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Effect of shear on local boundary layers in
turbulent convection
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In Rayleigh Bénard convection, for a range of Prandtl numbers 4.69 � Pr � 5.88 and
Rayleigh numbers 5.52 × 105 � Ra � 1.21 × 109, we study the effect of shear by the
inherent large-scale flow (LSF) on the local boundary layers on the hot plate. The velocity
distribution in a horizontal plane within the boundary layers at each Ra, at any instant,
is (A) unimodal with a peak at approximately the natural convection boundary layer
velocities Vbl; (B) bimodal with the first peak between Vbl and VL, the shear velocities
created by the LSF close to the plate; or (C) unimodal with the peak at approximately VL.
Type A distributions occur more at lower Ra, while type C occur more at higher Ra, with
type B occurring more at intermediate Ra. We show that the second peak of the bimodal
type B distributions, and the peak of the unimodal type C distributions, scale as VL scales
with Ra. We then show that the areas of such regions that have velocities of the order
of VL increase exponentially with increase in Ra and then saturate. The velocities in the
remaining regions, which contribute to the first peak of the bimodal type B distributions
and the single peak of type A distributions, are also affected by the shear. We show that
the Reynolds number based on these velocities scale as Rebs, the Reynolds number based
on the boundary layer velocities forced externally by the shear due to the LSF, which we
obtained as a perturbation solution of the scaling relations derived from integral boundary
layer equations. For Pr = 1 and aspect ratio Γ = 1, Rebs ∼ Ra0.375 for small shear, similar
to the observed flux scaling in a possible ultimate regime. The velocity at the edge of
the natural convection boundary layers was found to increase with Ra as Ra0.35; since
Vbl ∼ Ra1/3, this suggests a possible shear domination of the boundary layers at high Ra.
The effect of shear, however, decreases with increase in Pr and with increase in Γ , and
becomes negligible for Pr � 100 at Γ = 1 or for Γ � 20 at Pr = 1, causing Rebs ∼ Ra1/3
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1. Introduction

Turbulent Rayleigh–Bénard convection (RBC) is characterised by diffusive regions near
the plates that have boundary layers and thermal plumes, and a turbulent bulk region
that has an inherent large-scale flow (LSF) within it. In turn, the LSF, driven by plume
columns created by the LSF itself, is expected to act on the boundary layers, thereby
modifying their nature. Since the dominant resistance to heat transfer is in the boundary
layers, a resulting change in the flux scaling from the classical 1/3 power law is also
expected. However, the exact nature of this modification of the boundary layers due to
LSF is not known conclusively. In this study, we bring new insights into how LSF modifies
the boundary layers by presenting the evolution of the instantaneous probability density
functions (p.d.f.s) of horizontal velocity magnitudes in a horizontal plane close to the
hot plate with Rayleigh number. Novel scaling laws, based on the consideration of the
modification of the local boundary layers on either sides of the plumes, embedded within
a shear boundary layer due to the LSF, are shown to describe the observed variation of the
peaks of these p.d.f.s.

It is well known that if heat flux in turbulent RBC has to be independent of the
layer height H, then, dimensionally, Nu ∼ Ra1/3, where Nu = q/(k �T/H) is the Nusselt
number, and Ra = gβ �T H3/να is the Rayleigh number. Here, q is the heat flux, k is
the thermal conductivity, �T = Th − Tc is the total temperature drop across H, with Th
and Tc the top and bottom wall temperatures, respectively, g is the acceleration due to
gravity, β is the coefficient of thermal expansion, ν is the kinematic viscosity, and α is the
thermal diffusivity. However, the observed flux scaling is anomalous, showing Nu ∼ Ran

with n � 0.31 for Ra < 1011 (Roche et al. 2004), n approaching 1/3 for 1010 < Ra < 1013

(He et al. 2012; Iyer et al. 2020), and the value of n beyond Ra = 1013 being not known
conclusively. For Ra > 1013, He et al. (2012) and Zhu et al. (2018) observed n = 0.38,
which, however, has been suggested to be due to non-Boussinesq effects (Skrbek & Urban
2015; Urban et al. 2019) or a low range of Ra (Doering, Toppaladoddi & Wettlaufer 2019),
and is contested (Zhu et al. 2019). At the same time, for 1011 < Ra < 1015, n = 1/3 has
been observed by Iyer et al. (2020) in low-aspect-ratio (Γ = L/H) containers, where L is
the horizontal dimension of the container.

The value of n being different from 1/3 implies that the heat flux becomes dependent on
H, as expected, due to the modification of the boundary layers by the LSF, whose velocity
(VF) depends on H through the Reynolds number (Re) relation

Re = VFH/ν = 0.139 Ra0.447
w Pr−0.7, (1.1)

at Γ = 1 (Ahlers, Grossman & Lohse 2009). Here, Raw = Ra/2 is the near-plate Rayleigh
number based on the temperature drop near the plate, �Tw = Th − TB = �T/2, with
TB being the bulk fluid temperature. Numerous hypotheses about the nature of such
modification of the boundary layers have been made, resulting in various boundary
layer models in RBC. Among these, the major models are those that assume stable
diffusion layers with a mixing zone above them (Castaing et al. 1989), a turbulent
shear boundary layer (Shraiman & Siggia 1990), a laminar, zero pressure gradient,
Prandtl–Blasius boundary layer (PBBL) with no buoyancy effects (Grossmann & Lohse
2000), a Falkner–Skan shear boundary layer with pressure gradient (Shishkina, Horn &
Wagner 2013), a laminar mixed convection boundary layer (Ovsyannikov et al. 2016), and
a turbulent forced convection boundary layer with small buoyancy perturbations (Ching
et al. 2019). The first three of these models are able to match the flux scaling (Ahlers
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et al. 2009; Chilla & Schumacher 2012; Roche 2020), but fail to reproduce the observed
profiles of velocity and temperature (Reeuwijk, Jonker & Hanjalić 2008; Sun, Cheung &
Xia 2008; Shi, Emran & Schumacher 2012; Wagner, Shishkina & Wagner 2012), as well
as the boundary layer thicknesses (Qiu & Xia 1998a,b; Lam et al. 2002; Reeuwijk et al.
2008). The remaining models try to obtain the mean velocity and temperature profiles,
but the resulting flux scaling does not match the observations (Tai et al. 2021); clearly,
the nature of boundary layers in RBC, and more importantly, their interaction with LSF,
remain unresolved.

All of these models assume a single, steady boundary layer that spans the plate width,
and compare the resulting profiles of velocity and temperature with the spatio-temporal
mean profiles from experiments and computations; similarly with Nu, where the average
Nu is compared. However, in contrast, the dynamics near the hot plate is highly unsteady
and spatially inhomogeneous with local boundary layers, possibly natural convection type
(Stewartson 1958; Rotem & Classen 1969; Pera & Gebhart 1973a), becoming unstable at
multiple locations to give rise to line plumes (Pera & Gebhart 1973b). These line plumes
merge, and move along their length, as well as rise (Puthenveettil, Ananthakrishna &
Arakeri 2005; Puthenveettil & Arakeri 2005; Gunasegarane & Puthenveettil 2014), with
the LSF also aligning them in shear dominant regions (Rama Reddy & Puthenveettil 2011;
Shevkar et al. 2019). This results in a complex network of line plumes on the hot surface,
which act as channels of heat transport from the plate to the bulk (Shishkina & Wagner
2008), with local boundary layers in between them. Given this high spatial inhomogeneity
and temporal unsteadiness, an averaging – which mixes up these local boundary layers and
line plumes, along with the LSF – to infer about a global boundary layer, and from which
the flux, could be the reason for the lack of success of the available phenomenological
models of RBC.

In the absence of external shear, the critical thickness of these local boundary layers on
either sides of the line plumes scales as

δnc =
(

C1

2

)2/5

Zw Pr0.54, (1.2)

where

Zw =
(

να

gβ �Tw

)1/3

= H

Ra1/3
w

(1.3)

is a length scale near the plate (Theerthan & Arakeri 1998), Pr = ν/α is the Prandtl
number, and C1 = 47.5 (Puthenveettil et al. 2011). On the other hand, the PBBL thickness
at L, for Γ = 1, is

δpb = 0.922H√
Re

(1.4)

(Ahlers et al. 2009; Stevens et al. 2013). Then δnc/δpb ∼ Ra−1/9
w , with δnc/δpb ∼ 0.1 at

Raw = 109; the local boundary layers are then an order thinner than the shear boundary
layer engendered by the LSF, and hence are embedded within them. If a major part
of the temperature drop near the plate occurs across these local boundary layers, then
(1.2) already implies that Nu = H/2δnc ∼ Ra1/3

w , the classical flux scaling. An immediate
possibility then arises that the anomalous flux scaling in RBC is due to the modification of
these local boundary layers on either side of the line plumes, embedded within the shear
boundary layers, by the shear boundary layer itself.
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Such shear-induced modifications of these local boundary layers have been observed
as changes in the spacings between these line plumes (Shevkar et al. 2019) due to
shear-induced changes in the stability (Castaing et al. 1989) of the local boundary layers
in between. The plume spacings that are log-normally distributed in the absence of shear
(Puthenveettil & Arakeri 2005) become more narrowly spread around a single value when
plumes align in the presence of shear (Shevkar et al. 2019). The mean plume spacing at
zero shear,

λ0 = C1 Prn1 Zw (1.5)

(Theerthan & Arakeri 1998; Puthenveettil & Arakeri 2005; Puthenveettil et al. 2011),
where n1 = 0.1, is increased to

λ = λ0 + ZshS
D

(1.6)

(Shevkar et al. 2019), where Zsh = ν/VL is the viscous shear length, with VL being the
shear velocity on the local boundary layers, S = V3

Lα/gβ �Tw ν2 = Re3
L/Raw is a shear

parameter, with ReL being the Reynolds number based on VL and H, and D is a function of
Pr. However, it is not known how the shear due to the LSF changes the velocities within
these local boundary layers, as well as their thicknesses. These are two crucial pieces of
information necessary to understand the shear-induced changes to the nature of these local
boundary layers, which could be the key missing piece in understanding the anomalous
flux scaling and the near-plate profiles of velocity and temperature, in RBC.

With this aim, the present paper presents the instantaneous spatial velocity fields within
these local boundary layers, obtained by stereo particle image velocimetry (PIV) in a
horizontal plane, for 105 � Ra � 109, 4.69 � Pr � 5.88 and 1.71 � Γ � 10. We avoid
any spatio-temporal averaging of these highly spatially inhomogeneous and temporally
unsteady velocity fields, which would mix up the velocities from the local boundary layers,
plumes and the LSF. Instead, we study the p.d.f.s of the horizontal velocity magnitudes,
which show predominantly a single peak at lower Ra, a double peak at intermediate Ra,
and then again a single peak at higher Ra. The peaks of these p.d.f.s keep shifting to
higher velocity values with increasing Ra, showing the increasing effect of shear due
to the LSF on the velocity field within the local boundary layers. We also observe a
corresponding increase in areas affected by shear, first qualitatively, as an increase in
areas of regions having aligned velocity vectors of higher magnitudes, and then later
quantitatively, as an increase in areas contributing to the second mode in the double-peaked
p.d.f.s. The velocities from these shear dominant regions, reflected in the second peak of
the double-peaked p.d.f.s and the lone peak from the single mode p.d.f. at higher Ra, scale
in the same way as the strength of the LSF scales with Ra. However, interestingly, the first
peak from the double-mode p.d.f.s, and the sole peak from the p.d.f.s at lower Ra, scale as
Ra0.38, possibly in a coincidental way, in the same way as the observed scaling of flux at
Ra > 1013. We then show that this scaling can occur when a natural convection boundary
layer, embedded within a shear boundary layer due to the LSF, is forced externally by
the same shear boundary layer. In such a scenario, with increasing shear, we show that
these local boundary layers can become mixed convection boundary layers, and then
later at large shear, PBBLs. Our model predicts that the shear at the edge of these local
boundary layers increases with Ra, more than the increase of buoyant velocities within
the boundary layers with Ra, thereby making these boundary layers more shear-dominant
with increase in Ra. This prediction, however, needs to be qualified since changes in plume
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Figure 1. Schematic of the experimental set-up.

spacing and local boundary layer thicknesses, which could be significant at larger Ra, were
neglected.

The paper is organised as follows. We first describe our PIV experiments in water
at various Γ in § 2. The horizontal velocity fields within the local boundary layers,
the characteristics of the p.d.f.s of horizontal velocity magnitudes, the evolution of the
shear-affected areas, and that of the number of different types of p.d.f.s with Ra, as well
as the experimental scaling of the peaks of the p.d.f.s, are described in § 3. Section
4 details the theoretical scaling analysis where the scaling equations (§ 4.1), obtained
from the integral natural convection boundary layer equations forced by an external shear
(Appendix A), are solved by perturbations methods (§ 4.2) to obtain the velocity boundary
layer thickness (§ 4.3) and the dimensionless shear (§ 4.4) at the edge of the local boundary
layers. These are then used to obtain the scaling of the characteristic Reynolds number
within the local boundary layers, forced externally by the shear due to the LSF. The
obtained scaling is shown to match the observations in § 4.5, before we conclude in § 5.

2. RBC experiments in water

Statistically steady, turbulent, RBC experiments were conducted in a glass tank, having
cross-sectional area 30 cm × 30 cm and insulated from the sides, within which a water
column of height H was confined between a hot copper plate at the bottom and a cool
glass chamber at the top, through which water at constant temperature was circulated.
The bottom Cu plate was maintained at a constant heat flux by a nichrome wire heater
embedded within a plate assembly, as shown in figure 1, and connected to a variac. The
heat flux into the Cu plate (q) and H were varied to obtain the range of values of Ra and Pr
given in table 1. The heat flux was estimated from the average temperature drop across the
glass plate in the plate assembly, which was calculated from T-type thermocouples located
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Raw 2.76 × 105 1.66 × 106 1.31 × 107 1.10 × 108 6.05 × 108

Number of p.d.f.s 4197 1399 11 192 11 192 11 192

Table 2. Total number of p.d.f.s at each Raw.

at three different horizontal positions across the glass plate. The temperatures of the hot
Cu plate at the bottom and the cold glass plate at the top were measured at two different
horizontal locations at the surface of the plates by T-type thermocouples. The average
bottom and top plate temperatures, Th and Tc, calculated from these measurements, were
used to calculate the constant temperature difference �T = Th − Tc across the fluid layer,
given in table 1. The error in temperature measurement was 0.02 ◦C, as estimated from
repeated measurements of known temperatures.

The velocity field in a horizontal (x–y) plane close to the bottom hot plate was
obtained by stereo PIV in a single-pulse, single-frame mode at all Ra. Since the height
of the measurement plane (hm) was set so that Zw/hm ≈ 0.2, hm was within the natural
convection velocity boundary layer thickness δnc (see (1.2)), and within the PBBL
thickness δpb (see (1.4)). The flow was seeded with neutrally buoyant polyamide particles
(density ρp = 1.012 g cm−3) of mean diameter 55 µm, which were illuminated by a
laser sheet of thickness lt = 1 mm from an Nd:YAG laser (Litron, 100 mJ pulse−1). The
particles followed the flow since the Stokes number was less than 4.2 × 10−3. Two Imager
Pro HS (LaVision GmbH) double-shutter cameras (1024 × 1280 pixels), oriented at 32.5◦
with the vertical from above, were used to capture particle images of area Ai = Li × Wi at
the centre of the plate in a single-frame mode; the values of Ai for each Ra are given
in table 1. Refraction errors were minimised by viewing the bottom plate through a
water-filled prism placed over the top of the cold chamber, and by using a third-order
polynomial mapping function obtained by imaging a calibration plate. The times between
the laser pulses (�t), given in table 1, were chosen such that the highest out-of-plane
particle displacements, due to the plume centre line vertical velocities, in the plane of
measurement,

wpl = 1.5 Pr0.27 α

hm
Ra2/5

hm
(2.1)

(Gunasegarane & Puthenveettil 2014), where Rahm is the Rayleigh number based on
�T and hm, were not more than lt/4. The maximum in-plane particle displacements
corresponding to these �t were approximately 10 pixels at each Ra. The frame rates of
the single frames from each camera were varied from 1/tf = 10 Hz at the lowest Ra to
15 Hz at the highest Ra, synchronous with the pulses from the laser.

A multipass adaptive window stereo cross-correlation method (DaVis, LaVision
GMBH) was used on the successive frames from each camera to calculate the
two-dimensional, three-component spatial vector fields in a horizontal plane at height hm
from the bottom plate with frequency 1/tf , for a time period of at least ten LSF circulation
times. The size of the square interrogation window (DI = 32 pixels) and the particle
concentrations were chosen so that the displacement of particles was xp � DI/4, and at
least 10 particles were present in an interrogation window at any time. Spurious vectors,
removed by applying a median filter of 3 pix × 3 pix neighbourhood, were replaced by
interpolated vectors. A Gaussian low-pass filter with kernel defined over a 9 × 9 matrix
was applied on the final vector field to reduce the noise. The spatial resolution Lv for all
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the vector fields at each Ra was approximately 1 mm, except at Ra = 6.3 × 108, where it
was 1.4 mm; the parameters for PIV, used for each Ra, are listed in table 1.

3. Probability density functions of horizontal velocities

3.1. Procedure to obtain the p.d.f.s
To understand the velocities of dominant motions within the boundary layers, we
now study the instantaneous p.d.f.s of U = √

u2 + v2, the magnitude of the horizontal
velocities within the local boundary layers, where u and v are the fluid velocities in
the x and y directions, respectively. These instantaneous p.d.f.s were estimated from the
instantaneous PIV velocity fields in horizontal planes at heights hm < δnc � δpb, given
in table 1, at each Raw. An in-house code generated the instantaneous p.d.f.s using
the following iterative procedure on each instantaneous spatial velocity field, separated
temporally by tf , from a set having 1399 such velocity fields; 1–8 such sets, separated
temporally by 210 s, were used at each Raw to span at least 10 LSF times.

At any instant, an initial p.d.f. was first obtained from the spatial velocity field using 50
bins of equal sizes as

p.d.f. = NU

sb
, (3.1)

where NU is the number of occurrences of U in each bin, s is the sample size of U, and b
is the bin size. We then proceed to estimate the total number of dominant peaks occurring
in the p.d.f.s, so as to classify these p.d.f.s in the following way. In this calculation, since
we are interested in the velocities of the dominant motions, peaks with NU less than 10 %
of the NU of the highest peak are neglected. The minimum allowed separation between the
peaks was kept equal to 1

4 (VL/Vbl − 1), to minimise the possibility of counting peaks
due to fluctuations as dominant peaks. Here, VL is the shear on the local boundary
layers, estimated as the velocity of longitudinal motion of plumes by Gunasegarane &
Puthenveettil (2014), given through the corresponding Reynolds number

ReL = VLH/ν = 0.55 Ra4/9
w Pr−2/3. (3.2)

Here, Vbl is the characteristic velocity in the local natural convection boundary layer
(NCBL), given through the corresponding Reynolds number

Rebl = VblH/ν = 1.88 Ra1/3
w Pr−0.98 (3.3)

(Vipin 2013; Gunasegarane & Puthenveettil 2014). The rarely occurring fluctuations at the
tails of the p.d.f.s, similar to that at U/Vbl ≈ 7.75 in figure 2(e), are also neglected in this
estimation.

If the number of maxima detected by this procedure was greater than two, then the p.d.f.
was recalculated by reducing the number of bins by one in successive iterations until the
number of maxima became less than or equal to two. The iteration was stopped when the
number of bins became 10, before two or fewer dominant peaks were detected. In such a
case, peaks with frequencies less than 11 % of the frequency of the highest peak in the
p.d.f. were neglected, and the above iterative process, with the initial number of bins equal
to 50, was repeated. After this process, in the rare instances where the number of bins was
still �10 with the number of peaks being >2, the cut-off frequency was further increased
to 12 % and the process repeated until a smooth p.d.f. with number of bins �10 and number
of peaks �2 was obtained.
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Figure 2. Instantaneous p.d.f.s of the dimensionless horizontal velocity magnitudes and the
corresponding instantaneous spatial distributions of horizontal velocity vectors overlaid over the
dimensionless horizontal velocity magnitudes at three Raw. Values of (Raw, Γ, ReF) for ∗ are:
(a,b) (2.76 × 105, 10, 34.42); (c,d) (1.31 × 107, 4.3, 320); (e, f ) (6.05 × 108, 1.71, 3148). Values for ◦ are:
(a) (1.31 × 107, 4.3, 320); (e) (1.10 × 108, 2.5, 1169). In insets, values for ∗ are: (a) (1.66 × 106, 10, 82.86);
(e) (2 × 107, 4.3, 401.6). The values of VL/Vbl corresponding to ∗ and ◦ are shown by dashed lines
and dash-dotted lines, respectively, in (a,c,e). The error bars in (a,c,e) show the maximum uncertainties
7.1 %, 2.5 % and 4 % at U/Vbl = 0.6, 2 and 3, respectively. Details of error analysis can be found
in Appendix C.
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Figure 3. Instantaneous bimodal p.d.f.s of dimensionless horizontal velocity magnitudes, and the
corresponding instantaneous spatial distributions of dimensionless horizontal velocity vectors, overlaid over the
dimensionless horizontal velocity magnitudes, at intermediate and high Raw: (a,b) (Raw, Γ, ReF) = (1.66 ×
106,10,82.86); (c,d) (Raw, Γ, ReF) = (6.05 × 108, 1.71, 3148). The error bars in (a,c) show the maximum
uncertainties of 3.8% and 4.9 % at U/Vbl = 1.04 and 3.2, respectively. Details of error analysis can be found
in Appendix C.

3.2. Types of p.d.f.s
In the present study, Raw was increased from the lowest value Raw = 2.76 × 105 to the
highest value Raw = 6.05 × 108 by changing the temperature difference �T and the cell
height H. To increase Raw, (i) the cell height was kept constant and �T was increased,
or (ii) both �T and H were increased. Then, with increasing Raw, the aspect ratio
Γ = L/H in the experiments could either be a constant for the first case, or decrease
monotonically for the second case. As shown in table 1, the aspect ratio changed from
10 at Raw = 2.76 × 105 to 1.71 at Raw = 6.05 × 108. However, in both of these cases,
since the Reynolds number based on the LSF velocity VF scaled as ReF ∼ Ra4/9

w Γ −0.57

(see (B1)), VF increased monotonically with increase in Raw, whether this increase in ReF
occurred due to the increase in �T at a fixed Γ or due to a decreasing Γ , shown in table 1.
This increasing VF with increasing Raw changed the shapes of the p.d.f.s and the locations
of their peaks. So the change in the p.d.f. shapes and their peaks in the present study,
shown in figures 2, 3 and 4, was occurring primarily due to increase in ReF, whether this
increase in ReF occurred due to increasing Raw and/or due to decreasing Γ .

Three different types of instantaneous p.d.f.s, obtained using the above procedure,
at Raw = 2.76 × 105, 1.31 × 107, 6.05 × 108, are shown in figures 2(a), 2(c) and 2(e),
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Figure 4. Instantaneous, type C p.d.f.s of dimensionless horizontal velocity magnitudes for two different Raw
at fixed Γ : (a) (Raw, Γ, ReF) = (2.21 × 108, 2, 1800); (b) (Raw, Γ, ReF) = (4.04 × 108, 2, 2557). The error
bars show the maximum uncertainties 2.1 % and 7 % at U/Vbl = 3.66 and 1.97, respectively. Details of error
analysis can be found in Appendix C.

respectively. The corresponding horizontal velocity fields in a horizontal plane at height
hm are shown in figures 2(b), 2(d) and 2( f ), respectively. P.d.f.s in figures 2(a) and 2(c) are
unimodal with peaks at U/Vbl = 1.06 and 7.6, respectively, while the p.d.f. in figure 2(c)
is bimodal with peaks at U/Vbl = 2 and 3.1. The dashed vertical lines in figures 2(a), 2(c)
and 2(e) show the values of the ratio VL/Vbl of the shear velocity VL (see (3.2)) and the
boundary layer velocity Vbl (see (3.3)) at the corresponding Raw. We choose VL as the
relevant shear velocity, rather than VF of (1.1), since VL is measured closer to the plate at
distances of the order of hm, at which the present velocity fields are measured. The values
of VL and Vbl for the range of Raw in the present study are listed in table 1.

It needs to be noted that at each Raw, all three types of p.d.f.s shown in figure 2 were
observed. However, as we discuss in § 3.4, the relative occurrence of these types of p.d.f.s
changed with increasing Raw. At the lowest Raw = 2.76 × 105, the p.d.f.s obtained were
predominantly (45 %) of a unimodal nature with a peak at U/Vbl ≈ 1, similar to that shown
in figure 2(a); hereinafter, we refer to these as type A p.d.f.s. The most frequently occurring
horizontal velocities at the lowest Raw are then of the order of Vbl, the NCBL velocity,
given by (3.3). The spatial distribution of the velocities corresponding to these type A
p.d.f.s, as shown in figure 2(b), shows a converging nature towards various randomly
oriented lines.

At the highest near-plate Rayleigh number Raw = 6.05 × 108 also, we observed
predominantly (71 %) unimodal p.d.f.s that were, however, peaking mostly at values
greater than VL/Vbl, as shown in figure 2(e) for a specific instant; hereinafter, we refer
to these types of p.d.f.s as type C. The most frequently occurring horizontal velocities
at the largest Raw are then of the order of, or greater than, VL. The spatial distribution
of velocities shown in figure 2( f ), corresponding to these type C p.d.f.s, shows a more
aligned nature, with larger magnitudes of velocity vectors compared to those with type A
p.d.f.s at Raw = 2.76 × 105 in figure 2(b).

In contrast to p.d.f.s at low and high Raw, for an intermediate Raw = 1.31 × 107, we
obtain mostly (73 %) p.d.f.s of a bimodal nature. As shown in figure 2(c) for a specific
instant, the first peaks of these bimodal p.d.f.s occur in between U/Vbl ≈ 1 and VL/Vbl,
while the second peaks occur at a value greater than or equal to VL/Vbl. Hereinafter,
the bimodal distributions of this form are referred to as type B. Unimodal p.d.f.s are
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also observed at these intermediate Raw, but at only approximately 21 % of the instants.
Most of the unimodal p.d.f.s observed at this intermediate Raw peak at U/Vbl > 1 +
2
3 (VL/Vbl − 1) or U/Vbl < 1 + 1

3(VL/Vbl − 1). Horizontal velocities corresponding to
the peaks of the former are much greater in magnitude compared to the velocities
corresponding to the peaks of the latter. Further, the former type of p.d.f. is skewed
to the left, similar to the p.d.f. shown in figure 2(e), while the latter type of p.d.f.
is skewed to the right, similar to the p.d.f. shown in figure 2(a). For these reasons,
we classify these unimodal p.d.f.s as type C and type A, respectively. Less than 1 %
of the total number of p.d.f.s at this intermediate Raw show a unimodal nature while
peaking at 1 + 1

3(VL/Vbl − 1) < U/Vbl < 1 + 2
3 (VL/Vbl − 1). For this very small number

of unimodal p.d.f.s, we consider those peaking at U/Vbl < 1 + 1
2 (VL/Vbl − 1) to be of

type A. An instance of such a p.d.f. that occurs at the intermediate Raw = 1.31 × 107 is
shown with the symbol ◦ in figure 2(a), which peaks at U/Vbl = 1 + 0.4(VL/Vbl − 1).
From these 1 % p.d.f.s at intermediate Raw, those peaking at U/Vbl > 1 + 1

2 (VL/Vbl − 1)

are considered to be of type C; the p.d.f. shown by ◦ in figure 2(e) is an example of such a
case.

3.2.1. Effect of Raw
We now present the evolution of p.d.f.s with Raw at a fixed Γ . Figure 2(a) and its inset
show the instantaneous p.d.f.s of the dimensionless horizontal velocity magnitudes at
Raw = 2.76 × 105 and 1.66 × 106 for Γ = 10. Both of the p.d.f.s are of type A, skewed to
the right. With increasing Raw, the p.d.f. that peaked at U/Vbl = 1.06 in figure 2(a) peaks
at a higher magnitude U/Vbl = 1.31 in the inset of figure 2(a). The horizontal velocity
vector field corresponding to the p.d.f. shown in this inset is of a nature similar to that at
the lowest Raw = 2.76 × 105 shown in figure 2(b).

Similarly, type C p.d.f.s for Γ = 2 at Raw = 2.21 × 108 and 4.04 × 108 are shown in
figures 4(a) and 4(b). Both of these p.d.f.s are skewed to the left, similar to the type C p.d.f.
at the highest Raw = 6.05 × 108, shown in figure 2(e). With increasing Raw, the p.d.f.
that peaked at U/Vbl = 5.73 in figure 4(a) peaks at a higher magnitude U/Vbl = 6.47 in
figure 4(b). The horizontal velocity vector fields corresponding to the p.d.f.s shown in
figures 4(a) and 4(b) are of a nature similar to that at the highest Raw = 6.05 × 108 shown
in figure 2( f ). Clearly, with increasing Raw, at a constant aspect ratio, the p.d.f.s of both
type A and type C peak at increasing magnitudes of the dimensionless horizontal velocity
U/Vbl.

3.2.2. Effect of aspect ratio Γ

We are unable to study the effect of varying aspect ratio on the p.d.f.s at the same Raw
since we have not explored such a parameter range in our experiments. However, by
comparing three cases of type A p.d.f.s, at (Raw, Γ ) = (2.76 × 105, 10), (1.66 × 106, 10)

and (1.31 × 107, 4.3) – shown with ∗ in figure 2(a) and its inset, and with ◦ in figure 2(a),
respectively – we can get an idea of the effect of decreasing Γ . For Γ = 10, the type A
p.d.f., which peaked at U/Vbl = 1.06 at Raw = 2.76 × 106 in figure 2(a), shifted to peak
at U/Vbl = 1.31 at Raw = 1.66 × 106 in the inset of figure 2(a); the shift in the peak of
the p.d.f. was then by 24 % for a change in Raw by a factor of six. This type A p.d.f.
shifted to peak at U/Vbl = 1.83 at Raw = 1.31 × 107 when Γ decreased to 4.3 from 10
in figure 2(a); the shift in the peak of the p.d.f. was by 40 % for a change in Raw by a
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factor of eight. This larger shift of type A p.d.f., compared with the former case at the
same Γ , occurred possibly due to the decrease of Γ from 10 at Raw = 1.66 × 106 to 4.3
at Raw = 1.31 × 107 in the latter case.

Similar effects of decreasing Γ can also be found on type C p.d.f.s by comparing
three cases of type C p.d.f.s at (Raw, Γ ) = (2 × 107, 4.3), (1.10 × 108, 2.5) and
(6.05 × 108, 1.71). These cases are shown in the inset of figure 2(e) and with the symbols
◦ and ∗ in figure 2(e), respectively. The p.d.f. at Raw = 2 × 107, shown in the inset of
figure 2(e), is skewed to the left, similar to the p.d.f. at Raw = 6.05 × 108, shown in
figure 2(e). The velocity field corresponding to the p.d.f. shown in the inset of figure 2(e)
is similar to that at the highest Raw = 6.05 × 108 shown in figure 2( f ). However, the
type C p.d.f. that peaked at U/Vbl = 2.7 at intermediate Raw = 2 × 107 shifted to peak
at U/Vbl = 5.2 at Raw = 1.10 × 108, with ◦ in figure 2(e). The shift in the peak of the
p.d.f. was by 93 % for a change in Γ by a factor of 1.7, and in Raw by a factor of 5.5. With
increase in Raw to Raw = 6.05 × 108 by the same factor of 5.5, the type C p.d.f. shifted to
a higher value of U/Vbl = 7.6, with ∗ in figure 2(e). The shift in p.d.f. was by 46 % for a
change in Γ by a factor of 1.45, when Raw increased by the same factor of 5.5. This larger
shift of the p.d.f. when Raw increased from 2 × 107 to 1.10 × 108, compared to the case
when Raw increased by the same factor from 1.10 × 108 to 6.05 × 108, is possibly due to
the larger decrease in Γ by a factor of 1.7 in the former case, as against the decrease in
Γ by a factor of 1.45 in the latter case. Clearly, these larger shifts in type A and type C
peaks to higher magnitudes of the dimensionless horizontal velocity U/Vbl are due to the
increased cell height H or the decreased Γ .

In summary, the p.d.f.s of the boundary layer velocity field show peaks at velocities of
different magnitudes based on the value of Raw. At low Raw, we obtain unimodal p.d.f.s
(type A) that peak at approximately the NCBL velocities Vbl (see (3.3)). At high Raw,
we again obtain unimodal p.d.f.s (type C) that peak predominantly at (or greater than)
VL (see (3.2)), which is the appropriate scale for shear velocities very close to the hot
plate. At intermediate Raw, the p.d.f.s are bimodal (type B). The first peak of the bimodal
distribution occurs at 1 < U/Vbl < VL/Vbl, which we expect to be due to the forcing of
the NCBL velocities by the shear due to the LSF; the second peak corresponds to the
shear velocities VL (see (3.2)). A small number of unimodal p.d.f.s that occur at these
intermediate Raw are classified as type A or type C based on whether their peak is closer
to Vbl or VL, respectively.

As mentioned earlier, and discussed in § 3.4, bimodal p.d.f.s are observed at lower
Raw, as well as at higher Raw; the frequency of occurrence of such bimodal p.d.f.s is,
however, low at these Raw. Further, in such bimodal p.d.f.s observed at lower Raw, the
likelihood of occurrence of the first peak velocities was much higher than that of the
second peak velocities, as shown in figure 3(a) at Raw = 1.66 × 106. In contrast, at the
highest Raw = 6.05 × 108, the bimodal p.d.f.s show the likelihood of occurrence of the
second peak velocities to be much higher than that of the first peak velocities, as seen in
figure 3(c). Hence, comparing the bimodal p.d.f.s at the lower, intermediate and highest
Raw cases in figures 3(a), 2(c) and 3(c), respectively, we conclude that the likelihood of
occurrence of Vbl decreases with increase in Raw, while that of VL increases with increase
in Raw.

As we saw earlier, the velocity fields corresponding to the type A p.d.f.s are oriented
randomly (see figure 2b), implying absence of significant shear due to the LSF in most
regions. In contrast, the velocity field corresponding to type C p.d.f.s, shown in figure 2( f ),
has aligned velocity vectors in most of the domain, implying that the velocity field is
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strongly affected by the shear due to the LSF in most of the domain. In the case of bimodal
p.d.f.s, we separate the velocity field into two regions at the value of U/Vbl at the trough
between the two peaks. Figure 2(d) shows the regions corresponding to velocities of the
first mode as the blue/cyan regions, and the regions corresponding to the velocities of the
second mode as red/yellow regions. The velocities in the blue regions are of random nature,
similar to the velocities in figure 2(b), while those in the red region are of aligned nature,
similar to the velocities in figure 2( f ). The decreasing likelihood of occurrence of Vbl, and
the corresponding increasing likelihood of occurrence of VL with increasing Raw, seen
in the p.d.f.s in figures 3(a), 2(c) and 3(c), can also be clearly seen in the corresponding
velocity fields in figures 3(b), 2(d) and 3(d). In these figures, with increase in Raw, the
areas of the blue/cyan regions, which are mildly affected by shear, decrease, compared to
the areas strongly affected by shear, in the red/yellow regions.

3.3. Area affected by shear
We now study the evolution of areas of such shear affected regions with Raw. At any
instant, for bimodal p.d.f.s, we calculate the ratios of areas corresponding to the first mode
(Abl) and the second mode (Ash) to the total area (A). In unimodal p.d.f.s of type A and
type C, a similar splitting of the total area A into areas strongly affected by shear (Ash)
and areas mildly affected by shear (Abl) can be achieved as well, by using appropriate
thresholds, as described below. In figure 2(b), which is the velocity field corresponding to
a p.d.f. of type A shown in figure 2(a), the green region around (−10, 20) mm has velocity
vectors of aligned nature with velocity magnitudes greater than VL. The velocity vectors
in this region are of a nature similar to that in regions corresponding to the second mode
(red/yellow regions in figure 2d) in bimodal p.d.f.s, or to those in most of the regions
corresponding to type C p.d.f.s (figure 2 f ). Hence when unimodal p.d.f.s of type A occur,
we separate the regions strongly affected by shear from the regions mildly affected by
shear using a threshold at U/Vbl > VL/Vbl. Since the velocities below U/Vbl = 1 are not
the shear velocities due to the LSF (see (3.2)), when p.d.f.s of type C occur, we separate the
areas mildly affected by shear from the areas strongly affected by shear using the threshold
U/Vbl < 1. In this way, at each Raw, we calculate the instantaneous area ratios Abl/A and
Ash/A at all the instants, using the appropriate threshold from the above three thresholds,
depending upon the type of p.d.f. that occurs at each instant.

Figure 5 shows the variation of 〈Abl/A〉 and 〈Ash/A〉 with Raw, where 〈·〉 indicates the
mean of the instantaneous area ratios over all the instants at each Raw. The values of
〈Abl/A〉 decrease with increase in Raw, while those of 〈Ash/A〉 increase with increase in
Raw; increase in Raw then increases the areas strongly affected by shear due to the LSF.
This increase is drastic in the range 1.66 × 106 � Raw � 1.10 × 108, with approximately
20 % of the area strongly affected by shear in the lower limit, changing to 90 % of the area
strongly affected by shear in the higher limit; quite small variations are seen in the extent of
areas strongly affected by shear beyond this range of Raw. The increase of 〈Ash/A〉 shows
a trend opposite to the decrease of 〈Abl/A〉, as expected, since 〈Abl/A〉 + 〈Ash/A〉 = 1. As
shown in figure 5, the dependence of 〈Ash/A〉 on Raw can be approximated well by

〈Ash/A〉 = 1 − (a ebRaw + c edRaw), (3.4)

where a = 0.7229, b = −0.1416 × 10−7, c = 0.09798 and d = −0.5553 × 10−11. The
relation (3.4) implies that at Raw ≈ 1012, 〈Ash/A〉 = 1; the whole area is then affected
by shear. However, this specific limiting value of Raw needs to be verified further
with measurements at higher Raw since (3.4) is not accurate beyond Raw = 6.05 × 108.
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Figure 5. Variation of the mean fraction of areas mildly affected by shear Abl/A, and that of areas strongly
affected by shear 〈Ash/A〉, with Raw. Red squares indicate 〈Ash/A〉; blue circles indicate 〈Abl/A〉; red solid line
uses (3.4); blue dashed line uses (3.5). The error bars show the estimated errors 10.8 % in Abl/A and 31.6 % in
Ash/A at Raw = 6.05 × 108 and 2.76 × 105, respectively. Details of error analysis can be found in Appendix C.

Since Ash + Abl = A, the corresponding relation for 〈Abl/A〉 will be

〈Abl/A〉 = 1 − 〈Ash/A〉, (3.5)

with 〈Ash/A〉 given by (3.4).

3.4. Number of occurrences of p.d.f.s
As mentioned earlier, at each Raw, all three types of p.d.f.s occur with varying relative
occurrences. The percentages of the numbers of type A, B and C p.d.f.s in the total number
of p.d.f.s, at each of the five different Raw, are shown in figure 6. At the smallest Raw =
2.76 × 105 in figure 6, the p.d.f.s are mostly type A and type B, with the number of type
A p.d.f.s (46 %) being roughly equal to the number of type B p.d.f.s (53 %). The type A
p.d.f.s peak at U/Vbl ∼ 1 at this Raw (figure 2a). Even though type B p.d.f.s are dominant
at this Raw, since these type B p.d.f.s were similar to that in figure 3(a), the probabilities
of occurrence of the first peak velocities were much higher than those of the second peak
velocities. The velocities at this Raw were then mostly of the order of Vbl (see (3.3)).

As Raw increases from 2.76 × 105 to 1.31 × 107, the percentages of both type B and type
C p.d.f.s increase from 53 % to 73 %, and from 1 % to 6 %, respectively, at the expense of
type A p.d.f.s, which decrease from 46 % to 21 %. With increase in Raw, the first peaks of
the type B p.d.f.s shift from U/Vbl ∼ 1 at the lowest Raw (figure 3a), through U/Vbl ∼ 2
at the intermediate Raw (figure 2c), to U/Vbl ≈ 3 at higher Raw (figure 3c). Similarly, the
type A p.d.f.s – which peaked at U/Vbl = 1 at low Raw – shift with increase in Raw, to
peak at U/Vbl = 1.83, as shown in figure 2(a). The local NCBLs, which contribute to the
type A p.d.f.s and the first peak of the type B p.d.f.s, could then be changing to a mixed
convection type with increase in Raw.

Comparing the last three Raw in figure 6, we see that the percentage of type C p.d.f.s
increases from 6 % to 70 % with increase in Raw from 1.31 × 107 to 6.05 × 108, at the
expense of both the type A and type B p.d.f.s. Further, as shown in figure 2(e), peaks of
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Figure 6. Variation of the percentages of type A, type B and type C p.d.f.s in the total number of p.d.f.s,
with Raw. The total numbers of p.d.f.s at each Raw are given in table 2. Blue circles indicate type A; magenta
diamonds indicate type B; red squares indicate type C; blue dashed line for 3080 Ra−1/3

w ; magenta solid line for
14.8 Ra1/9

w − 0.0145 Ra−4/9
w ; red dash-dotted line for 0.008 Ra4/9

w ; magenta dashed line for 13 Ra1/9
w ; magenta

dotted line for 23 000 Ra−1/3
w . The error bars show the errors 7.1 % in type A p.d.f.s, 18.7 % in type B p.d.f.s,

and 23.6 % in type C p.d.f.s, at Raw = 2.76 × 105. Details of error analysis can be found in Appendix C.

type C p.d.f.s shift from U/Vbl = 5 at an intermediate Raw = 1.10 × 108 to U/Vbl = 7.6
at the highest Raw = 6.05 × 108. At the highest Raw = 6.05 × 108, the shear velocities
caused by the LSF dominate the boundary layer flow field even though approximately
30 % of the p.d.f.s are still type A and type B, which have their sole/first modes showing
mixed convection nature. Figure 5 shows that these mixed convection regions that are
mildly affected by shear are limited to approximately 10 % of the area at the highest Raw.

We now look at the scaling of percentages of types of p.d.f.s with Raw. As shown in
figure 6, as Raw increases, the percentages of type A peaks decrease from 46 % at Raw =
2.76 × 105 and become negligible (3 %) at the highest Raw. The figure shows that the
percentages of type A peaks scale as

NA = 3080 Ra−1/3
w , (3.6)

in the same way as λ0 (see (1.5)) scales with Raw. At the same time, the percentages of
type C peaks increase from 1 % at Raw = 2.76 × 105 and become the highest (70 %) at the
highest Raw, scaling as

NC = 0.008 Ra4/9
w , (3.7)

in the same way as the shear velocities caused by the LSF VL (see (3.2)) scale with Raw.
The variation of percentages of type B peaks with Raw is non-monotonic, as shown in
figure 6, and can be fitted with a combination of increasing and decreasing power-law
functions, of the form

NB = 14.8 Ra1/9
w − 0.0145 Ra−4/9

w . (3.8)

Interestingly, as shown in figure 6, for the first three Raw, this relation has an effective
exponent 1/9 = 4/9 − 1/3, a sum of the power-law exponents of the variations of
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Figure 7. Variation of the mean Reynolds numbers based on the first peak velocities of type B p.d.f.s and the
sole peak of the type A p.d.f.s (Re1), and that based on the second peak velocities of type B p.d.f.s and the sole
peak of the type C p.d.f.s (Re2), with Raw.

percentages of type C and type A p.d.f.s, respectively. For the last two Raw, the effective
power-law exponent for the variation of the percentages of type B p.d.f.s is −1/3.

3.5. Experimental scaling of peak velocities
At each Raw, from various instants, using all the second peaks of the bimodal p.d.f.s of
type B, and the sole peaks of the unimodal p.d.f.s of type C, whichever occurs at each
instant, we calculate the mean velocity V2, and the corresponding Reynolds number Re2 =
V2H/ν. In estimating V2, we neglect the instants when type A p.d.f.s occur. Figure 7
shows the variation of Re2 with Raw, along with (3.2), with the error bars showing the
2σ variation of the V2 values; it is clear that Re2 scales in the same way as ReL given by
(3.2), with a small increase in the prefactor. Similarly, at each instant, we calculate the
mean from the first peak of the bimodal p.d.f.s and the unimodal peak of type A p.d.f.s,
whichever occurs at that instant, for each Raw. We denote this mean velocity as V1, with
the corresponding Reynolds number as Re1 = V1H/ν; p.d.f.s of type C are skipped in this
calculation. Figure 7 shows the variation of Re1 with Raw; interestingly, Re1 ∼ Ra0.38

w ,
the same dependence as that of Nu on Raw observed by He et al. (2012) at high Raw.
The variation of Re1 does not follow the Ra1/3

w scaling of NCBL velocities (3.3), which
are expected to occur in the absence of external shear; neither does it follow the scaling
of ReL in (3.2) due to LSF. As we have seen in § 3.2, the peaks of type A p.d.f.s and
the first peak of the type B p.d.f.s occur at values larger than Vbl with increasing Raw,
as expected due to the forcing of the boundary layers by the increasing LSF strength.
We hence expect the deviation of Re1 from (3.3) to be due to the shear generated by
the LSF changing the characteristic velocities within the boundary layer. Based on this
expectation, we now look at the expected theoretical variation of the characteristic velocity
within NCBLs when these local boundary layers are forced by the shear due to the LSF
velocity VF.
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4. Scaling of boundary layer velocity forced by shear

4.1. Scaling relation for horizontal velocity
We consider a two-dimensional laminar NCBL on a horizontal surface, forced by an
external shear due to an LSF of strength VF, as shown in figure 8. The external shear at the
edge of the boundary layer is of strength AVF, where A = uy=δ/VF is the dimensionless
shear at the edge of the boundary layers. We consider local boundary layers that occur on
either side of the plumes on the hot plate, unlike the global, single boundary layer that is
considered in many flux scaling theories (Grossmann & Lohse 2000; Ahlers et al. 2009;
Chilla & Schumacher 2012; Scheel & Schumacher 2017). These local boundary layers
are an order thinner than the global boundary layers (δnc/δpb = 0.2 at Ra = 1.21 × 109),
which, due to their larger thickness, are more likely to be affected by the turbulent bulk.
These local boundary layers on the hot plate become unstable to turn upwards and form the
plumes. Since plumes are the outcome of the instability of these thin local boundary layers,
on either side, it is natural to expect that before they become unstable, these boundary
layers will be laminar. Further, successful scaling laws for the mean spacing between such
line plumes (Theerthan & Arakeri 1998, 2000; Puthenveettil & Arakeri 2005), their total
lengths (Puthenveettil et al. 2011) and their mean dynamics (Gunasegarane & Puthenveettil
2014) have all been obtained assuming steady two-dimensional laminar NCBLs (Rotem
& Classen 1969; Pera & Gebhart 1973a) feeding these plumes. More importantly, the
observed vertical distributions of fluctuations of velocities and temperature near the hot
plate have been predicted well by a model that assumes laminar boundary layers giving rise
to laminar plumes (Theerthan & Arakeri 1998). This means that the observed fluctuations
in velocity and temperature near the hot plate are created by the spatial averaging of a
spatially non-uniform field consisting of many laminar local boundary layers giving rise
to many plumes, as well as by the lateral motion of such plumes (Shevkar & Puthenveettil
2022). Also, as an a posteriori justification, the scaling laws obtained in the present
study using two-dimensional steady laminar local boundary layer equations, forced by
shear, match well with our measurements in turbulent RBC shown later, in figure 10. For
these reasons, we expect that our assumption of a laminar mixed convection nature of the
local boundary layers that occurs on either side of the plumes on the plate in turbulent
convection, which we use to find the scaling of peak velocities in areas mildly affected by
shear, to be valid, for at least Ra � 109. The integral boundary layer equations

∂

∂x

∫ δ

0
u2 dz − AVF

∂

∂x

∫ δ

0
u dz − gβ

∫ δ

0

∂

∂x

∫ δ

0
(T − TB) dz dz + ν

∂u
∂z

∣∣∣∣
z=0

= 0 (4.1)

and
∂

∂x

∫ δT

0
u(T − TB) dz + α

∂T
∂z

∣∣∣∣
z=0

= 0, (4.2)

derived as (A8) and (A13), relate the horizontal velocity and temperature distributions
within such boundary layers.

By using the characteristic scale for the driving temperature difference and the scales
for the lengths in the horizontal and vertical directions in (4.1) and (4.2), with the external
shear given by AVF, we now obtain scaling relations for Uc, the characteristic horizontal
velocities within NCBLs forced by the shear due to the LSF. The characteristic scale of
temperature difference in (4.1) and (4.2) is �Tw. The vertical length scale in (4.1) is δ,
while that in (4.2) is δT , as shown in figure 8. Since these boundary layers become unstable
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Figure 8. Schematic of the local boundary layer being forced by an external shear due to the LSF for Pr > 1:
(a) side view; (b) top view, and (c) view along line A–A. Dash-dotted line indicates horizontal velocity profile
within an NCBL; dashed line indicates horizontal velocity profile within a PBBL; solid line indicates horizontal
velocity profile due to forcing by external shear of NCBL velocities.

at a horizontal distance to result in line plumes, the appropriate characteristic horizontal
distance is half of the mean plume spacing λ, given by (1.6). However, for the present
range of Raw, the second term in (1.6) becomes at least an order smaller than the first term
and can hence be neglected; then λ ≈ λ0. Using these characteristic scales, the order of
magnitude balances of (4.1) and (4.2) become

U2
c δ

λ0/2
− AVFUcδ

λ0/2
− gβ �Tw δ2

λ0/2
+ νUc

δ
∼ 0 (4.3)

and
Uc �Tw δT

λ0/2
∼ α �Tw

δT
. (4.4)

We now assume
δ

δT
= C2 Prn, (4.5)

where C2 and n are constants. Eliminating δ from (4.3) using (4.5) and (4.4), we obtain
the scaling relation for Uc in terms of Peλ = Ucλ0/2α – the Péclet number based on λ0 –
as

8E
Pe5/2
λ

Raλ
− ε

4A
Prn Pe3/2

λ − C2 ∼ 0, (4.6)

where
ε = Reλ/Raλ, (4.7)
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Figure 9. Variation of the critical, local dimensionless boundary layer thickness (4.18) with the shear Reynolds
number based on the mean plume spacing (4.8) at Pr = 1 and Raλ = 1.07 × 105. Symbols and lines are: blue
circles, numerical solution of (4.17); solid black line, (4.22); cyan dashed line, NCBL; magenta dots, PBBL;
dash-dotted line, (D5); green diamonds, numerical solution of (4.17) at Pr = 0.7 and Raλ = 9.63 × 104; red
crosses, numerical solution of (4.17) at Pr = 6 and Raλ = 1.83 × 105. The inset shows the variations of I (see
(4.26)) and J (see (4.27)) with Pr for n = 0.5 and Γ = 1.71: blue triangles, I(Pr); red squares, J(Pr); blue
dotted line, 0.09 Pr0.14. In computing solutions of (4.22) and (D5), terms of orders ε2 and ε2

1 were neglected,
respectively.

with
Reλ = VFλ0/ν (4.8)

being the shear Reynolds number based on λ0, Raλ = gβ �Tw λ
3
0/να being the Rayleigh

number based on λ0, and

E(Pr) = C2
2 Pr2n−1 + 1

C2
2 Pr3n

. (4.9)

4.2. Perturbation solution
The values of Reλ, Raλ and ε for the range of Raw in the present study are listed in table 3.
With increase in Raw, Raλ remains of order 105, while Reλ changes by a factor 7 from 30
to 209, so that ε increases by an order from 10−4 to 10−3; ε is then a small parameter. We
can then find the solution of (4.6) as a power series in ε of the form

Peλ = Peλ0 + ε Peλ1 + ε2 Peλ2 + O(ε3). (4.10)

Substituting (4.10) in (4.6) and comparing the coefficients of similar powers of ε, we obtain

Peλ0 =
(

C2

8E

)2/5

Ra2/5
λ , (4.11)

Peλ1 = 1
5E Prn A Raλ (4.12)
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Figure 10. Variation of Reynolds number, based on the mean velocity from the sole peaks of type A p.d.f.s
and the first peak of type B p.d.f.s, with Raw: black circles, (4.35) with Rebs = Re1; black solid line, 1.0 Ra1/3

w .
Bottom right inset shows the variation of Rebs (see (4.33)) with Raw at Pr = 1: blue solid line, Γ = 1; green
solid line, Γ = 2; magenta solid line, Γ = 5; red solid line, Γ = 20; black dashed line, Ra0.375

w ; cyan dashed
line, Ra1/3

w . Top left inset shows variation of Rebs (see (4.33)) with Raw at Γ = 1: blue solid line, Pr = 1;
green solid line, Pr = 5; magenta solid line, Pr = 25; red solid line, Pr = 100; black dashed line, Ra0.375

w ; cyan
dashed line, Ra1/3

w . Bottom left inset shows the variation of the dimensionless shear velocity χ (see (4.32))
with Raw: green solid line, Γ = 1; black dashed line, Γ = 10.

and

Peλ2 = 0.069

C2/5
2 E8/5 Pr2n

A2 Ra8/5
λ . (4.13)

Substituting (4.11)–(4.13) back in (4.10), we obtain

Peλ =
(

C2

8E

)2/5

Ra2/5
λ + 1

5E Prn A Reλ + 0.069

C2/5
2 E8/5 Pr2n

(A Reλ)2

Ra2/5
λ

+ O(ε3). (4.14)

Using (1.5) to replace λ0 appearing in Reλ and Raλ in (4.14), then using the definitions of
Raw, Rebl, Re and Zw, and dropping the second-order terms in Reλ, we obtain the Reynolds
number based on the characteristic velocity in the local NCBL, forced externally by the
LSF, as

Rebs = UcH
ν

=
(

C2

E

)2/5

Rebl + 0.4
E Prn+1 A Re + O(ε2), (4.15)

where Rebl is given by (3.3). Using (1.1) for Re in (4.15) will not capture the effect of Γ on
the LSF strength, which is strong in the present case since Γ changes from 10 to 1.71 with
increase in Ra in the present experiments. To account for the dependence of Γ on Re, we
hence measure the LSF velocity in the present experiments and obtain the corresponding
relation (B1) for Re(Ra, Pr, Γ ) in Appendix B, which is then used in (4.15).

As per (4.15), the velocities in the local boundary layers, in the presence of LSF, are
then a linear perturbation of the NCBL velocities by the large-scale velocities, the amount
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Raw Reλ Raλ ε = Reλ/Raλ

2.76 × 105 29.98 1.82 × 105 1.64 × 10−4

1.66 × 106 39.18 1.76 × 105 2.23 × 10−4

1.31 × 107 76.69 1.80 × 105 4.27 × 10−4

1.10 × 108 137.08 1.76 × 105 7.78 × 10−4

6.05 × 108 208.62 1.75 × 105 1.19 × 10−3

Table 3. Values of the Rayleigh and Reynolds numbers based on the mean plume spacing, along with the
values of the perturbation parameter for the present study.

of perturbation being dependent on the Pr. This perturbation also depends on the values
of shear at the edge of these local boundary layers, given by the dimensionless shear

A = u|z=δ

VF
= 2

δ

δpb
−
(

δ

δpb

)2

, (4.16)

obtained as (A5) in Appendix A, using the von Kármán velocity profile. Since VF, δpb and
δ in (4.16) are all functions of Raw and Pr, A is also a function of Raw and Pr. We now
find this expression for the dimensionless shear (A) at the edge of the velocity boundary
layer. Since A, given by (4.16), is a function of δ, whose dependence on Raλ and Reλ is
unknown, we first proceed to find the dependence of δ on Raλ and Reλ.

4.3. Velocity boundary layer thicknesses for small shear
Replacing δT in (4.4) with δ using (4.5), and substituting the resulting expression for Uc
in (4.3), we obtain

4
C2

2
ξ5 + 2A Pr2n εξ2 − C2

2 Pr5n E
Raλ

∼ 0, (4.17)

where

ξ = δ

λ0
= Ra1/3

δ

C1 Prn1
(4.18)

is the dimensionless local velocity boundary layer thickness when these boundary layers
are perturbed by the LSF, with Raδ = gβ �Tw δ3/να being the Rayleigh number based on
δ and �Tw. Let the solution for (4.17) be a power series in ε of the form

ξ = ξ0 + εξ1 + O(ε2). (4.19)

Substituting (4.19) in (4.17) and comparing the coefficients of different powers of ε, we
get

ξ0 = 0.76 Prn

(
C4

2E
Raλ

)1/5

(4.20)

and

ξ1 = −0.17A
(

C2 Raλ
E

)2/5

. (4.21)
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Thus the perturbation solution of (4.17), obtained by substituting (4.20) and (4.21) in
(4.19), after neglecting higher-order terms, is

ξ ∼ 0.76 Prn

(
C4

2E
Raλ

)1/5

− 0.17
(

C2

E

)2/5

A
Reλ

Ra3/5
λ

+ O(ε2). (4.22)

Rewriting (4.22) in terms of Raδ by using (4.18) and (1.5), we get

Ra1/3
δ = δ

Zw
∼ 36.1 Prn+0.1

(
C4

2E
Raλ

)1/5

− 8.1
Pr−0.1

(
C2

E

)2/5

A
Reλ

Ra3/5
λ

+ O(ε2) (4.23)

as the expression for the critical, local dimensionless boundary layer thickness, when
these boundary layers are forced by an external shear due to the LSF. The first term on
the right-hand side of (4.23) is the critical dimensionless boundary layer thickness in the
absence of external shear, while the second term is the perturbation due to the external
shear. For no external shear, Reλ → 0, λ→ λ0 and n = 0.5 (Puthenveettil et al. 2011).
Then, using (1.5) and (1.3), for no external shear, (4.23) becomes

Raδ ∼ 45.1
(

C4
2E
)3/5

Pr1.62, (4.24)

which, being constant for a given fluid, is of the same form as the marginal stability
condition proposed by Howard (1964).

Figure 9 shows the variation of ξ with Reλ when A = 1 for three different cases
(Pr, Raλ) = (0.7, 9.63 × 104), (1, 1.07 × 105), (6, 1.83 × 105), as given by the numerical
solution of (4.17). A similar plot, but for the Pr = 1 case alone, was shown by Puthenveettil
& Harsha (2010). It needs to be noted that in RBC, Reλ, Raλ and A are all actually
interdependent through the LSF, and none of these can be fixed independent of others.
Figure 9 could then be considered to show the expected variation of ξ when a small
shear is forced externally and independently of the fixed Raw, as occurs in the case of
mixed convection that causes negligible change of λ from its no-shear value λ0. Figure 9
also shows the variations predicted by the perturbation solutions (4.22) at A = 1 for
(Pr, Raλ) = (1, 1.07 × 105). The perturbation solution (4.22) is a good approximation for
the variation of ξ predicted by (4.17) for Reλ < 250. The figure shows that for Reλ < 400,
ξ is a function of Pr and takes larger values for higher Pr; however, ξ becomes a very
weak function of Pr for Reλ > 400.

For large Reλ, figure 9 shows that the variation of ξ is similar to that in the Blasius
boundary layer. However, at large Reλ, λ will vary from λ0 (Shevkar et al. 2019), hence the
actual variation of ξ will deviate from that shown in figure 9. The singular perturbation
solution of (4.17) for large shear, given in Appendix D, shown by the dash-dotted line in
figure 9, matches the numerical solution of (4.17) and the variation for PBBLs for large
Reλ. Figure 9 also shows that at Pr = 1, the value of ξ decreases by only 10.5 % as Reλ
increases from 100 to 102, while it decreases by 57 % for further increase in Reλ from 102

to 103. Similarly, at Pr = 6, the value of ξ decreases by 20 % and 62 % for the increases in
Reλ from 100 to 102, and from 102 to 103, respectively. So at any Pr, the deviation of the
values of ξ from its natural convection value in (4.20) is less, approximately, for Reλ �
100. For Reλ > 100, the value of ξ decreases more rapidly at higher Pr with increase in
Reλ so as to match the variation given by the large shear value ξs0 (see (D3)), which again
is independent of Pr. A similar, larger increase of λ at larger Pr has been found by Shevkar

962 A41-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.299


P.P. Shevkar, S.K. Mohanan and B.A. Puthenveettil

et al. (2019) at a given Raw and Re. Similarly, in sheared convection, with increasing wall
shear velocity, Blass et al. (2020) found a more pronounced increase of Nu at larger Pr,
which could be due to this larger decrease of δ with increasing shear at higher Pr.

For Reλ < 30, at any Pr, as shown in figure 9, ξ remains approximately independent of
Reλ, which is the expected variation for a pure NCBL. This constancy of ξ for small shear
can be quantified by rewriting (4.22) in terms of Raw. Using λ0 from (1.5) in (4.22), and
then using (1.3) and (B1), we obtain

ξ ∼ I − JA Ra1/9
w + O(ε2), (4.25)

where

I(Pr) = C3 Prn−3/50 E1/5 (4.26)

and

J(Pr) = C4Γ
−0.57

Pr3/4 E2/5 , (4.27)

with C3 = (C4
2/4C3

1)
1/5 and C4 = 0.27(C2/C2

1)
2/5.

For Pr > 1, since the velocity boundary layer thickness is more than the thermal
boundary layer thickness, in (4.5), n is positive and less than 1 (Shishkina et al. 2010);
we assume that n = 0.5, the same value as in the no-shear case (Puthenveettil et al. 2011),
for the present case of small shear. The inset of figure 9 shows that for n = 0.5, I(Pr)
(see (4.26)) is more than an order larger than J(Pr) (see (4.27)). Then since A < 1 (see
(A5) and figure 8), the second term in (4.25), which has a weak dependence on Raw, gives
negligible contribution to ξ when Pr > 1, for the range of Raw in the present study; (4.25)
then implies that

ξ ∼ I(Pr). (4.28)

The relation (4.28) implies that in the presence of weak shear, δ and λ0 have the same
functional dependence on Raw, so that their ratio is only a function of Pr; a similar
dependence occurs in the no-shear case, as has been shown by Puthenveettil et al.
(2011). As shown in the inset of figure 9, for n = 0.5, the rational function (4.26) can
be approximated by a simple power law, I(Pr) ∼ Pr0.14; (4.28) then becomes

ξ ∼ C5 Pr0.14, (4.29)

where C5 = 0.09. Rearranging (4.29) using λ0 from (1.5), we get

δ

H
= C6 Ra−1/3

w Pr0.24, (4.30)

where C6 = C1C5 = 4.28. The Pr dependence of δ in (4.30) is the same as that obtained
by Lam et al. (2002) for the range 6 � Pr � 1027 in RBC.

4.4. Dimensionless shear (A) at the edge of the boundary layers
Now that the expression (4.30) for δ, the NCBL thickness forced by small shear, has been
obtained, we substitute (4.30) and (1.4) using (B1) in (A5), and simplify, to obtain the
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dimensionless shear velocity acting on the edge of the local boundary layers:

A = χ(2 − χ), (4.31)

where

χ = δ

δpb
= 1.37C6

Γ 0.285 Ra1/9
w Pr0.09

. (4.32)

Interestingly, (4.31) and (4.32) show that for a given Γ and Pr, within the limit given by
(E4), the dimensionless shear at the edge of the local NCBL decreases with increase in Raw

as A ∼ (2Ra1/9
w − 1)/Ra2/9

w . In the present study, since Γ and Raw increase much more
than the decrease of Pr with increasing Raw, A decreases from 0.87 at the lowest Raw,
to 0.71 at the highest Raw. However, the velocity at the edge of these boundary layers,
due to the shear by the LSF, is u|y=δ = AVF from (A5), where VF ∼ Ra4/9

w from (B1).
Hence the actual shear forcing at the edge of these local boundary layers increases with
Ra as u|y=δ ∼ Ra1/3

w − Ra2/9
w , which has an approximate power-law dependence Ra0.35 in

the range 107 < Raw < 1010. As per the present analysis, since Vbl scales as Ra1/3
w (see

(3.3)) with increasing Raw, the local NCBL would eventually become dominated by shear.
However, the present analysis, limited to low shears, does not consider the change in plume
spacing due to shear given by (1.6), as well as the change in boundary layer thickness with
shear (see (4.30)). The above conclusion of local NCBLs becoming shear-dominant at
large Raw has to be explored further by extending the present analysis to larger shears by
including the changes in the plume spacing and the boundary layer thicknesses at larger
shear.

4.5. Reynolds number based on the characteristic velocity Uc

We now obtain the effect of external shear caused by the LSF on the velocities within the
boundary layers. Substituting (4.31) and (B1) in (4.15), and simplifying, we obtain

Rebs = Rebl

((
C2

E

)2/5

+ F
Γ 0.855 (2 − χ)

)
(4.33)

as the Reynolds number based on the characteristic velocity close to the hot plate in RBC
when the local boundary layers are forced by the LSF. Here,

F(Pr) = 0.46 C6

E Pr1.28 , (4.34)

with χ being given by (4.32), Rebl by (3.3), and E by (4.9), and we have chosen n = 0.5
in (4.5), the value in the no-shear case (Puthenveettil et al. 2011). Comparing (4.33) and
(4.15), we can rewrite (4.33) as

Rebs = Reb + Res, (4.35)

i.e. the sum of a buoyant contribution and a shear perturbation, where

Reb =
(

C2

E

)2/5

Rebl = 1.07 Ra1/3
w Pr−0.38 (4.36)

and

Res = 0.4
E Pr1.5 A Re = 1.27

Γ 0.855 Ra1/3
w Pr−0.76 (2 − χ), (4.37)

with Rebl, Re and A given by (3.3), (B1) and (4.31), respectively.
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Equation (4.35) gives the variation of the dimensionless boundary layer velocity as a
function of Raw, Pr and Γ in RBC for small shear by the LSF. The variation predicted
by (4.35), shown as the solid line in figure 10, matches the variation of Re1, the Reynolds
number based on the sole peaks of type A p.d.f.s and the first peaks of type B p.d.f.s for
a reasonable value C2 = 0.72. The single-peak type A p.d.f.s occurred at the low shear at
low Raw, while the first peaks of type B p.d.f.s were due to the low-shear regions at all
Raw. The deviation of the data point at the lowest Raw in figure 10 is expected to occur
since (1.4) may not be valid for Raw < 107.

It is interesting to see the effective power-law dependence of Rebs on Raw corresponding
to (4.35). The top left inset of figure 10 shows the variation of Rebs with Raw given by
(4.35) at Γ = 1 for 1 � Pr � 100. At Pr = 1, a power law Rebs ∼ Ra0.375

w approximates
(4.35) for 107 � Raw � 3.3 × 108. As Pr is increased from 1 to 100, the exponent of Raw
is decreased from 0.375 to 1/3; Rebs then scales with Raw in the same way as Rebl scales
with Raw (see (3.3)). Therefore, the present analysis suggests that for Pr � 100, the effect
of external forcing on the local NCBLs become negligible close to the hot plate. Similarly,
the bottom right inset of figure 10 shows that with increase in Γ , the dependence of Rebs

on Raw becomes weaker, and for Γ � 20, Rebs ∼ Ra1/3
w . It is interesting to note that at

Pr = 1 and Γ = 1, Rebs shows the same power law of Nu versus Raw observed at large
Raw (He et al. 2012), which has been proposed as a sign of the ultimate regime, even
though this inference has been disputed by Urban et al. (2012). Considering that at low
Raw, the scaling of Reb in (4.36) (or Rebl in (3.3)) with Raw is the same as that of Nu with
Raw, the power-law exponent 0.375 for the dependence of Rebs on Raw at higher Raw is
analogous to what occurs at low Raw; the reason for such an interesting occurrence needs
to be investigated.

5. Conclusions

The primary contributions of the present work include the novel observations of the
three types of horizontal velocity p.d.f.s within the boundary layers, their evolution with
Rayleigh numbers (Ra), the evolution of the area affected by shear with Ra, and the
novel scaling relations for the dominant horizontal velocities within the boundary layers.
Together, these illustrate the effect of external forcing by the large-scale flow (LSF) –
which we showed to be a function of Ra, Pr and the aspect ratio Γ (see (B1)) – on the
boundary layers on the plate in turbulent Rayleigh–Bénard convection (RBC).

At lower Ra (∼106), in a horizontal plane close to the hot plate, we observed
predominantly (figure 2a) unimodal, type A p.d.f.s of horizontal velocity magnitudes (U)
that had a peak at approximately the natural convection boundary layer (NCBL) velocities
(Vbl) (see (3.3)). At higher Ra (∼109), these evolved into predominantly unimodal type C
p.d.f.s (figure 2e), with a velocity peak at approximately double the value of VL (see (3.2)),
the LSF velocity at the edge of the boundary layers. This shifting of p.d.f.s with increase
in Ra was also accompanied by more-aligned and larger-magnitude velocity vector fields
(figures 2b, f ). Not only the type of p.d.f.s but also their relative occurrences shifted with
increasing Ra; the occurrence of type A p.d.f.s decreased from approximately 50 % of
instants at low Ra to approximately 10 % of instants at high Ra, while the occurrence
of type C p.d.f.s increased from approximately 1 % to 70 % of the instants (figure 6).
Interestingly, this change in percentage occurrences of type A and type C p.d.f.s followed
a dependence of Ra−1/3 (see (3.6)) and Ra4/9 (see (3.7)), respectively; the magnitude of
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the exponents was the same as those in the classical flux scaling and the scaling of the
Reynolds number (Re) (see (1.1)) based on the LSF, respectively.

This shift in types and numbers of p.d.f.s occurred through a stage at intermediate Ra
where the p.d.f.s were predominantly bimodal (figure 2c). The numbers of these type B
p.d.f.s increased from approximately 50 % of instants at low Ra to approximately 70 %
of instants at Ra ≈ 107, before decreasing to approximately 25 % of instants at Ra ≈ 109

(figure 6). The first mode of these bimodal type B p.d.f.s peaked at velocities slightly
larger than Vbl, while the second mode peaked at VL (figure 2c); the regions contributing
to the second mode had more aligned velocity fields with larger magnitudes (figure 2d).
Considering the regions that had aligned velocity vectors with larger magnitudes as
shear-affected – which occurred in regions contributing to the second mode in type
B p.d.f.s, in regions with U > VL for type A p.d.f.s, and regions with U > Vbl for
type C p.d.f.s – we obtained the variation of shear-affected areas with Ra (figure 5).
The shear-affected areas increased exponentially with Ra, from approximately 20 % at
Ra = 106, before saturating at approximately 90 % at Ra = 109; the proposed scaling law
(3.4) for this variation matched the observed variation. Thus we showed that the effects
of increasing shear, due to increasing LSF strength with Ra, on the boundary layers on
the plate occur in the following three simultaneous manifestations: (a) change of velocity
p.d.f.s, from the ones that peaked at Vbl to those that peaked at velocities �VL; (b) an
increase in the occurrence of such p.d.f.s that peaked at �VL; and (c) an exponential
increase, and then saturation, of the extent of areas affected by shear, that had aligned
velocity vectors with larger magnitudes.

In the regions where the effect of shear was felt strongly, i.e. in those regions that had
aligned velocity vectors with larger magnitudes, the scaling of velocities – estimated as the
scaling of the peaks of type C p.d.f.s and the second mode of the type B p.d.f.s – followed
the scaling of VL. The magnitudes of these velocities (V2) were, however, larger than VL,
but smaller than VF, the LSF velocity far away from the plate. In contrast, in regions
mildly affected by shear that did not have aligned velocity vectors with larger magnitudes,
the scaling of velocities – estimated as the scaling of the peaks of type A p.d.f.s and the
peaks of the first mode of type B p.d.f.s – followed neither the scaling of Vbl nor that of
VL. Instead, here, the velocities followed Ra0.38, the same dependence of flux observed by
He et al. (2012), suggested as a sign of the ultimate regime. Since the peak of the velocity
p.d.f.s from these regions shifted to larger velocities with increase in Ra, and since the
scaling anyway was different from that of Vbl, we proposed this Ra0.38 scaling to be due
to the effect of shear by the LSF on the local NCBLs.

Using an order of magnitude balance of integral equations for NCBLs forced by small
external shear, (A8) and (A13), we then quantified this effect of shear on the local
boundary layers by obtaining a scaling relation (4.6) for the characteristic velocity (Uc)
within such boundary layers. Here, the boundary layers were assumed to be embedded
within a Prandtl–Blasius boundary layer (PBBL) that had a von Kármán velocity profile
(A4), and the plume spacings (1.5) assumed to be unchanged due to the small shear. The
perturbation solution of this scaling relation showed that Uc is a sum of Vbl and u|y=δ ,
the shear at the edge of these local boundary layers, with functions of Pr as prefactors
on each term of the sum (4.15). The effect of shear was then a linear perturbation of the
natural convection velocities by the LSF velocities, with the amount of perturbation being
dependent on Pr and the shear u|y=δ at the edge of the boundary layers.

Since u|y=δ was dependent on the velocity boundary layer thickness δ of these local
boundary layers in the presence of external shear, we obtained a scaling relation (4.22),
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δ = f1Zw + f2Z2
w/Zsh, where f1 and f2 are functions of Pr, Zw is the natural convection

length scale near the plate (see (1.3)), and Zsh = ν/u|y=δ is the viscous shear length at
y = δ. At the low shears considered in the present study, the second term in the above
relation for δ could be dropped so that δ became the same as the velocity boundary layer
thickness of NCBLs in the absence of shear. Using this asymptotic form of δ, we obtained
u|y=δ , which scaled as Ra1/3

w − Ra2/9
w , with an equivalent power law or Ra0.35

w . Then, since
Vbl ∼ Ra1/3

w , with increase in Raw, we proposed that these local NCBLs are expected to
become shear-dominated at some large Raw, even though only an analysis that includes the
effect of shear on δ and plume spacing, at larger shear, can confirm this expectation. Using
this u|y=δ in the perturbation solution for Uc gave the characteristic Reynolds number
Rebs within these boundary layers as a sum of buoyant contribution and shear perturbation
(see (4.35)). The relation (4.35) for Rebs – obtained using the derived relations for the
shear at the edge of the local boundary layers (4.31) and the local velocity boundary
layer thickness subjected to small shear (4.30) – matched the measurements of Reynolds
number Re1 based on the peaks of type A p.d.f.s and the first peak of type B p.d.f.s of
horizontal velocity magnitudes (figure 10), obtained from stereo PIV in a plane close to
the hot plate. Similarly, the relations for the areas affected by shear (3.4) and the number
of occurrences of various types of p.d.f.s (3.6)–(3.8) also matched our experimental
observations for 2.76 × 105 � Raw � 6.05 × 108, 4.69 � Pr � 5.88 and 1.71 � Γ � 10,
thereby validating all these relations in this range of parameters.

These relations and the associated experimental observations help us to understand the
varied effects of shear due to LSF on the local boundary layers on the hot plate. The scaling
(4.35), obtained for the velocities in the mildly shear-affected regions in the boundary
layers, appears to contribute progressively less with increase in Ra, in terms of the areas
in which they occur, as well as in their number of occurrences. However, this could be
because with a horizontal plane of measurement at a fixed height hm, more areas of the
boundary layers, which become progressively thinner with increase in Ra, will evade
the measurement plane, as could be inferred from figure 8(a). In such a situation, the
high-shear regions that show a velocity scaling the same as VL could actually be outside
the local boundary layers, with (4.35) being the scaling in all boundary layers. In such a
scenario, the scaling (4.35) could be the key relation showing the effect of shear by LSF
on the boundary layers on the hot plate. Application of (4.35) in that case, we hope, will
lead to explanations for the anomalous flux scaling in turbulent convection, as well as
clarifying the question of the ultimate regime. However, in obtaining these relations, we
neglected the effect of shear due to the LSF on the plume spacings and the local boundary
layer thicknesses; the present relations will then be valid only for the case of small shear,
i.e. Raw < 5.5 × 1011 (see Appendix E). To explain the anomalous flux scaling from these
effects, we need to extend the present analysis to higher Ra by including these neglected
effects.
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Appendix A. Integral boundary layer equations

The integral x-momentum equation is∫ δ

0
u

∂u
∂x

dz +
∫ δ

0
w

∂u
∂z

dz = − 1
ρ

∫ δ

0

∂p
∂x

dz + ν

∫ δ

0

∂2u
∂z2 dz, (A1)

where δ(x) is the velocity boundary layer thickness, and p(x, z) is the pressure within
the boundary layer. Rewriting the second term in (A1) as

∫ δ

0 (∂(wu)/∂z − u ∂w/∂z) dz,
integrating, replacing ∂w/∂z = −∂u/∂x from continuity, noticing that

∫ δ

0 (u ∂u/∂x) dz =∫ δ

0 (∂u2/∂x) dz/2, and since (∂u/∂z)|z=δ ≈ 0 for small external shear, we obtain∫ δ

0

∂

∂x
u2 dz + (wu)|z=δ = −1

ρ

∫ δ

0

∂p
∂x

dz − ν
∂u
∂z

∣∣∣∣
z=0

. (A2)

The vertical velocity at the boundary layer edge in the second term in (A2) can be obtained
by integrating the continuity equation and applying the Leibniz rule as

w|z=δ = − ∂

∂x

∫ δ

0
u dz + u|z=δ

∂δ

∂x
. (A3)

To obtain u|z=δ in (A2) and (A3), as shown in figure 8, we assume that the local boundary
layers are embedded within a PBBL, which is driven by the LSF strength of VF, acting at
distance δpb (see (1.4)) from the hot plate. Using the von Kármán velocity profile

u(z)
VF

= 2
z

δpb
−
(

z
δpb

)2

(A4)

for the PBBL, the dimensionless shear velocity acting on the upper edges of the local
NCBLs, at height z = δ from the hot plate, is then

A = u|z=δ

VF
= 2

δ

δpb
−
(

δ

δpb

)2

. (A5)

Applying the Leibniz rule to the first term in (A2), substituting (A3) in (A2), simplifying,
and finally replacing u|z=δ from (A5), we obtain

∂

∂x

∫ δ

0
u2 dz − AVF

∂

∂x

∫ δ

0
u dz + 1

ρ

∫ δ

0

∂p
∂x

dz + ν
∂u
∂z

∣∣∣∣
z=0

= 0. (A6)

To replace the unknown pressure in (A6), we integrate the z-momentum equation, ∂p/∂z =
ρgβ(T − TB), to obtain,

p = −ρgβ

∫ δ

0
(T − TB) dz, (A7)

where T(z) is the temperature distribution within the boundary layer. Substituting (A7) in
(A6), we obtain

∂

∂x

∫ δ

0
u2 dz − AVF

∂

∂x

∫ δ

0
u dz − gβ

∫ δ

0

∂

∂x

∫ δ

0
(T − TB) dz dz + ν

∂u
∂z

∣∣∣∣
z=0

= 0 (A8)

as the integral momentum balance equation for the local NCBLs, forced externally by the
LSF.
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The integral energy equation is∫ δT

0
u

∂T
∂x

dz +
∫ δT

0
w

∂T
∂z

dz = α

∫ δT

0

∂2T
∂z2 dz, (A9)

where δT(x) is the thermal boundary layer thickness of the local boundary layer. The first
term in (A9) can be written as

∫ δT
0 (∂(uT)/∂x) dz − ∫ δT

0 T(∂u/∂x) dz. Applying the Leibniz
rule to the first term in this equation, the first term in (A9) becomes

∂

∂x

∫ δT

0
uT dz − (uT)|z=δT

dδT

d x
−
∫ δT

0
T

∂u
∂x

dz. (A10)

Similarly, rewriting the second term in (A9) as
∫ δT

0 (∂(wT)/∂z) dz − ∫ δT
0 T(∂w/∂z) dz,

integrating the first term and using the continuity equation on the second term, the second
term in (A9) becomes

(wT)|z=δT +
∫ δT

0
T

∂u
∂x

dz. (A11)

Replacing w|z=δT in (A11) by −(∂/∂x)
∫ δT

0 u dz + u|z=δT (dδT/dx) obtained by integrating
the continuity equation across the thermal boundary layer and applying the Leibniz rule,
similar to (A3), the second term in (A9) becomes

− ∂

∂x

∫ δT

0
uTB dz + u|z=δT TB

dδT

d x
+
∫ δT

0
T

∂u
∂x

. (A12)

Substituting (A10) and (A12) in (A9) and simplifying, and since the last term in (A9)
becomes −α ∂T/∂z|z=0 since ∂T/∂z|z=δ ≈ 0, we obtain

∂

∂x

∫ δT

0
u(T − TB) dz = −α

∂T
∂z

∣∣∣∣
z=0

(A13)

as the integral energy equation for the local NCBL forced by the LSF.

Appendix B. Dependence of LSF velocities on aspect ratio (Γ = L/H)

For Ra � 1013, the dependence of the Reynolds number based on the LSF velocities (Re)
on Ra and Pr has been well studied. Most studies find Re ∼ Raa Prb, where a ≈ 4/9 and
b ≈ −2/3 (Lam et al. 2002; Puthenveettil & Arakeri 2005; Ahlers et al. 2009; He et al.
2012; Gunasegarane & Puthenveettil 2014). However, the magnitude of the LSF velocities
and the number of rolls are correlated to each other, and are also dependent on the aspect
ratio Γ (Cuba, Emran & Schumacher 2010; Shi et al. 2012); this dependence of Re on Γ is
not clear. In the present experiments, since Ra was changed by changing H, while keeping
L constant, Γ decreased with increasing Ra; Γ = 10 at the lowest Ra, while at the highest
Ra, Γ = 1.71. Since the variation of Γ is significant in the present experiments, we now
find the dependence of Re on Γ in our experiments.

From PIV, we obtain the velocity fields at various instants in horizontal planes at
heights hF � δpb, given in table 1, at six different Ra. At each of these Ra, we calculate
the spatio-temporal average of these horizontal velocities to obtain the LSF velocity
VF = 〈Ū〉. Figure 11 shows the variation of Re = VFH/ν with Ra for 1.71 � Γ � 10
and 4.69 < Pr < 5.88. The data show a power-law scaling Re ∼ Ra0.617, giving the
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Figure 11. Variation of Reynolds number Re based on VF with Ra for 1.71 � Γ � 10: red dashed
line, 0.008 Ra0.617. The inset shows the variation of normalised Re with Ra: red solid line,
Re Pr2/3 Γ 0.57/Ra4/9 = 1.169. Error bars show the 2σ variation of the VF values.

impression that the dependences of Re on Pr and Γ are weak. However, this could
be because of the opposite dependence of Re on Γ and Ra. Further, the range of our
Pr is small, so the dependence of Re on Pr may also not be clearly seen. Since it is
known that Re ∼ Ra4/9 Pr−2/3, as shown in the inset in figure 11 we plot the variation
of Re Pr2/3 Γ m/Ra4/9 with Ra and find the value m = 0.57 that collapses the normalised
Re onto a horizontal line. Then the Reynolds number based on the LSF velocities (VF) and
H scales as

Re = 1.169 Ra4/9 Pr−2/3 Γ −0.57. (B1)

Recent RBC experiments by Zhu & Zhou (2021) for 1 � Γ � 4, 4.8 × 107 � Ra � 4.5 ×
1010 and 4.3 � Pr � 5.3 found that Re ∼ Γ −0.52, the exponent of Γ being close to that
in (B1). The prefactor in (B1) is also very close to the prefactor 1.1 in the expression for
Re based on the oscillation frequency of the LSF, obtained by Lam et al. (2002). From
(1.4) and (B1), it then follows that δpb/H ∼ Γ 0.285; interestingly, the exponent 0.285 is
the same as that in δt/H ∼ Γ 0.29, obtained by du Puits, Resagk & Thess (2013) for the
scaling of thermal boundary layer thickness, for 1 � Γ � 9 at Pr = 0.7. Hence the new
scaling of Re given by (B1), which is valid for the range of Ra, Pr and Γ in the present
experiments, is consistent with the available results.

Niemela & Sreenivasan (2003) observe that VF/VFF increases until Ra ≈ 108 and then
decreases until Ra = 1013 in a cylindrical convection cell, where VFF = √

gβ �T H is the
free fall velocity. If we rewrite (B1) in terms of VFF, then VF/VFF = 1.169 Ra−1/18 Pr−1/6,
which decreases monotonically with Ra. This difference is most likely due to the difference
in the shape of the cross-section of the convection cell in the two studies, compounded by
the method by which VF was measured in Niemela & Sreenivasan (2003). In a cylindrical
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cell, the orientation of the large scale circulation (LSC) is constantly changing (Chilla
& Schumacher 2012), while in a rectangular cell, the LSC is mostly oriented along the
diagonal of the cross-section (Vishnu, De & Mishra 2020). Niemela & Sreenivasan (2003)
used the correlation between two nearby temperature sensors to estimate the strength of the
LSC. In the presence of the LSC that changes its orientation constantly, such an estimate
would be accurate if the temperature sensors are aligned in the direction of the LSC,
which would happen only for short time periods. Further, their measurements are made
at a single point; however, the strength of the LSC does vary spatially. In contrast, our
measurements are spatio-temporal averages of direct PIV measurements, which takes into
account spatio-temporal non-uniformities as well as well as change in orientation of the
LSC. We hence expect our measurements to be a more realistic, accurate and valid estimate
in the present set-up.

Appendix C. Error analysis

Errors in U/Vbl, at three points of different magnitudes of U/Vbl, in type A, type B and
type C p.d.f.s, are shown in figures 2 and 3. Uncertainty in U/Vbl was assumed to be due to
uncertainty in U. Uncertainty in U in a PIV interrogation window was calculated from the
correlation statistics using the methodology of Wieneke (2015), using the Davis software
(LaVision GmbH). In any p.d.f., the uncertainty at a specific magnitude of U is chosen
as the uncertainty in horizontal velocity at any randomly chosen point of the vector field
that has the same magnitude as U. The error bars on either side of any point on the p.d.f.
are then plotted using half the total error in U/Vbl, and are shown either on or just above
the points. Then at any point on the p.d.f., an error bar shows a 68.3 % confidence level
range in U/Vbl. The typical values of uncertainties in U/Vbl at U/Vbl = 0.33, 1.06, 3 in
a type A p.d.f. at Raw = 2.76 × 105 were 7.1 %, 4.9 % and 1.2 %, respectively, as shown
in figure 2(a). The maximum uncertainty in U/Vbl in type A p.d.f.s was 7.1 %, in type B
p.d.f.s was 4.9 %, and in type C p.d.f.s was 7 %.

In figure 5, errors in Abl/A and Ash/A at Raw = 2.76 × 105, 1.31 × 107, 1.10 × 108

and 6.05 × 108 are plotted. As described in § 3.1, the values of Abl/A and Ash/A were
calculated at various Raw using peak separation value 1

4 (Vsh/Vbl − 1). To estimate
the errors in Abl/A or Ash/A, the ranges of the variation of the values of Abl/A and
Ash/A at any Raw are now estimated using peak separation values 0.3(Vsh/Vbl − 1) and
0.2(Vsh/Vbl − 1). The lower limit 0.2(Vsh/Vbl − 1) was chosen, since values lower than
this limit picked up peaks due to fluctuations present in turbulent flow, which do not
represent the dominant motions in the flow. Similarly, values greater than the upper limit
0.3(Vsh/Vbl − 1) gave unimodal p.d.f.s, and hence were not considered. At any Raw, the
changes in mean peak velocities V1 and V2 at these limits were less than 2 % from that
obtained using the peak separation value 1

4 (Vsh/Vbl − 1). At a given Raw, these ranges of
values of Abl/A or Ash/A were used as the errors at the corresponding points. The estimated
errors in Abl/A were 0.9 % and 10.8 % at Raw = 2.76 × 105 and 6.05 × 108, respectively,
while the errors in Ash/A were 31.6 % and 1.2 % at Raw = 2.76 × 105 and 6.05 × 108,
respectively.

We now estimate the errors in percentages of type A, type B and type C p.d.f.s by
estimating the numbers of these types of p.d.f.s that are obtained by using a range
of peak separation values at Raw = 2.76 × 105, 1.66 × 106, 1.31 × 107, 1.10 × 108 and
6.05 × 108. The percentages of type A, type B and type C p.d.f.s, in figure 6 were estimated
using peak separation value 1

4 (Vsh/Vbl − 1). To estimate errors, peak separation values
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Raw Type A Type B Type C

2.76 × 105 7.1 18.7 23.6
1.31 × 107 6.1 6.4 7.4
6.05 × 108 5 12.9 1.7

Table 4. Percentage errors in total number of p.d.f.s at each Raw.

0.2(Vsh/Vbl − 1) and 0.3(Vsh/Vbl − 1) are now used to obtain the percentages of type
A, type B and type C p.d.f.s at each Raw. The differences between these percentages of
each type of p.d.f. are taken as the errors in the percentages of each type of p.d.f. at the
corresponding Raw. The obtained errors in the percentages of the three types of p.d.f.s at
three Raw are shown in table 4. Larger errors are observed at lower Ra due to the larger
spatial non-uniformity of the velocity field, due to lower velocity strength of LSF.

Appendix D. Velocity boundary layer thickness for large shear

For large shear, using a new perturbation parameter ε1 = Raλ/Reλ = 1/ε, where ε is given
by (4.7), assuming that λ ∼ λ0 remains valid, and following the same procedure as in § 4.1,
we obtain from (4.17) that

ε1ξ
5 + C2

2A
2

Pr2n ξ2 − C4
2 Pr5n E
4 Reλ

∼ 0. (D1)

Let the solution for (D1) be a power series in ε1 of the form

ξ = ξs0 + ε1ξs1 + O(ε2
1). (D2)

Substituting (D2) in (D1) and comparing the coefficients of different powers of ε1, we get

ξs0 = 0.707 Pr3n/2

A1/2

√
C2

2E
Reλ

(D3)

and

ξs1 = −Pr4n

4A3

C2
2E2

Re2
λ

. (D4)

Thus the perturbation solution of (D1), obtained by substituting (D3) and (D4) in (D2),
after neglecting higher-order terms, is

ξ ∼ 0.707
A1/2

(
C2

2 Pr3n E
Reλ

)1/2

− C2
2 Pr4n E2

4A3

(
Raλ
Re3
λ

)
+ O(ε2

1). (D5)

Variation of (D5) with Reλ, for Pr = 1 and Raλ = 1.07 × 105, is shown in figure 9 to
match the variation from the PBBL and the numerical solution of (4.17) at larger values of
Reλ, implying larger shear.
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Figure 12. Ratio of terms on the right-hand side of (4.14): blue circles, ε Peλ1/Peλ0 ; red triangles,
ε Peλ2/Peλ1 ; for the experimental data in the present study.

Appendix E. Upper limit of the analysis

The Peλ0 term in (4.10) represents the no-shear contribution, while the other terms
represent the shear contributions to Peλ. Figure 12 shows the variation of the ratios of the
successive terms in (4.10) with Raw. The contribution of the shear term εPeλ1 , compared
to the no-shear term Peλ0 , at the lowest Raw, was approximately 10 %. This contribution
increases with increase in Raw, and becomes close to 55 % at the highest Raw. For the
ranges of Raw and Pr in the present study, both the ratios are much less than 1, and
ε Peλ2/Peλ1 < ε Peλ1/Peλ0 . The perturbation solution (4.14) is then a power series, and
neglecting the second-order term to obtain (4.15) is justified.

We had limited the power-series solution (4.14) to order Reλ to obtain the scaling (4.15)
for Rebs. The present scaling laws are then valid when ε2 Peλ2 � ε Peλ1 in (4.10). In other
words, from (4.14) with C2 = 0.72, the scaling laws are valid when

Reλ < 2.54 Ra2/5
λ E3/5 Prn/A. (E1)

Replacing λ0 in (E1) with (1.5), using (1.3) and (B1), and with n = 0.5, we obtain one of
the limits of the present analysis as

Raw < 2.34 × 107 Pr2.6 Γ 5.13, (E2)

when A = 1.
Similarly, we had also limited the power-series solution (4.25) by eliminating the order

ε term to obtain the scaling (4.28) for ξ . The present scaling laws are then valid when
I � JARa1/9

w , i.e. when

Ra1/9
w <

I
AJ

. (E3)
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Replacing I and J, using (4.26) and (4.27), for A = 1, we obtain another upper limit of
the analysis as

Raw < 1.12 × 109 Pr2.6 Γ 5.13. (E4)

At any Pr, the limit given by (E4) is higher compared to that given by (E2), and the
upper limit of the present analysis at A = 1 is then given by (E2). The upper limit of
the analysis for A < 1 will be higher than that given by (E4), as seen from (E3). For the
values Pr = 5.09, Γ = 1.71 and A = 0.71 in the present experiments, (E1) implies that
the present analysis is valid for Raw < 5.5 × 1011; the analysis is then well valid for the
present experimental range.
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