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CONDITIONAL SEQUENCE ENTROPY
AND MILD MIXING EXTENSIONS

QING ZHANG

ABSTRACT  For a measure preserving system (X, B, u, T) with a factor (Y, C,v, T)
and an infinite sequence {7, }, one can define conditional sequence entropy We present
two theorems which charactenize ngid and mildly mixing extensions by conditional
sequence entropy Properties of IP-systems are used to prove our matn theorems

1. Introduction. Given an infinite subset I' = {#,} of N and a dynamical system
(X, B, u, T), one can define sequence entropy along I. ({7, 9, 12]) A. G. Kushnirenko [7]
and A. Saleski [9] used this notion to characterize the transformations with discrete
spectrum and mixing properties respectively. Later P. Hulse [6] gave conditional sequence
entropy characterization of compact and weakly mixing extensions of dynamical systems.
Hulse’s results can be viewed as extensions of Kushnirenko’s and Saleski’s results. To
quote his results we need the following definition.

DEFINITION 1.1. Suppose that & = (Y, C,v, T) is a factor of dynamical system X =
(X, B, u, Tyand T is invertible. Let ' = {¢, ; n = 1,2,...} C N and £ be a finite partition
of X. The I'-entropy of T relative to 9 is defined as follows:

1 n
hr(T, €1 = timsup H(V 7]

n—+00

and
he(T|) = Sl;p he(T, €]9)

for any finite partition £ of X. Sometimes I'-entropy relative to a certain factor is also
called conditional sequence entropy.

THEOREM 1.1 (HULSE [6]). Let & = (Y, C,v,T) be a factor of a dynamical system
X=X, B, u, T)and T be invertible. Then:
(i) X is a compact extension of ¥ if and only if hr(T|) = 0 forallT" C N.
(ii) X is a weakly mixing extension of v if and only if for any Ty C N with density
one, there exists I' C Ty such that

hr(T, €|9) = H({|)
for all finite partition &.
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Definitions of compact and weakly mixing extensions can be found in [6, 13, 14].

In [4] H. Furstenberg and B. Weiss introduced a new kind of mixing property of
dynamical system which they called mild mixing. A functionf € L2(X, B, p) is rigid if
there exists {#, } such that 7" — f in strong sense. A dynamical system X = (X, B, u. T)is
mild mixing if there is no nonconstant rigid function in L*(X, B8, ). Later Furstenberg and
Katznelson introduced the relative version of this notion (see [3] or the Definitions 3.3
and 3.4.) Sequence entropy characterizations of the rigidity and mild mixing can be
found in {12]. This note is a sequel of [12] and gives conditional sequence entropy
characterizations of mild mixing and rigidity relative to a T-invariant sub-g-algebra.

In §2 we bring some facts about IP-sets, IP-systems and IP-limits. This will be followed
by a brief account of some results concerning factors of measure preserving systems.
In §3 we use Y-kernels and -sequences to decompose a dynamical IP-system into
relative rigid part and relative mixing part. In §4 the rigidity and mild mixing relative to
a T-invariant sub-o-algebra will be defined and their properties will be discussed. In the
last section, we obtain the following sequence entropy characterizations of rigidity and
mild mixing relative to a factor. (For the notions “/-representation” and “¢o-monotone”
see Definitions 4.1 and 4.2)

THEOREM 1.2, Let ¥ = (Y, C,v,T)be a factor of X = (X, B, i1, T). Then the following
statements are equivalent.
(i) TisY -rigid;
(ii) There exist an IP-set I and [-representation @ such that for any @-monotone subset
T cl h(T|y)=0;
(iii) There exists a subset T C N such that for any sequence {1';} of pairwise disjoint
finite subsets of T, he(T|7) = 0. Here T = {t,, = Yyer, a}-

THEOREM 1.3. The following statements are equivalent:
(i) T is mildly & -mixing;
(ii) For every IP-set I and I-representation p, there is an p-monotone subset I’ C I
such that hr(T, £|) = H(E|Y) for all € satisfying H(E|Y) < oo;
(iii) ForanysubsetT" C N, there is a sequence {T';} of pairwise disjoint finite subsets of
T such that for any partition € of X, he(T, £|7) = H(£|Y). Here T = {t, = Y yer, a}-

We will use N, Z and 7 to denote respectively the set of all positive integers, the set
of all integers and the set of all finite nonempty subsets of N respectively. For a subset
(or a linear subspace) V of a topological space, V denote the closure of V.

This note is finished under the guidance of Professor V. Bergelson in The Ohio State
University. The author wishes to thank him.

2. Preliminaries. We begin with several definitions which are mainly taken from
(1,2, 3].

DEFINITION 2.1. A homomorphism ¢: F — ¥ is a map such that @ N 3 = @) implies
P(e)NY(B) =0 and Y(a U B) = () U Y(B).

The following proposition is an immediate consequence from the definition above.
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PROPOSITION 2.1. Let 1y, ¥, be two homomorphisms and Fy = ¥1(F), F2 = V2(F).
If 71 C %, then there is a homomorphism V. F — F such that V¥ = ) 0 .

An F-sequence is a sequence {x, ; @ € ¥} indexed by elements @ € ¥. Given a
semigroup X and a sequence {x;} of elements of X, one can define an F-sequence by
Xiy igoiy = XiyXiy ++ - X, Where ij < iy < --- <. Such an F-sequence will be called an
IP-system. An important examples of IP-system is an IP-set of N which consists of a
sequence of real numbers p1, p, . . . together with all finite sums p;, + p;, + - - - + p;, with
h<ip<- <

Given an ¥-sequence {x,} and a homomorphism : ¥ — ¥, one can define ¥-
subsequence {yo = Xy }. In particular, if {x} is an IP-system, then we call {y,} a
sub-1P-system.

DEFINITION 2.2. An IP-ring is the range of a homomorphism. Let 7, %, be IP-rings
and F; C %,. Then 7 is called a sub-IP-ring of #,.

REMARK. IP-ring is just an IP-system generated by a family of disjoint subsets of
N. It is a sub-IP-system of ¥, seen as a semigroup with set-theoretical union as the
operation.

DEFINITION 2.3. Let {x,} be an F-sequence in a topological space X and x € X. x is
a limit of {x, }, limycs xo = x if for every neighborhood V of x there exists an index 3
so that a3 = ) implies x, € V.

REMARK. If X is a Hausdorff topological space, the limit is unique. In this paper, all
the spaces which we deal with are Hausdorff.
A proof of the following Bolzano-Weierstrass type theorem can be foundin [1, p. 155].

THEOREM 2.2. If {xo} is an F-sequence with values in a compact metric space, then
there exists an F-subsequence {y,} such thatlimy y exists.

Another kind of sets we like to mention here is IP*-sets. A set A € N is IP* if A
intersects all IP-sets. This notion will be used in proofs later on.

Let X = (X, B, u), & = (Y, C,v) be probability measure spaces. Let 8 be a measure
preserving map from X to Y. Then there exists a family of conditional probability
measures {/, ; y € Y} on (X, B) with following properties:

@) py(é’_l(y)) =1 foralmost all y € Y;

(ii) Forevery f € L'(X, B, 1) and for a.e. y € Y, the function

y—’/fdﬂy

is measurable and [fdu = [{ffdp,}dv.
The decomposition {yu, ; y € Y} of the measure p is essentially unique; that is, if
{1y} and {p;} both have above properties, then p, = ,u; for a.e. y € Y. Conditional
expectations and conditional measures are related by

E(f9)() = [ £(2) dyuaco(t)
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for all f € L'(X, B, p). For (X x X, B x B), we can define a new measure: for any set
B € BXx B,

WB = [ 1ty % 1y (B)dv(y).

u” is characterized by its effect on functions of the form f ® g, where

(f ® &)(x1, x2) = f(x1)g(x2).

Since the support of 1y X 1, is 7' (y) x 67 !(y), the support of " is

Uyo—‘(y) X 07 (y) = {(x1, 1) € X X X ; 6(x1) = 0(x2)}.

ye

Let 6, 6, be two maps defined by: 6;(x;, x;) = 8(x;) for i = 1, 2. It is easy to check that
01, 0, are measure preserving, i.e. py(B[I(C) =v(C)forall C € C.Moreoverf;;i=1,2
agree on the set (J,cy 8'(y) x 6~'(y) which has measure 1 with respect to p”.

From now on, X = {T,} will denote an IP-system of commuting, invertible, measure
preserving transformations on (X, B, 1) and we will call X = (X, B, u, X) a dynamical
IP-system. ¥ = (Y, C, u, X)is a factor of X if there is a measure preservingmap 6: X — Y
such that 0T, = T,0 for all T, € X. From the uniqueness of the decomposition, we get
Tapty = pir,y fora.e. y € Y. This is equivalent to E(Tof|7) = TLE(f|7). It is also easy to
see that

= {Sy =Ty X To}

is an IP-system of commuting measure preserving transformations on (X X X, B X B8, u”)
and ¢ is a factor of (X X X, B x B, u”, £?). Therefore abusing the terminology, for any
F € L*(X x X, B x B,u”), we also use E(F|) to denote the conditional expectation
with respect to .

DEFINITION 2.4. Let 9 be a factor of an IP-system X. We shall say that £ = {T,}
satisfies Condition A if
lim(SoH, G)
a

exists for all H, G € L*(X x X, B x B, u”).

REMARKS.
(i) Condition A implies that
ligl(S_aH ,G)

exists forall H,G € L*(X x X, B x B, u”) . Here S_, denotes S, .
(ii) {T.} satisfies Condition A if and only if lim, [ |E(T.fg|9)|*du exists for all f,
g € L™(X, B, p).

THEOREM 2.3. Let (X, B, i, X) be a dynamical 1P-system. Then there is a sub-IP-
system X' C X and an orthogonal projection P such that

Jim (Tof ) = (Bf, g)
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forallf,g € L*(X, B, ). In particular, if Pf = f, then:
. _ 2 -0.
Jim, ITof —£II"=0

A proof of this theorem can be found in [3, p. 124].
COROLLARY 2.4. There exists a sub-IP-system ¥/ C X satisfying Condition A.

DEFINITION 2.5. Let & be a factor of X. We say that X is 9-mixing if for any F,
G € LXX x X, Bx B, i),

lim [(SoFG — SLE(F|9)E(G|9)) du” = 0.

acF
THEOREM 2.5. The following conditions are equivalent:
(i) {Ty} is &-mixing on X;
(ii) Foranyf,g € L*(X, B, p),
lim ||E(T.f5]2) — ToE(FI9)E(G|7) ]2 = 0
(iii) Foranyf, g € L*(X, B, p),
lim |[E(Tafg]2) — ToE(f|2)E(g] 2|1 =0.

PROOF. (i) = (ii): We first assume that E(f|7) =0.Let F=f® f, G = g ® g. By
Definition 2.5, one gets limye s [ Sq(f @ f)g ® gdu” = 0. This gives:

) lim |E(Tof gl = lim [ ( [ Tufgduy [ Tofgdpy) dv =o0.
Forany f € L*(X, B, ), define f; = f—E(f|7). Then E(f;|7) = 0. By (1), || E(Tof18|7)||2
— 0 which implies (ii).
(i) = (i): Let £, f', g and g’ € L(X, B, ) and
M = max{|Ifll, If'll, llll- l&'ll}-

Then:

|[ETaf g BTef |9 dpt — [ TuEF|TE(|9)E(|E'|7) dp
< M|[E(Tuf 8l9) — TLE(f|9E|Y))2
+M|[E(Tof'¢'|7) — ToE(F|DEE [9)][2-

Hence:
tlxié?r(/S“(f(gf,)g ®g du” ~ /SaE(f QF 7EE®g'|7) dﬂy) =0.

Since all functions with the form f ® f’ span L*(X x X, B x B, u”), (i) follows.
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(iii) = (ii): Suppose |[f| < M, [g| < M. Let

A:(B) = {x ; [E(Tof 8|2)(x) — TLE(f|()E(g| ()] > €}

From (iii), we have that for every € > 0 there is a 3y such that: u(Ag(B)) < & whenever
BN By =0. Then:

JETafsl?) — TLEG|DEGIP du< || | [ETaf5l9) — TE(|2)ECe|2)] dp
+ [, o [Tl du

<e+ 2M*e
which implies (ii).

(ii) = (iii): Since bounded functions are dense in L*(X, B, 11), it is enough to consider
f, 8 € L=(X, B, n). Then (ii) and Holder inequality implies (iii) immediately. n

DEFINITION 2.6. Let & = (Y, C,v., Z)be a factor of X = (X, B, u. X).f € L*(X, B, 1)
is almost periodic with respect to 9 along the IP-ring 7y, written as f € AP(9, Z, ), if
for every € > 0, there is ap € ¥, a set of functions g, g2, . . ., 8k € L*(X. B, u) and a
measurable subset E C Y with v(E) < ¢ such that

1 — <<
lgllgklquf glly <e

forally ¢ Eand all @ € F witha N ap = 0.

REMARK. Actually one can choose g1, g2, . . ., g € L™(X, B, 11). We leave the details
to the reader.

PROPOSITION 2.6. Let & = (Y,C.v,X) be a factor of X = (X, B,u,X). Then
AP(Y, X, 1) has following properties:
(i) AP(Y, X, F) is a linear space;
(ii) If Fy and F, are two IP-rings and |, C F>, then:

AP(Q/,qurz) CAP(D/~Z~}-])9

(iii) AP(Y.Z,F) D L®(X.071(C). p);
(iv) There exists a sub-c-algebra By C ‘B such that

AP(Y, X, 7)) = LA(X, By, ).

PROOF. (i) Letfi,f>» € AP(Y, X, F1) and «, 8 € R. Then foreverye > 0Oandi= 1,2,
there are o, E, and g, . . ., g}, With v(E,) < £/2 such that

inf ||Tof, — glly <e/(lal+[b)),

1<<k(v)
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where aNay =Pandy € E,. Let ap = ) U and E = E; UE,. Forany aUap = 0
and y ¢ E, we have

Lk 1<m<k(2)I|TO((afI +bf)) — (ag) + bg,)ll, <
This means af} + bf, € AP(Y, Z, F).

(i) Restricting 7; to a sub-IP-ring %, will enlarge the set of functions satisfying the
conditions in Definition 2.6. The details will be omitted in here.

(iii) Let g € L°°(X7 0-1(0), p). There is a constant M such that: |g| < M a.e. Now for
¢ > Othereis apartition —M = ap < ay, ..., < a, = M such that maxo<,<p—1 |as1 —a,| <
¢. Since g is measurable with respect to (X, 7o), p), itis a constant almost every where
with respect to p, fora.e. () y € Y. Then ||Tof — a)|ly = |Tof (x) — a,| for any x € 671 (y).
Therefore

Og‘; ITof — ally <e

which means f € AP(Y, £, 7).
(iv) A proof can be found in [3, Lemma 7.3]. By is the smallest Z-invariant o-algebra
with respect to which the functions in AP(, X, 7,) are measurable. =

DEFINITION 2.7. A function H(x,x') on X X X is a 9-kernel if it is measurable with
respect to B X B and:
(i) [H(x,x")duge(x') = 0 for almost all x € X;
(ii) the function A(y) = [|H(x,x")|* duy X p, belongs to L*(Y, C,v).

For a 7-kernel H, we define H * f(x) = [H(x,x')f(x) dp,(x'). Here y = 6(x) and
f € L*(X, B, 11). We leave it to the reader to show that H is a bounded operator on
L*(X, B, ).

LEMMA 2.7. Let H be a & -kernel satisfying limycq SoH = H. Then there exists a
sub-1P-ring F\ of F such that for every € > 0, there is By € ¥y, a subset E C Y with
V(E) < € and a finite set of functions g1, . .., gx € L*(X, B, u) such that for any 3 € F
with 3N Bo =0, anyy ¢ E and any f € L*(X, B, p) with ||f]|y < 1 we get

| el
inf [[(S5H) < f — g, < <

Moreover Hx f € AP(Y, X2, Fy) for every f € L*>(X, B, j1).

REMARK. limgeq SoH = H in weak topology if and only if limyes SoH = H in strong
topology. This is an immediate consequence of the Theorem 1.3.

PROOF. A proof of the first part of this lemma can be found in [3, Lemma 7.2]. We
only need to show that for every f € L*(X, B, 1), Hxf € AP(Y, X, ). Since H is
a bounded operator, it is enough to prove this argument for f € L*(X, B, 1). Without
loss of generality, suppose |f| < 1. It follows from the first part of the lemma that for
every ¢ > 0, there is a fp € ¥, a subset E C Y with v(E) < ¢ and a finite set of
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functions g, . .., gx € L*(X, B, ut) such that for arbitrary 8 with 3N 3y =0, y ¢ E and
f e L>X, B, p) with |[f| <1,

ligrgk I(SsH) =" — gjlly < e.

Taking f/ = Tsf, we have
(SsH) x ' = T3(H x f)
which implies H x f € AP(Y, Z, F). n

3. Hilbert space decomposition. In this section we always assume that & =
(Y, C, p, X)is a factor of X = (X, B, u, L) and £? = {Sy = Ty X Ty} is the IP-system of
measure preserving transformations on (X X X, B X B, u”).

LEMMA 3.1. For any g € L>(X, B, 1) satisfying that E(g|9) = 0, let H denote the
weak IP-limit of So(g ® §), i.e. forany F € L2(X x X, B X B, i”),

<Hv F> = ng}(sa(g@g), F)'

Then H is a Y-kernel satisfying H = limges SoH.
PROOE. For any f(x) € L™(X, B, ),

[Sale @) @ 1du” = [ FTogETog]y)du =0

which implies [ Hf ® 1du” = 0. Hence H satisfies the first condition in Definition 2.7.
Since g ® g € L®(X x X, B x B, u”) which, as a dual space of L'(X x X, B x B, u”), is
closed with respect to *-weak topology, (see [11]) H € L>®°(X x X, B X B, u”'). Hence H
is a 9-kernel. The identity H = limyc 5 SoH comes from Theorem 2.3 directly. [

The following lemma is an immediate corollary of Theorem 2.3.
LEMMA 3.2. If {T,} satisfies Condition A, then limae s T, 'f = fo in strong (weak)
topology iff limyec 5 Tof = fo in strong (weak) topology.

Let {g.} C L®(X, B,p) N L*(X,C, )" be a dense set in L?(X, C, )" and H, =
limgeg So(gn ® gn). By Lemma 3.1, H,, is a "-kernel satisfying H,, = limges SoH,. By
Lemma 2.7 one can inductively construct a sequence F; D %, D --- of IP-rings such
that H, x f € AP(9, X, %,) for any f € L*(X, B, ) and any n € N. We shall call any
sequence { %, } of the kind described above an 9-sequence corresponding to {g, }, or just
an -sequence. For any %-sequence {%,}, we define

K&, %)= L_JIAP(D’,E, F).

Later, in Theorem 3.6, we will prove that K(9, £) does not depend on the choice of
9-sequence. A proof of the following lemma is omitted.
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LEMMA 3.3. There exists a sub-g-algebra D of B such that
K(,%)=L*(X, D, p).

Moreover, (X, D, u, X) is a factor of X.

PROPOSITION 3.4. Suppose that Y is a factor of IP-system X and X satisfies Condi-
tion A. Let f € LX(X, B, 1) and {F,} be any -sequence corresponding to a dense set

{ga} in L*(X,000), 1) . Iff L AP(Y, %, %,) for all n, then
gg;/ [E(gTof|9)|dp =0

forany g € L*(X, B, p).

PROOF. Let H, = limyeq So(gn ® g4). Since H, *f_ € AP, X, #,), by Lemma 3.2,
we have:

2
. : 2
IITESTUP(/W(&TJ[?”)["#) < Llefg/lE(gnTaflyﬂ dp

. 7 s 41
tim [ Sa(f @ )gn ® 8ndp

[f@FH v = [y Fdp=0

Since {g,} is dense in L (X, 6(C), u)L and E(f|9) = 0 the proposition follows. .
PROPOSITION 3.5. Suppose that f € L*(X, B, ) and

lim [ |EgTf])|dn = 0

forall g € L*(X, B, j1). Then for any % -sequence { %, }, f L AP(7,Z, F,).

PROOF. Let {#,} be a 7-sequence and K(7,X) = UR, AP(Y, X, ,). For any f €
L*(X, B, 1), we have the unique decomposition f = f; + f> such that f; 1 K(,X) and
f> € K(7, Z). By Proposition 3.4, it will be enough to show that: if

lim [ |E(eTof[9)] dyu = 0

andf € K(%, %), thenf = 0.

For any ¢ > 0, there is a positive § < ¢ such that for any set F with v(F) < 4,
Jrlf1?dp < e. Since f € K(9,%) and AP(Y, X, %,41) C AP(Y, X, %,), there exists
fo € AP(Y, Z, %) such that ||f — fol| 24,y < 6. For € and 6 same as above, there exists
Bo € Fi, {g € L*(X,B,p);j=1,...,q} and aset E C ¥ with v(E) < /2 such that
infi << || Tafo — g)lly < e fory ¢ E and 8 € % with 3N 3y = 0. Now we claim: for
BNBo=0

@ IR = 3VEIFl = < 3 [ IBGT1)] di
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Actually for a fixed 3 € % satisfying 3N By = (, let j(y) be the smallest number such
that || Tsfo — g||y < €. Since

1—1
i =1} ={y: | Tsfo — glly < e} \ L_J]{y: I Tafo — gmlly < e} € C.

J(y) is a measurable function on E. Notice that the inequality

ITafo — Taf | = o —fIl <&

implies: there exists Fjs withv/(Fj5) < /2 such that || Tyfy — Taf [|2 < 26 fory ¢ Fj3. Now
let Eg = F3 UE, then v(E3) < 6. For y ¢ Ej3, we have:

Taf — golly < ITaf — Tafolly + [ Tafo — g lly < V26 +34/c.
This implies (Taf, Taf — &)y < 3v/€||Taf]|y which means
[ Ttz duy 2 T3l = 3VE| T
Define: . . .
€0y) = { 1 ify#Ezandj(y) =i

0 otherwise.
and h(y) = ©L, £,8,, then fory ¢ Eg, [ Tafhduy > || Taf ||; — 31/€[|Taf |l,. Hence:

7 2
JTsh > [, Tl dv = 3VEITaf | dv
> |[Tof P = 3VEITHf N = [, 1Taf P v
This implies (2). f = 0 follows from (2) and the equation
lim [ [E@Taf|9)] dp = 0. .

Now we are in position to formulate the main theorems in this section which are
immediate corollaries of Propositions 3.4 and 3.5.

THEOREM 3.6. K(9, X) does not depend on the choice of Y -sequence.
THEOREM 3.7. There is a unique orthogonal decomposition:
L*(X, B, 1) = K7, 2) & M(Y, £)
such that: f € M(, X) if and only if
tim [ |EeTef|7)] du =0
forall g € L*(X, B, ).
we end this section with a proposition which will be used later.

PROPOSITION 3.8. Let & = (Y, C, u, Z) be a factor of a dynamical IP-system X =
(X, B, u, X). Then, there exists a homomorphism+: F — F satisfying: for any ¢ > 0 and
any f € K(9, X), there is By and bounded functions g1, g2, . . ., gx such that if 3N By = 0,

. M » o ' > ‘
vy inf 1T =gl > ¢} <=
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PROOF. Let {#,} be an 9 -sequence and let K(%, Z) = ,, AP(Y, X, F,). We can
choose a sequence {f,, € AP(7, Z, %,) ; m = 1,2, ...} which is dense in K(9, ). Since
fi € AP(Y, X, F,,) for k < m, by the remark to Definition 2.6, there exist bounded
functions gy x, 824s - - - 8rmkyk aNd B i € Fm such that

1 1
- £ > -
vlys _inf (Taf—guly = —} <~

1</<r(mk)

where 8 € %, and 8N B,x = 0 fork < m. Let B, = Bm.1 U+ - -UBpmm and take a sequence
{@n} such that o, € #, and

. / /
min &, > max{B, ..., By 1, A1y, Cm_1}.

Define () = U,es ;. Then 1 is a homomorphism on ¥.
For any f € K(, £) and any £ > 0, there is a f,, such that

J Il s < (/20"

LetE' = {y; [|f—ful* duy > (¢/2)*},thenv(E') < £/2.Takingn > mwith 1 /n < £/2,
we have

\/ o DO P(B)

JEB
for N {1,2,---,n} =0. Since o; € ¥, forj > n, p(8) € F,. Hence:

. o >
v{y; IS}ISH'(anm)||Tw<J)f gmlly > €}

<e.

S |-

< V(TE(%)E/) + V{y 5 nf [lTw(B)fm - gj-m“y >

lglgr(n,rn)
| |
4. 9 -rigidity and mild 9-mixing.
DEFINITION 4.1. Let/be an IP-set. A surjection p: F — [ is called an I-representation
(of F)if:
plaUp)=p(a)+¢(B)
whenever aN 3 = §.
It is clear that for any IP-set I C N, at least one I-representation of ¥ can be defined.
DEFINITION 4.2. Let I be an IP-set and ¢ be an /-representation (of ). A set A =
{a,} C Iis ¢-faithful if there exists a sequence {e,} C F with o, N, = P for i # j such

that a, = ¢(a,) for all i. In particular, if max o, < min ¢, for i <j, we will say that A is
a p-monotone subset of I.

Now we consider a single invertible measure preserving transformation 7 acting on a
probability space (X, B, 1). Given an IP-set I and an /-representation , one can define

an IP-system
(U, ) ={Te=T""; a € F}.

(X , B, py X(1, ap)) will be called a dynamical 1P-system induced by (I, ¢).
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DEFINITION 4.3. Let & = (Y, C,v,T) be a factor of X = (X, B, u, T), where T is a
single measure preserving transformation. 7' is called &-rigid if there is an IP-set / and
an /-representation ¢ such that:

(i) T =X, ) satisfies Condition A (for formulation of Condition A, see §2);

(i) K(. 21, ¢)) = LX(X, B, ).

DEFINITION 4.4. Let & = (Y, C,v,T) be a factor of X = (X, B, u, T), where T is a
single measure preserving transformation. T is mildly 9-mixing if for any ¢ > 0, the set
E- = {n; [[E(Tfg|o) — TE(¢|7)E|9)] dyu < <}

is an IP*-set for all f, g € L*(X, B, p).

Now we give several equivalent statements for mild 9-mixing and these statements
will be used in next section to prove our main theorems.

THEOREM 4.1. The following conditions are equivalent.
(i) T is mildly ¥ -mixing;
(ii) For any IP-set I and I-representation p, there is a sub-1P-system ' C ¥ = X(I, ¢)
such that

Jim, JIE(Tofgl) — TE(F|)E|2)] dpt = 0

forallf, g € L*(X, B, p);
(iii) For every IP-set I, there is an I-representation ¢ and a sub-1P-system X' C X =
X1, ) such that

Jim [ IE(Tufg]) — ToE(120EGg]9)] dpe = 0

(iv) For any IP-set I C N and I-representation o, there is a sub-IP-system ¥’ C ¥ =
X(1, ) such that
L*(X,67°1(C) ) O K(9,Z));

(v) For any IP-set I C N, there is an I-representation ¢ and a sub-1P-system ¥’ C
X = X(I, p) such that

L*(X,07(0), ) D K(,Z) ;
(vi) For every 1P-set I and I-representation p,
L*(X,07'(C). 1) D AP(9, 2, ), 7).
Before proving this theorem, we need following facts.

THEOREM 4.2 (HINDMAN [5]). Let ¥ = jrzl Dj. Then there exists a homomorphism
V. F — F and D; with 1 > i > r such that D; D V(F).

A proof of this theorem can be found in [5].

COROLLARY 4.3. Let I contain an IP-set and ¢ be its representation. Then for any
IP*-set I*, there is an homomorphism y: F — F such that [N T* D ¢ o Y(F), and
@ o Y(F) is an IP-set.
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PROOF. Let D) ={a € ¥ ; p(@) € INI}andletD, = {@ € F ; p(a) & I'}.
Then ¥ = Dy U D,. By Theorem 4.2, there is a ¢ such that D; D {(F) or D, D Y(¥).
But " is an IP*-set, ¢(D,) can not contain an IP-set. Hence D; D ¢(¥) which implies
INCK D poy(F). [

PROOF OF THEOREM 4.1. (ii) = (iii), (iii) = (1), (vi) = (iv) and (iv) = (v) are trivial.
We only need to prove (i) = (ii), (ii) = (iv), (v) = (iii) and (iv) = (vi).

(i) = (ii) Let 7 be an IP-set and ¢ be an I-representation. For f, g € L*(X, B, ), let

E = {n : /|E(T"fg|9f) — T"E(f|9)E(g| )| du < e}.

Now we inductively select {a, } and {1,: F — F} such that:

e o; € Image(v));

o o;Nay=0fori#j;

e Yi(F) DYaAF) D

o INE ;3 D po(F).
By Corollary 4.3, there is a ¢;: F — ¥ such that N E;/» D ¢ o ¢1(¥). Take o) €
V() such that p(ai) € Ej jpn. Suppose that we already have chosen «a;, ..., ®,—; and
Y1, .-, ¥n_1. By Corollary 3.3, there is ¢': F — & such that

¢ 0 Y ((F)NE)j31 D 901 0P (F).

Now let ¢, = ¥,_; o ’. Since a; N - - -N a,_ is a finite set, we can choose «, € V¥, (F)
such that o; N = () for all j < n. Therefore «, and v, are selected.
Lety: F — ¥ defined by: ¥(B) = ;e @; and I' = po(F). We have a sub-IP-system

5 =31, ¢ o) CE=2( o).

Since a,, € Y,(F) when m > n, ¥(8) € Yu(F) for all 3N 1,2,...,n = (. Hence
¢ oY(B) € Ejpn. This Z; depends on f and g. Since L%(X, B, 1) is separable, we always
can use diagonal method to obtain a subsystem X' C X; such that

Jim, JIETofgly) — TE(F|E|)| du = 0

for all f, g € L*(X, B, p).
(ii) = (iv) Let I be an IP-set and let ¢ be an I-representation. By Corollary 2.4 and
(i1), there is a sub-IP-system
Y CE=X( )

such that X’ satisfies Condition A and
lim [ |E(Tufg|9) — TaE(f|7)E (]| dyi =0
T,EX

for all f, g € L*(X, B, ). If E(f|9) = 0, then

Jim [ E(Tufg]7)|du=0.
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By Theorem 3.7, we have: if f | LZ(X, 0‘1(C),u), then f 1 K(9,X'). This implies
LX(X,67'(C), ) D K(. Z).

(v) = (iii) For any IP-set /, there is an /-representation ¢ and sub-IP-system ¥’ C
X(I, p) such that

L*(X,07'(C), 1) D K(9, D).

Without loss of generality, we suppose that X’ satisfies Condition A. By Theorem 3.7,
we get that when E(f|9) =0

Jim, [ |E(Tfg[2)] du=0

This is equivalent to (iii).
(iv) = (vi) For any IP-system X(/, ¢), by Corollary 2.4, there exists a sub-IP-system
¥ C X, o) satisfying Condition A. Then we have:

(X070, 1) D K(9. X)) D AP(. X', F) D AP(7. (1. ). 7). .

5. Entropy characterizations of mild 9-mixing and 9 -rigidity. In this section,
we will prove the Theorems 1.2 and 1.3 which give conditional sequence entropy char-
acterizations of 9-rigidity and 9"-mild mixing for measure preserving transformations.
As before, X = (X, B, u, T) is a dynamical system and & = (Y, C,v, T) is a factor of X.
The notion of sequence entropy relative to a factor has been defined in the §1 (see Defini-
tion 1.1). Since conditional entropy for a finite partition has been used in Definition 1.1,
we like to give the following definition for the sake of the completeness.

DEFINITION 5.1. If £ is a finite and measurable partition of X, then entropy of &
relative to 9 is defined by:

H(El9) = [H(©dv= [ 5 —p,(B)log 1y (B) .

Be¢
Proofs of the next two lemmas can be found in [6, p. 65].

LEMMA 5.1. Let £, 11 be finite partitions. Then:

| (T, €]9) = he(Ton| ] < [(Hy(Elm) + Hy(n] ) dv
for any sequence I C N.

LEMMA 5.2. There exists a countable set {&x} of finite partitions such that
inf f(Hy(§|§k) + H_V(£k|£)) dv = 0 for any finite partition €.

Now we immediately have:

LEMMA 5.3. There is a sequence {ﬁk = {Ak.AZ} s k=1.2,...} of two cell partitions
of X such that

inf [(Hy(&, V-V & [ +Hy(E|&, V-V E))dr =0

Ipgeens iy

for any finite partition €.
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The following result is Lemma 4.15 in [10].

LEMMA 5.4. For each ¢ > 0 and r € N, there exists 6 = 6(e,r) > 0 (which depends
onlyone andr) such thatif € = {Ay, ..., A}, n={C\,...,C,} are two r-cell partitions
of any measurable space X with ¥°'_, (A,AC,) < 6 then H({|n) + H(n|§) < e.

Let X; = X x [0, 1], B be the product g-algebra of B and Borel g-algebra on [0, 1],
and p be the product measure of 2 and Lebesgue measure . Then we have a probability
space (X;, By, i1). Let m: X; — X defined by (x, f) — x. Then for any finite partition £ of
X, we have H(§) = H (7r" (5)). We abuse the terminology and also refer to H, H, as the
entropies on X; with respect to ¢ X A and p, X A respectively. By direct computation,
we have the following lemma.

LEMMA 5.5. Let g be a measurable functionfrom X to [0, 1] and let B be a measurable
subset of X. Define B; = n='(B) and G; = {(x,y) ; 1 >y > g(x)}, then: u,(B/AG)) =
J1g— 1pldp.

We are now in position to prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. (i) = (ii). If T is 9-rigid, there is an IP-set / and I-
representation ¢ such that K(7, X) = L*(X, B, i1). Here X = (I, ©). By Proposition 3.8,
there is a ¢ ¥ — ¥ such that for any ¢ > 0 and f € L*(X, B, ), there is 3y and
81,82, ..., g such thatif 3N Gy = 0,

. M _ >
1/{)’ ; lgl;”Tw(g)f glly > 5} <.

Now let I’ = ¢ o (F) and let p’ = p o). We claim that for any ’-monotone subset
I C I, h(T]9)=0.

Suppose that {a, € ¥} satisfies , N, = @ fori #j and T = {t, = ¢'(a,)}. For any
£ > 0 and any partition £ = {A, A“}, one can choose § = (¢, 2) according to Lemma 5.4.
Then by Proposition 3.8, there exist Ny and functions gj, g2, . . ., g such thatif n > Ny

V[y‘ inf ||T"1,4 — g >é}<é
Y <<k Aol =5 2’

Let:
. ={g, for0>g, > 1

! 0 otherwise.

Then it is clear that 5 s
P th — O > _} —.
vlys inf 171~ &, > 5} <3
Consider measure preserving transformation 7; on X; = X x [0, 1] defined by T;(x, y) =

(Tx,y). Let G;, = {(x.y) ; 8 > y} and partition s, = {Gy,. GfJ}. Let

E, = {y 5 ,iglgk“r"]ft *gJ“y > 5/2}3
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then v(E,) < §/2 forn > Np. Thus by Lemma 5.5, fory ¢ E,
: ty - —1 — ], _ < i ], —
inf g X A(Tem (A)AG,) lg}gk/ Tl — gl duy < inf [[T"15 — gy <5/2
By Lemma 5.4 and the definition of the 6, we have
. o —1
l1<Jn£kHy(T; 7 (©lny) <e

forn > Ny and y € E,. Hence:

()L (o)t i )

=1

< %/Hg(\z/l Tyr'(©)) dv

IA

%é/ﬂy(r;w‘(g) ,\2""’) dv

oo [ (V)

n

! i t, —1 k
—Zflgngy(Tlﬂ (§)|77[j)dl/+;l]0g2

n =

IA

< <N°n+k +6) log2 +e.

This gives hr(T, £|9) = 0 for any 2-cell partition £. Let £ be a partition of X and
&1, ..., &n are some 2-cell partitions of X. Then, by Lemma 5.1, we have:

hr (T, €]2) < hr(T,l:\k/l 1) +/(Hy(l\:k/1 &)+ (¢l \k/l 5)) dv
< éhr(T, €z|9’)+/(Hy(l\=k/l &l¢) +H).<§|,\i/l§,>) dv

By Lemma 5.3, we get Ar(T, £|9) = O for any finite partition &.

(ii) = (iii) Let ' = {(n)}. By definition one can get the result immediately.

(iii) = (i) Let T' = {a,}. Define an IP-set It = {a,, + - -+ ay ; n < --- < m}
and an Ip-representation ¢r : ¢r(n) = a,. Then we have an IP-system X = X(It, ¢r).
Since every IP-system contains an IP-system satisfying Condition A (see Corollary 2.4),
we can suppose without loss of generality that Zr satisfies Condition A. We need to
prove K(9, Zp) = L2(X, B, ). By Lemma 3.3, there exists a sub-g-algebra D such that
K(7,Zr) = L*(X, D, p). If K(9, Zr) # L*(X, B, ), there exists B’ € B with B’ ¢ D.
Take

D={x;e<E(p|D)<1—¢c} €D

Then p(D) > 0 for some € > 0 (Otherwise E(15|D) = 1 or 0 which means B’ € D). Let
B =B'ND. Then ¢ < E(15|D) < 1 — ¢ on D; E(15|D) = 0 on D°. Taking the partition
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¢ = {B, B}, we will find an p-monotone subset {t,} of Ir such that hy, (T, £[9) > 0
which gives a contradiction.

Suppose that t; = pr(aa), tr = ¢r(az), ..., t,—1 = ¢r(a,—_1) have been chosen such
that

p(T"BNC) < (1= (1/2)€)uy(O)
forall C € \/Z! T"¢, y ¢ E, with v(E)) <27 andj <n — L. Let fz = 15 — E(15|D),
then f3 L K(9, Xr). By Proposition 3.4, we get:

m/‘/TafBlcduy,du=0

li
acf

forall C € \/{;1l T"¢ and j < n — 1. We may choose 1, = ¢r(c,) such that:

o o,Na,=P0forl <i<n-—1;

o [T'fgleduy < (1/2)ep,(C) forall C € V' T"¢ and y £ E, with v(E,) < 27"
Recall that ¢ < E(15|D) < l—e¢.Thenforall C € Vf‘;l’ T"¢andy ¢ E, withv(E,) < 27"

py(T"BAC) = /T’"E(IB|®)lcduy+/T’"fglcdpy

1
< (-0 + Es,uy(C).

Inductively, {t,} can be selected.
Now we compute the entropy along {t,}. If y ¢ U5, E., then for n > ng

n—1
Hy(T6l V 7€) > =52 (1"B0 O 1og (1B €) ~ log (©)

1
> = (180 0)og(1 = 520~ log(C))
C

v

—py(T™B) log(l — %5) .

where the sums are taken over C € Vf’;,l T"¢. Since v((,2, UZ, E)) = 0, we have

liminf H, (T"¢
n—0oQ

n—1 . . 1
1 n — >
VT g) + (T B)log<l 25) >0
for a.e. (v) y € Y. By Fatou lemma,
n—1 1
P th 1 n . —
hggf/(ﬂy(r VT g) + 1y (T"B) log(l 25)) dv > 0.

Therefore hy, (T, £19) > —u(B) log(1 — %5) > 0. Since {#,} is an yr-faithful subset of
I, we get a contradiction which implies T is 9 -rigid. ]
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PROOF OF THEOREM 1.3. (i) = (ii) Let £ = Z(l,¢). By Lemma 5.2, there is a
countable set {&; } of finite partitions such that

inf [ (Hy(€l&0) + Hy(&©) dv =0

for any finite partition £. We define inductively the sequence " = {r,} as follows. Let
t; = p(ay) be any number and suppose that 1} = ¢(a)), 1 = p(a2), .. ., tho1 = p(an-1)
have been defined. Let

N, = max {#{V:\;/ll T"ék}].

1<k<n

Choose 8, such that for any u, v € [0, 1] |u — v| < §, implies

1
1 —vl .
lulogu —vlogv| < N

Since T is mildly 9-mixing, there is a sub-IP-system ¥’ C X such that

lim
;€%

P‘y(TﬁEm B) — :uy(TBE)lLy(B) dv=0

forall E € &, B € f’;l' T" &, and k < n. Thus for é,, > 0 there exists a 3y such that

1
Ay I (TENB) = p(ToByuy (B)] <8,} > 1= 5
for NGy =0, E € &, B € V' T"¢; and k < n. Choose a, such that a, N 3y = () and
apNay=0forl <j<n-—1.
Let
Co =1y [m(T"ENB) — j1,(T" E)puy(B)| < 8}

and note that 1/(U;’=°l ﬂ‘fz‘; C)=1.Fixkandlety € ﬁ,‘ﬁ;C, for some j. Since

|,uv(T/,,Em B) — ﬂv(Tt,,E)ll_\(B)| <,

for n > max{j, k}, we get:

l— Yo ul(T"ENB)log u(T"ENB) + 3 11y (T"E)pu, (B) log u,»(T"’E)u‘(B)’
EB EB

1 <Zl

(3) < <
5B "Ny E

~
=

where the sums are taken over all sets E € £, and B € \/j’;l1 T" &, for k < n. Since:
2 (T By (B) log iy (T" E)ty (B) = 3 - iy \T"E) log pi, (T"E) + 3~ j1,(B) log p1,(B).
EB E B

(3) implies

i, (V, 16 ) — H(T"&) — H, (\V/II T ) < > % - *;*{Tfl o
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One also can check that |[Hy(\/™, T" &) — Hy(T" &) — Hy(\V"™," T"&;)| is a bounded func-
tion on Y with the bound 2 log#{, }. By Lebesgue Dominated Convergence Theorem:

n n—1
H(VTely) ~ Hregl - H(V Taly) —o.

=1

So for any k, H(\V/, T"&|9) — H(V5' T 6|9) — H(&|). Therefore hr(T, &) =
H(&|) for all k. By Lemmas 5.1 and 5.2,

hr(T. €|9) = H(§|Y)

for all finite partitions &.

(i1) = (iii) By the definition of the IP-set we can get the result immediately.

(ii1) = (1) Assume that 7" 1s not mildly 9-mixing. According to Theorem 4.1, there
is an IP-set / and [-representation ¢ such that ¥ = Z(I, ¢) satisfies Condition A and
K©.Z) D L*(X,07'(C). u) but K(9,%) # L*(X.07'(C), ). By Lemma 3.3, there
exists a sub-o-algebra D such that K(9, X) = L*(X, D, i). Then (X, D, u, T) 1s a ¥-rigid
dynamical system. Since D D 6~ (C) but D # §~'(C), thereisa B € Dbut B ¢ §-1(C).
Take £ = {B, B‘}, then H(£|) > 0. By Theorem 1.2, there exists a subset I' of N such
that for any sequence {I',} of pauwise disjoint finite subsets of N hx(T, £|7) = 0. Here
[ = {t, = Tacr, a}. Hence hr(T, £|9) # H(£|Y). This contradiction finishes the proof
of our theorem. [
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