2.

The bound of Theorem 2 is not "best possible". For instance, if G = 1 then M is just a
group and < M, M > = [M, M], PZ(M) = Zi(M). In this case Wiegold's bound [15] states
that |[M, M]| < pa<a-')/2 when |M/Z,(M)| = pa.

3. Proof of results. Recall from [2], [7] that Peiffer commutators satisfy the following
easily verified identities for all x, y, z € M, g S G, and k e ker(3) :

< x, yz > = < x, y > 9xy < x , z > 3 x y ~ \ (1)

< xy, z > = x < y, z > x~' < x,3yz >, (2)

g < x , y >=< g x , g y >, (3)

< k, m > = kmk~'m~', (4)

<k,mxm,k>=k3mk-'. (5)

We shall write N < c M t o indicate that N is a G-invariant normal subgroup of M. The
following lemma is an easy consequence of the Peiffer identities (l)-(3).

LEMMA 3. (i) IfN < G M then < M, N > < G M and < N, M > < G M .
(ii) 7/N < c M then « M, N » < G M.

Assertion (ii) of this lemma implies that each term of the lower Peiffer central series
Pyn(M) is a G-invariant normal subgroup of M.
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Identities (1) and (2) imply that the Peiffer centre PZ(M) is a subgroup of M. Identity (3)
implies that PZ(M) is G-invariant (and hence normal in M). More generally we have:

LEMMA 4. IfZ < Q M and T < Q M then V(Z, F) is a G-invariant subgroup ofM.

LEMMA 5. PZn(M) < G M for all n > 0.

Proof. Certainly PZo(M) < c M . Suppose, as an inductive hypothesis, that
PZj(M) < Q M for j < n. Lemma 4 implies that PZn(M) is a G-invariant subgroup of M. To
prove normality, choose a G PZn(M) and m G M, and note that

mam"1 = < m, a > a m a.

Since < m, a >€ PZn_,(M) C PZn(M) and 3ma G PZn(M), it follows that mam"1 lies in
PZn(M). •

For an indeterminate x we set
< X > = x,

and call < x > a bracketing of weight 1 with variable x. For n > 2 we define a bracketing of
weight n to be an arrangement < u, u ' > with u and u' bracketings of weights i,j > 1 where
i + j = n and where u and u' have distinct variables. The variables involved in u and u' will
be the variables of < u, u ' >. For example,

is a bracketing of weight 5 with variables v, w, x, y, z. We shall let

< < X], . . . , Xn > >

denote an arbitrary bracketing of weight n with variables xi,.. . ,xn. For instance
<< w, v, z, x, y >> could denote the above bracketing of weight 5.

Lemma 2.11 in [2] implies that

< x, y >e Pyj+j(M) whenever x e Pyi(M), y G Pyj(M). (6)

Thus, if each variable of a bracketing << xi,.... xn >> is set equal to some element of M,
the bracketing determines an element of Pyn(M).

LEMMA 6. For n > 1 the following two conditions on an element a in M are equivalent:
(i) a G PZn(M);

( i i ) a is such that < < a , X i , . . . , x t > > = 1 for all b r a c k e t i n g s of weight t + 1 with
1 < t < n, Xj GPyiJ(M), and ^+ ... +it > n.

Proof. Let us first show that (ii) implies (i). This is certainly true for n = 1. As an inductive
hypothesis suppose that (ii) implies (i) when n = k. Let a G M satisfy (ii) for n = k + 1. We
need to show that a e PZk+i(M). We set n = k + 1. For an arbitrary integer I < i < n, and an
arbitrary element y G Py i(M), let us set a = < a, y > and a' = < y, a >. We need to show that
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a, a' €PZn_i(M). But << a, x,,..., xs > > = 1 for Xj € Pyij(M) with h + ... + is > n - i. The
inductive hypothesis implies that a € PZn_;(M). Similarly a' E PZn_j(M). It follows by
induction that (ii) implies (i).

Let us now show that (i) implies (ii). This is true for n = 1. As an inductive hypothesis
suppose that (i) implies (ii) when n = k. Let a € PZk+i(M). We need to show that a satisfies
(ii) for n = k + 1. So set n = k + 1. Let << a, x\,..., x, >> be some bracketing of weight
t 4- 1 with 1 < t < n. Let XJ € Pyi^M) be such that ii + ... + it > n. Then, using (6), we have

<< a, X|,...., xt > > = < < a, yi,..., y

with a = < y0, a > or a —< a, y0 > and yj 6 Pyj^M) with ii + ... + is > n — io. Note that
a G PZn_io(M). By the inductive hypothesis << a, y\,..., ys > > = 1.

It follows by induction that (i) implies (ii). Q

NOTATION. Given group elements x and y, we let xy denote the conjugate xyx~', and we
let [x,y] denote the commutator xyx~'y~'.

PROPOSITION 7. PZn(M) = M if and only i/Pyn+i(M) = 1.

Proof. Suppose that Pyn+i(M) = 1. Then Lemma 6 in conjunction with (6) implies that
PZn(M) = M.

Conversely, suppose that PZn(M) = M. Then, by Lemma 6, << xi,..., xt > > = 1 for all
bracketings of weight t > n + 1 and all Xj s M. We claim that Pyn+i(M) is normally gener-
ated by all such t-fold Peiffer commutators << xi, ...,xt >> . This claim implies
Pyn+i(M) = 1. The claim is certainly true for n = 1. Suppose the claim is true for n = k - 1.
Then any element c S Pyk(M) has the form c = xiCixf'-.-XmCmX"1 with c; a t-fold Peiffer
commutator << yi,..., yk >> and t > k, Xj, y; e M. Now P/k+^M) is generated by Peiffer
commutators of the form < c, m > and < m, c > with m € M. Identities (2) and (4) imply
that < c, m > is a product of conjugates of elements of the form < XjCjXj""1, m' > =
[XJCJX"1, m'] = Xj[cj,m"]x~1 = Xj < Cj, m" > xj"1 where m',m"£M. Identity (1) implies
that < m, c > is a product of conjugates of elements of the form <m',XiXjC1~

1 > =
< m', x;, ci >( 3 X | )CJ > = < m', < Xj, Ci >> m" < m', (3Xi)cj > m"~'. The claim follows by
induction. D

Our proofs of Theorems 1 and 2 involve a nonabelian tensor product V <g> W, where V
and W are two groups equipped with an action (v, w) H->VW of V on W and an action
(w, v) K-»WV of W on V. When x, y e V, or x, y e W, the expression xy denotes the conjugate
xyx"1. The tensor product V<g> W is the group generated by symbols v<g> w for v 6 V and
w s W subject to the relations

vv'<g)w = (vv'<g)vwXv<g>w) (7)

v(g>ww' = (v<g>wXwv®ww') (8)

for v, v ' € V, w, w' e W. An account of this tensor product is given in [4]. The tensor pro-
duct is of most interest when the given actions are compatible in the following sense:

(V»V=V(W(V~V)) and (wv)w'=w(v(w"'w'))
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for v, v' G V, w, w' G W. Compatible actions occur for instance when V and W belong to
precrossed G-modules 9: V -> G, 9' : W -> G and V (resp. W) acts on W (resp. V) via 9
(resp. 9 ' ) and the actions of G.

For convenience we compile several known properties of the tensor product into the
following proposition.

P R O P O S I T I O N 8. (i) [5] Let 9 : V - » G , 9 ' : W — * G be two precrossed G-modules. Then G
acts on the resulting tensor product V <g> W by g (v <g) w) = E v ® g w/or g £ G, v 6 V, w £ W.
Also, there is a homomorphism 8 : V <g> W —> G which is defined on generators by <5(v ® w) =
[Sv, d'w]. Moreover, this homomorphism and action form a crossed G-module.

(ii) [8] Let V and W be two finite groups which act compatibly on each other. Then the
resulting tensor product V ® W is a finite group.

(iii) [9] Let E be a group with two normal subgroups V and W of finite prime power orders
|V| = pn and |W| = pn . Let V (g) W be the tensor product formed using the actions given by
conjugation in E. Then |V <g> W| < pnn'.

Given subgroups A < V, B < W we let BAA~' denote the subgroup of V generated by
the elements baa~' for a € A, b G B.

LEMMA 9. Let V and W act compatibly on each other, let Abe a normal subgroup ofV, and
let B be a normal subgroup of W. Suppose that WAA~' C A, BVV~' C A, VBB"' C B,
AWW~' C B. Then V/A and W/B act compatibly on each other, as do A and W, and V and B;
the actions are induced from the actions ofV and W. The tensor products constructed from
these actions fit into a short exact sequence

t(A<g>W)t(V<g)B) ^ ^ V ® W

where t :A®W—>V<g>W, i : V ® B — » V ® W denote the canonical homomorphisms.

Proof. The canonical homomorphism 0 : V ® W —> V/A <g> W/B is clearly surjective.
Moreover, identities (7) and (8) imply that the tensors 1 <g> w and v ® 1 both represent the
identity element in V ® W for v e V, w e W. Let v denote the image of v 6 V in V/A, and w
denote the image of w G W in W/B. Then a ® w and v ® b both represent the identity ele-
ment in V/A ® W/ B for a e A, b G B. Hence t(A <g> W) and i(V <g> B) both lie in the kernel
of (j>. To prove that t(A<g> W)t(V®B) = ker(0) one readily verifies that ((A®W) and
t(V ® B) are normal in V ® W, that the function

V/A x W / B ^ V ® W / t ( A ® W ) t ( V ® B ) , (v, w) i-̂ -v ® w

is well-defined, and that it induces a homomorphism i/r: V/A <g> W/B —>
V® W/t(A® W)t(V®B). Since r/r is mutually inverse to the induced homomorphism
0 : V®W/t(A<8»W)t(V®B) -^ V/A® W/B, it follows that 0 is injective. Hence

Let us consider the precrossed G-module 9 : M —> G. Using the action of G on M we can
form the semi-direct product S = M x G, in which elements are multiplied by the rule
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(m,g)(m',g') = K W , g g ' ) .

M = {(m,g)eM x G : m e M and g = 3(m~')}
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and note that M is a normal subgroup of S. Since the inclusion homomorphisms
M^->S are examples of crossed S-modules, we can use Proposition 8(i) to form crossed S-
modules S : M <g> M -> S and <5 : M <g> M -* S.

Let n > 1, let p = (pu ..., pn) be an arbitrary sequence of Os and Is (i.e. pt = 0 or 1), and
let P' = (jBi,..., pn-i). Using Proposition 8(i) we define a crossed S-module S : T^ -> S by
inductively setting

M ® M if n = 1 and P\ = 0,
M O M if n = 1 and fa = 1,
M 0 T " ' if n > 2 and /?n = 0,
M<g>T '̂ if n > 2 and/3n = 1.

Using Lemma 3(i) we can define a G-invariant normal subgroup >
setting

[M, M] if n = 1 and P\ = 0,
< M,M > if n = 1 and ft = 1,

< M.P', M > if n > 2 and pn = 0,

in M by inductively

LEMMA 10. (i) For n > 1 and for each sequence ft = (fa,..., fin) ofOs and Is with fa = 1,
the image of the crossed S-module S : T ̂  —> S satisfies

: fi =

(9)

(ii) For a fixed n>\, the family of G-invariant normal subgroups

{fa,...,P,,), fa = 1} generates Pyn+l{M).

Proof. One readily verifies that the identity

[(y,3y-'), (x, !)] = (< y , 9 y - l x > , 1)

holds in S = M xi G for all x, y £ M. Hence the crossed module 8 : M <g> M —> S has image
im(<5) = [M, M] = < M, M >. Therefore assertion (i) holds for n = 1. The assertion can be
proved inductively for n > 2 (using the inductive hypothesis S T^' = M'3') : when fin = 1 we have

<5(T") = <5(M ® T"') = [M,STp'] = [M, M"'] = < M, M r >

when pn = 0 we have
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and (as we shall see)

[Mr,M]=<Mr,M > .

To prove this last equality it suffices to note that there are inclusions

M*' c < M , M > c k e r ( 9 : M - > G )

for any sequence /?' - (f}\,..., pn-\) with /3t = 1.
Assertion (ii) clearly holds.

Suppose that A is a G-invariant normal subgroup of M such that « A , M » C A . Let
us set

A = {(a, 3 a - ' ) e S : a e A}.

Note that conjugation in S yields an action of G on A. Moreover, A is a G-invariant normal
subgroup of M and, for N = AA, we have A = N D M and A = N D M. Note also that if M/A
is finite then so too is M/A since one can readily verify that |M/A| = |M/A|.

Taking A = PZjM, we have a commutative diagram of group homomorphisms

(M/PZ,M) <g> (M/PZ,M)

A
< M , M

I
1

in which the row and column are exact. The exact row follows from Lemma 9. The surjec-
tivity of 8 follows from Lemma 10(i). The homomorphism 8 induces a homomorphism 8
thanks to the exactness of the row and Lemma 6.

Suppose that M/PZ]M is finite. Then so too is M/PZiM, and so Proposition 8(ii)
implies the finiteness of (M/PZ]M) <g> (M/PZiM). The surjectivity of 5 then implies that
< M, M > is finite, thus proving Theorem 1 for n = 1.

Suppose that |M/PZiM| = pa for some prime p. The |M/PZiM| = pa. Consider the
normal subgroup N = (PZiM)(PZiM) in S. Since N n M = PZiM and N n M = PZ|M,
both M/PZiM and M/PZiM are normal subgroups of S/N. Thus Lemma 8(iii) and the
surjectivity of I imply that | < M, M > | < p a \ This proves Theorem 2.

The proof of Theorem 1 for n > 1 is similar to that for n = 1. There is an induced pre-
crossed module 3 : M/PZnM —> G/(3PZnM). Observe that the induced action is well-defined
since, for a € PZnM and m £ M, we have 3am =< a, m > ama"1 and < a, m >€ PZnM.

The above construction of the precrossed module 8 : T p —> S depends on the pre-
crossed module 3 : M —> G. To emphasize this dependence let us write T^(M) = T^. Then
for each sequence fi of Os and Is, with P\ = 1, we have a commutative triangle of group
homomorphisms.
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The homomorphism I is induced by 8 thanks to Lemmas 6 and 9.
Suppose that M/PZ n M is finite. Then T^(M/PZnM) is finite by Proposition 8(ii).

Lemma 10(i) implies that M^ is finite. So Lemma 10(ii) implies that Py n + |M is finite, thus
proving Theorem 1.
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