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CONDITIONAL SEQUENCE ENTROPY 
AND MILD MIXING EXTENSIONS 

QING ZHANG 

ABSTRACT. For a measure preserving system (X, #, /i, T) with a factor (F, C, v, T) 
and an infinite sequence {tn }, one can define conditional sequence entropy. We present 
two theorems which characterize rigid and mildly mixing extensions by conditional 
sequence entropy. Properties of IP-systems are used to prove our main theorems. 

1. Introduction. Given an infinite subset F = {tn} of N and a dynamical system 
(X, #, /x, r) , one can define sequence entropy along T. ([7,9, 12]) A. G. Kushnirenko [7] 
and A. Saleski [9] used this notion to characterize the transformations with discrete 
spectrum and mixing properties respectively. Later P. Hulse [6] gave conditional sequence 
entropy characterization of compact and weakly mixing extensions of dynamical systems. 
Hulse's results can be viewed as extensions of Kushnirenko's and Saleski's results. To 
quote his results we need the following definition. 

DEFINITION 1.1. Suppose that J = (Y, C, v, T) is a factor of dynamical system X = 
(X, #, /x, T) and T is invertible. Let F = {tn ; n = 1,2,...} C N and £ be a finite partition 
of X. The T-entropy of T relative to J is defined as follows: 

wr, i\r> = îimsup -H(\J r^\y) 

and 
hr(T\fy) = suphr(T,t\0O 

for any finite partition £ of X. Sometimes T-entropy relative to a certain factor is also 
called conditional sequence entropy. 

THEOREM 1.1 (HULSE [6]). Let y - (Y, C, v, T) be a factor of a dynamical system 
X = (X, #, [i^T) and T be invertible. Then: 

(i) X is a compact extension of y if and only ifhriT]^) = 0 for all F C N. 
(ii) X is a weakly mixing extension of y if and only if for any FQ C N with density 

one, there exists F C To such that 

hT(T^\<y) = H(i\<y) 

for all finite partition £. 
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Definitions of compact and weakly mixing extensions can be found in [6, 13, 14]. 
In [4] H. Furstenberg and B. Weiss introduced a new kind of mixing property of 

dynamical system which they called mild mixing. A function/ G L2(X, $, /x) is rigid if 
there exists {tn} such that Tn —+/ in strong sense. A dynamical system X - (X, #, //, T) is 
mild mixing if there is no nonconstant rigid function in L2(X, (B, //). Later Furstenberg and 
Katznelson introduced the relative version of this notion (see [3] or the Definitions 3.3 
and 3.4.) Sequence entropy characterizations of the rigidity and mild mixing can be 
found in [12]. This note is a sequel of [12] and gives conditional sequence entropy 
characterizations of mild mixing and rigidity relative to a 7-invariant sub-cr-algebra. 

In §2 we bring some facts about IP-sets, IP-systems and IP-limits. This will be followed 
by a brief account of some results concerning factors of measure preserving systems. 
In §3 we use 9^-kernels and îX-sequences to decompose a dynamical IP-system into 
relative rigid part and relative mixing part. In §4 the rigidity and mild mixing relative to 
a T-invariant sub-cr-algebra will be defined and their properties will be discussed. In the 
last section, we obtain the following sequence entropy characterizations of rigidity and 
mild mixing relative to a factor. (For the notions "/-representation" and "(^-monotone" 
see Definitions 4.1 and 4.2) 

THEOREM 1.2. Let J' = (Y,C,v,T)be a factor ofX = (X, 0, //, 7> Then the following 
statements are equivalent, 

(i) T is J -rigid; 
(ii) There exist an IP-set I and I-representation p such that for any (f -monotone subset 

T C I, hT(T\00 = 0; 
(Hi) There exists a subset T C N such that for any sequence {T/} ofpairwise disjoint 

finite subsets ofT, ht{T\<y) = 0. Here f = {tn = Zaern a}. 

THEOREM 1.3. The following statements are equivalent: 
(i) T is mildly y-mixing; 

(ii) For every IP-set I and I-representation <p, there is an (p-monotone subset V C / 
such that hr(T, £|90 = H(£\o0for all £ satisfying H(£\y) < oo; 

(Hi) For any subset T C N, there is a sequence {Tt} ofpairwise disjoint finite subsets of 
Tsuch thatfor any partition £ ofX, hf(T, £|fX) = #(£|90- Here f = {tn = Haern a}-

We will use N, Z and J to denote respectively the set of all positive integers, the set 
of all integers and the set of all finite nonempty subsets of N respectively. For a subset 
(or a linear subspace) V of a topological space, V denote the closure of V. 

This note is finished under the guidance of Professor V. Bergelson in The Ohio State 
University. The author wishes to thank him. 

2. Preliminaries. We begin with several definitions which are mainly taken from 
[1,2,3]. 

DEFINITION 2.1. A homomorphism IJJ: J —> J is a map such that a n j3 = 0 implies 
\l)(a) H il>(J3) = 0 and ^(a U (3) = \l>(a) U %j)(J5). 

The following proposition is an immediate consequence from the definition above. 
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PROPOSITION 2.1. Let V>i, V>2 ^ two homomorphisms and <f\ = ^ i (J) , ^2 = ^2(J). 
lf7\C 7% then there is a homomorphism t/;: J —» J such that xjj2 = ̂ \ o ijj. 

An J-sequence is a sequence {xa ; a G f } indexed by elements a G J . Given a 
semigroup X and a sequence {xi} of elements of X, one can define an ^-sequence by 
xtui2 ik = Xixxt2 • • -xik where i\ < h < • • • < *V Such an jF-sequence will be called an 
IP-system. An important examples of IP-system is an IP-set of N which consists of a 
sequence of real numbers p\,p2, • • • together with all finite sums/7/, +/?/2 + • • • +pik with 
/1 < 12 < • • • < /*. 

Given an ^"-sequence {xa} and a homomorphism ty\J —-* J , one can define jF-
subsequence {ya = x^a)}. In particular, if {xa} is an IP-system, then we call {ya} a 
sw^-IP-systera. 

DEFINITION 2.2. An IP-ring is the range of a homomorphism. Let <f\, ̂ 2 be IP-rings 
and ft C fa- Then 7\ is called a sub-IP-ring of ^2-

REMARK. IP-ring is just an IP-system generated by a family of disjoint subsets of 
N. It is a sub-IP-system of 7, seen as a semigroup with set-theoretical union as the 
operation. 

DEFINITION 2.3. Let {xa} be an J-sequence in a topological space X and x G X. x is 
a limit of {xa}, lim^^rxa = x if for every neighborhood V of x there exists an index /3 
so that a D /? = 0 implies jta G V. 

REMARK. If X is a Hausdorff topological space, the limit is unique. In this paper, all 
the spaces which we deal with are Hausdorff. 

A proof of the following Bolzano- Weierstrass type theorem can be found in [1, p. 155]. 

THEOREM 2.2. If{xa} is an J-sequence with values in a compact metric space, then 
there exists an J-subsequence {ya} such that \ima y a exists. 

Another kind of sets we like to mention here is IP*-sets. A set A G N is IP* if A 
intersects all IP-sets. This notion will be used in proofs later on. 

Let X = (X, (B, /i), y = (F, C, v) be probability measure spaces. Let 9 be a measure 
preserving map from X to F. Then there exists a family of conditional probability 
measures {fiy ; y G F} on (X, $) with following properties: 

(i) Hy(0-l(yj) = 1 for almost ally G F; 
(ii) For every/ G l) (X, #, pi) and for a.e. y G F, the function 

y-* \fd\iy 

is measurable and Jfdp - j{jfdny} dv. 
The decomposition {^y ; y G F} of the measure \i is essentially unique; that is, if 
{fiy} and {fi'y} both have above properties, then /^ = p,y for a.e. y G F. Conditional 
expectations and conditional measures are related by 

W\7)(x) = jf{t)dmx)it) 
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for a l l / G LX(X, <3, /x). For (X x X, *B x #), we can define a new measure: for any set 
B G <B x 0, 

/x9r(«) = y,/xyX/xy(B)rfi/(y). 

/i^ is characterized by its effect on functions of the form/ 0 g, where 

(/ 0 g)(xhx2) =f(xi)g(x2). 

Since the support of \iy x /^ is 9~l(y) x #_1(v), the support of \i^ is 

U r 1^) x e-l(y) = {(xux2) ex xx; o(xx) = 0(x2)}. 

Let 9\, 92 be two maps defined by: 9i(x\,x2) = #(X) for i - 1, 2. It is easy to check that 
0i, 92 are measure preserving, i.e. ^Pr{9jx{C) = i/(Q for all C e C. Moreover 9t\ i= 1,2 
agree on the set U ^ F #^OO X #-1(y) which has measure 1 with respect to n7. 

From now on, Z = {Ta} will denote an IP-system of commuting, invertible, measure 
preserving transformations on (X, #, /i) and we will call X = (X, #, //, S) a dynamical 
W-system. y = (F, C, /x, X) is a factor of X if there is a measure preserving map 0: X —•+ F 
such that 9Ta = 7^0 for all Ta G Z. From the uniqueness of the decomposition, we get 
Taiiy - [ijay for a.e. y G Y. This is equivalent to EÇTcfly) = TaE(f\<y). It is also easy to 
see that 

Z2 = {Sa = Tax Ta} 

is an IP-system of commuting measure preserving transformations on (X x X, <B x #, / i r) 
and y is a factor of (X x X, # x #, /i^, Z2). Therefore abusing the terminology, for any 
F G L2(X x X, # x #, /xr), we also use E(F|90 to denote the conditional expectation 
with respect to <y. 

DEFINITION 2.4. Let J be a factor of an IP-system X. We shall say that I. = {Ta} 
satisfies Condition A if 

\im(SaH, G) 
a 

exists for all //, G G L2(X x X, 0 x #, //^). 

REMARKS. 

(i) Condition A implies that 
\im(S-aH, G) 

a 

exists for all //, G G L2(X x X, 0 x 0, / i r ) . Here 5_a denotes S"1. 
(ii) {Ta} satisfies Condition A if and only if lima S \^(Tafg\Dr)\2 d^i exists for al l / , 

gGL°°(X,^/i) . 

THEOREM 2.3. L f̂ (X, #, /i, Z) &e a dynamical W-system. Then there is a sub-IP-
system I ' d arcd an orthogonal projection P swc/z f/iar 

Hm(raf,g> = (P/,g) 
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for allf, g G L2(X, #, \i). In particular, if Pf =f, then: 

Hm||7v-/||2 = o. 

A proof of this theorem can be found in [3, p. 124]. 

COROLLARY 2.4. There exists a sub-IP-system I ' d satisfying Condition A. 

DEFINITION 2.5. Let J be a factor of X. We say that I is J-mixing if for any F, 
G G ÛiX xX,<Bx<B, \P\ 

Urn | ( S a F G - SaE(F|90E(G|90) ^Mr = 0. 

THEOREM 2.5. The following conditions are equivalent: 
(i) {Ta} is y-mixing on X; 

(ii) For anyf, g G L°°(Z, 0, /x), 

lim \\EiTJg\r) - raE(F|90E(G|90||2 = 0 ; 

(Hi) For any / , g G L2(X, #, //), 

l im | |E ( r^ | r ) - r a E( f | r )E (^ | !X) | | i =0. 

PROOF, (i) => (ii): We first assume that E(f\y) = 0. Let F = / 0 / , G = g 0 g. By 
Definition 2.5, one gets l im^^ JSa(f ®/)g ^gdy? = 0. This gives: 

(1) lim ||E(r</£|90||2 = lim / ( / TJgd^ [ TJgdA dv = 0. 

For any/ € I°°(X, 0, /*), define/, = / - E ( f | j ) . Then E(/, |^) = 0. By (1), ||E(7yig|90||2 

—> 0 which implies (ii). 
(ii) =*> (i): Let / , / ' , g and g' € Z.°°(X, 0, /*) and 

M = max{| | / | | , r | | , | |g | | , | |g ' | |} . 

Then: 

|yE(r«f«|90E(r«f«'|90rf/* - jTaEtf\0OTaEtf'\0nMg\yWg'\!y)dfi\ 

< Af||E(7V«|90 - 7 ,
aE(/|r)E(g|r)| |2 

+ M\\E(Tcf'g'\<y) - TaE(f'\y)E(g'\!y)\\2. 

Hence: 

Um(/Sa(f ® / ) « ® * ' ^ -JsaE(f ®f\onWg ® g ' | 9 0 ^ ) = 0. 

Since all functions with the form/ ® / ' span L2(X x X , î x î , /x^), (i) follows. 

https://doi.org/10.4153/CJM-1993-022-2 Published online by Cambridge University Press

file:////EiTJg/r
https://doi.org/10.4153/CJM-1993-022-2


434 QING ZHANG 

(iii) => (ii): Suppose \f\ < M, \g\ < M. Let 

Ae(0) = {x ; \E(TJg\y)(x) - TaE(f\y)(x)E(g\y)(x)\ > e}. 

From (iii), we have that for every e > 0 there is a f3o such that: /i(Ae(/3)) < £ whenever 
/3 H /30 = 0. Then: 

/ \E(Tcfg\r) - r,E(f|r)Ete|r)l2^< /" ̂  \EiTcfg\or) - r,E(f|r)E(g|r)l2^ 

+ L o | E ( r ^ | ! X ) | 2 ^ 
< £ + 2M2£ 

which implies (ii). 
(ii) => (iii): Since bounded functions are dense in L2(X, $, /x), it is enough to consider 

/ , g E L°°(X, *B, /z). Then (ii) and Holder inequality implies (iii) immediately. • 

DEFINITION 2.6. Let y = (F, C, i/, I ) be a factor of * = (X, % /x, 1 ) . / G L2(X, #, /i) 

is almost periodic with respect to y along the IP-ring ^ , written a s / € AP(y, Z, Ji), if 
for every £ > 0, there is ao £ Ji, a set of functions gi, g2, • • • <>g* £ £2(X, ^? M) a nd a 
measurable subset £ C Y with i/(£) < £ such that 

inf \\Tof - gj\\y < e 

for all y £ E and all a e J\ with a n a 0 = |}. 

REMARK. Actually one can choose gi, g2, • • • •> g* £ £°°(X, #, /i). We leave the details 
to the reader. 

PROPOSITION 2.6. Let y = (F, c , i / , I ) fce a factor of x = (X,#,/x,I). 7 7 ^ 
AP(9^, Z, yi) has following properties: 

(i) AP(9/', X, Ji) w a /wear space; 
(ii) If J\ and J^ are two IP-rings and jFi C ft, then: 

A P ( y , Z , ^ ) C A P ( y , Z , J i ) ; 

fiiij APCT,Z,Ji) D L°°(X, r »(C), Ii); 
(iv) There exists a sub-a-algebra $b C *B such that 

AF(y^fl) = L2(X1$Q,ii). 

PROOF, (i) Let/i,/2 e AP(iT, S, 7i) and a , / 3eR . Then for every e > 0 and / = 1,2, 
there are al

0, Et and g\,..., g^(/) with i/(£/) < e/2 such that 

inf | |r«/i-gj||y<e/(H + |fe|), 
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where a C\ al
0 = 0 and y <£ £/. Let a$ - (XQ U a2, and E = E\ U Ei. For any a U ao = 0 

and y $É £, we have 

This means a/ï + è/2 G AP(îT, I , 7ï). 
(ii) Restricting jFi to a sub-IP-ring ^2 will enlarge the set of functions satisfying the 

conditions in Definition 2.6. The details will be omitted in here. 
(iii) Let g G L°°(X, 6~l(C), fij. There is a constant M such that: |g| < M a.e. Now for 

e > 0 there is a partition —M = <zo < 01 , - • - , < 0« = M such that maxo</<n-i \ai+\ ~~ai\ < 
£. Since g is measurable with respect to (Z, 0-1(C)? /A it is a constant almost every where 
with respect to \iy for a.e. {y) y G Y. Then 117^ — aj\\y = | Taf{x) — cij\ for any x G #~l (y). 
Therefore 

0<j<nU 

which means/ G AP(|X, Z, F̂). 
(iv) A proof can be found in [3, Lemma 7.3]. #o is the smallest Z-invariant a-algebra 

with respect to which the functions in AP(^, Z, J\) are measurable. • 

DEFINITION 2.7. A function H(x, x') on X x X is a ^-kernel if it is measurable with 
respect to # x <B and: 

(i) JH(x, x') d^d{x)(x
f) = 0 for almost all x G X; 

(ii) the function /i(j) = J |//(x, x')\2 d\ky x ^ belongs to L°°(Y7 C, ^). 

For a ^-kernel //, we define H */(x) = SH{x,x')f(x,)d^y{x'). Here y = #(x) and 

/ G L2(X, IB, //). We leave it to the reader to show that H is a bounded operator on 

L\X,<B^\ 

LEMMA 2.7. Let H be a <y-kernel satisfying \imaeçf SaH = H. Then there exists a 
sub-W-ring !F\ of y such that for every e > 0, there is (3o G !Fi, a subset E C Y with 
i/(E) < e and a finite set of functions g\,..., g^ G L2(X, $, 11) such that for any (5 G 7\ 
with (3n(3o = ÏÏ, anyy £E and any f G L2(X, 0, /1) w/f/z |[/"||j, < 1 we get 

inf 11(5,,/*) */-&-| |y < e. 

Moreover H*f G AP(%Z, 7i)/orevery/ £ £2(*? #, /A 

REMARK, l im^ ̂  SaH = H in weak topology if and only if limaG^ £«// = / / in strong 
topology. This is an immediate consequence of the Theorem 1.3. 

PROOF. A proof of the first part of this lemma can be found in [3, Lemma 7.2]. We 
only need to show that for every / G L2(X, #, /x), H * / G AP(%Z, Ji). Since # is 
a bounded operator, it is enough to prove this argument for/ G L°°(X, #, /1). Without 
loss of generality, suppose \f\ < 1. It follows from the first part of the lemma that for 
every e > 0, there is a /3o G !F, a subset £ C F with i/(£) < e and a finite set of 
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functions g\,..., gk G L2(X, #, /x) such that for arbitrary /3 with pnPo = ®,y £ E and 
/ ' G L°°(X, 0,/x) with [f | < 1, 

inf MSpH)*f'-gj\\y<e. 

Taking/' = 7 ^ , we have 
(V/)* / ' = Tp(H*f) 

which implies / / * / G AP(% Ï , Ji). • 

3. Hilbert space decomposition. In this section we always assume that J -
(Y, C, M, 2) is a factor of X = (X, % /x, I ) and I 2 = {Sa = Ta x Ta} is the IP-system of 
measure preserving transformations on (X x X, <B x #, jfl). 

LEMMA 3.1. For any g G L°°(X, #, /x) satisfying that E(g\y) = 0, let H denote the 
weak IP-limit ofSa(g ® g), i.e. for any F G L2(X x X, £ x #, /x^), 

(//,F) = lim(Sa(g®g),F). 

77ien / / is a y-kernel satisfying H = limaG^ SaH. 

PROOF. For any/(jc) G L°°(X, 0, /x), 

Jsa(g ® i y ® 1 rf/x^ = JfTagE(Tag\y)dii = 0 

which implies JHf <S> I dy? - 0. Hence 7/ satisfies the first condition in Definition 2.7. 
Since g (g) g G L°°(X x X, *B x #, /xT) which, as a dual space of Ll(X x X, # x % /x9"), is 
closed with respect to *-weak topology, (see [11]) H G L°°(X x X, # x #, / ^ ) . Hence H 
is a ^-kernel. The identity H = limaG^ SaH comes from Theorem 2.3 directly. • 

The following lemma is an immediate corollary of Theorem 2.3. 

LEMMA 3.2. If {Ta} satisfies Condition A, then l im a e j T~lf = /o in strong (weak) 
topology ijflimaçrjr Tqf =/o in strong (weak) topology. 

Let {gn} C L°°(X, (8, /x) H L2(X, C, M) 1 be a dense set in L2(X, C, ^x)x and //„ = 
liniae^ 5a(gn 0 gn). By Lemma 3.1, Hn is a ^-kernel satisfying //n = lim^rf SaHn. By 
Lemma 2.7 one can inductively construct a sequence 7\ D Ji D • • • of IP-rings such 
that Hn*f e AP(y, I , fF„) for any / G L2(X, <B, /x) and any M G N. We shall call any 
sequence {%} of the kind described above an y-sequence corresponding to {gn}, or just 
an y-sequence. For any ^-sequence {Tn), we define 

tf(y,x)=UAPcr,x,n 

Later, in Theorem 3.6, we will prove that K(y, Z) does not depend on the choice of 
y-sequence. A proof of the following lemma is omitted. 
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LEMMA 3.3. There exists a sub-o-algebra <D of'B such that 

K(<y,l) = L2(X,>D,n). 

Moreover, (X, £>, fi1 Z) is a factor of X. 

PROPOSITION 3.4. Suppose that J is a factor of IP-system X and £ satisfies Condi

tion A. Let f G L2(X, #, //) and {%} be any <y-sequence corresponding to a dense set 

{gn} in L2(X, 0(C), /i)1 . / / / JL AP(y, Z, Jn)/or A// /I, then 

limflEigTJl^ld^i^O 

for any g G L2(X, £,/j). 

PROOF. Let //„ = lim,*^ Sa(g„ (8) gn). Since //„ * / G AP(% I , J„), by Lemma 3.2, 
we have: 

l imsup( / |Ete n r« / - |90 |^) 2 < l i m / l E C ^ r ^ l r ) ! 2 ^ 

= \\m fsa{f®f)gn®gnd^ 

= Jf ®fHn dvy = JfH„ *fdli = 0 

Since {g„} is dense in L2(X, 0(C), n) and E(f|90 = 0 the proposition follows. • 

PROPOSITION 3.5. Suppose thatf e L2(X, $, /x) and 

\im[\E(gTJ\^)\dfi = 0 

for all g G L2(X, 0, //). Then for any J-sequence { J „ } , / J- AP(y, I , J„). 

PROOF. Let {Jn} be a ^-sequence and £ (% I ) = US£i AP(y, I , %). For any / G 
L2(X, #, //), we have the unique decomposition/ = f\ 4-/2 such that/i _L AT(9̂  Z) and 
fi £ ^(9^ £)• By Proposition 3.4, it will be enough to show that: if 

and/ G ÀXfT, 2). then/ = 0. 
For any e > 0, there is a positive è < e such that for any set F with i/(F) < <5, 

SF\f\2d^i < e. Since/ G ÀX9M) and AP(J ,Z ,^ + i ) C AP(fT, Z, J„), there exists 
/o G AP(% Z, ^ ) such that \\f —/O||L2(^) < -̂ F° r £ and ^ same as above, there exists 
A) G J*, {ft G L2(X, #, /i) ; 7 = 1 , . . . , q) and a set E C J with i/(£) < 6/2 such that 
infi</<<? Il̂ afo — ftllj < ^ for y ^ £ and /? G J* with /3 H /3o = 0. Now we claim: for 
/?n/3o = 0 

(2) \\f\\2 - *yfi\\f\\ ~ e < t [ mm0O\ dp. 
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Actually for a fixed (3 G 7k satisfying (3 Pi /3o = 0, letjCy) be the smallest number such 
that \\Tpfo ~ 8j\\y < £• Since 

{y \j(y) = 1} = {y ; l l ^ o - #| |y < ^} \ U & ; l l ^ o - gm\\y < 4 « , 
X m=l 

j'Cy) is a measurable function on E°. Notice that the inequality 

\\T0fo-m\ = \\fo-f\\<S 

implies: there exists Fp with i/(Fp) < 6/2 such that \\Tpfo — Tpf\\y < 2è for y <£ Fp. Now 
let Ep = Fp U E, then v(Ep) < 8. For y £ £^,we have: 

II?-/ - fiwll, < ||7V - r^ollv + \\Tpfo - gm\\y <V2S + 3^e. 

This implies (Tpf, Tpf - gj(y))y < 3y/ë\\Tpf\\y which means 

jTffrgmd^>\\Tp\\
2
y- 3^\\T^\\y. 

Define: 
çjiyy = | 1 if J St £/3 andjCy) = i 

I 0 otherwise, 
and h(y) = £ ? = 1 1 * , then for y £ E0JTpfhdny > \\Ttf\\2

y - 3^117^11,. Hence: 

Z 7 ^ " J^WTfifWîdv-ly/ÏWTffWydu 

> \\Tpf\\2- 3^\\T0f\\ - jE\Trf\2dv. 

This implies (2)./ = 0 follows from (2) and the equation 

lim/|E(f,-7>/-|90|^ = 0. 

Now we are in position to formulate the main theorems in this section which are 
immediate corollaries of Propositions 3.4 and 3.5. 

THEOREM 3.6. K(y, X) does not depend on the choice of y-sequence. 

THEOREM 3.7. There is a unique orthogonal decomposition: 

L2(X, 0, ii) = K(y, I ) e Mcr, 2) 

such that: f G M(% X) if and only if 

\imf\E(gTJ\!X)\dfi = 0 

forallgeL2(X,<B,ii). 

we end this section with a proposition which will be used later. 

PROPOSITION 3.8. Let y = (Y, C, /i, X) be « /actor of a dynamical IP-system X = 
(X, #, //, £). Then, there exists a homomorphism ty: J —> J satisfying: for any s > 0 and 
anyf E K&, X), f/zere is (3o and bounded functions g\, gi,...,gk such that iff3npo = 0, 

^ ; l n L H r w / - «/lly > }̂ < £-
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PROOF. Let {jm} be an J-sequence and let Kitf, I ) = [jm AP(% I , 7m). We can 
choose a sequence {fm G AP(% X, fm) ; m = 1, 2, . . .} which is dense in K(y, X). Since 
/*: G AP(y, Z, iTm) for k < m, by the remark to Definition 2.6, there exist bounded 
functions ghh g2,k,.. .&<„,,*),* and /3m?* G Jm such that 

1 1 1 
< -

m 
where /? G 7m and /3r\/3m^ = 0 for /: < ra. Let /3m = /3m,i U • • -U0m,m and take a sequence 
{am} such that am G F̂m and 

min am > max {/J,,..., /4_i , « i , . . . , a w - i } . 

Define i/>(/3) = (J/e/? <*/• Then t/us a homomorphism on J . 
For any/ G K(y, X) and any e > 0, there is a/m such that 

J[f-fm\2d^<(£/2)3. 

Let£' = {y ;j\f-fm\2dfiy > (e/2)2}, then */(£') < e/2. Takings > m with 1/w < e/2, 
we have 

V otj D W) 

for i 8n{l ,2 , - - - ,n} = 0. Sinceor,- G %îorj>n, <p(J3) G J„. Hence: 

,.inf \\Tmfm-gj,m\\y>-\ < K 7 ^)^ ) + ^ p ' , ̂ - ^ , '̂ ̂ ^ " gj'm"y -~\ <£' 

4. ^-rigidity and mild 9^-mixing. 

DEFINITION 4.1. Let / be an IP-set. A surjection <p: J —• / is called an I-representation 

(of J ) if: 

whenever aPl/3 = 0. 

It is clear that for any IP-set / C N, at least one /-representation of J can be defined. 

DEFINITION 4.2. Let / be an IP-set and </? be an /-representation (of J ) . A set A -
{at} C / is (^-faithful if there exists a sequence {or,-} C 7 with at Pi ay = 0 for i ^y such 
that a/ = (p(aï) for all /. In particular, if max a; < min a7 for / < j , we will say that A is 
a tp-monotone subset of /. 

Now we consider a single invertible measure preserving transformation T acting on a 
probability space (X, <B, /i). Given an IP-set / and an /-representation (/?, one can define 
an IP-system 

I(/^)={ra = f ( a ) ; a a } . 
(X, #, /x, Z(/, y?)) will be called a dynamical IP-system induced by (/, if). 
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DEFINITION 4.3. Let J = (F, c, v, T) be a factor of X = (X, $, /X, 7), where 7 is a 
single measure preserving transformation. 7 is called <y-rigid if there is an IP-set / and 
an /-representation p such that: 

(i) Z = Z(/, </>) satisfies Condition A (for formulation of Condition A, see §2); 
(ii) K(%Z(I^))=L?(X,<B,LI). 

DEFINITION 4.4. Let J = (Y, c, */, 7) be a factor of X = (X, $, /z, 7), where 7 is a 
single measure preserving transformation. 7 is mildly ^-mixing if for any e > 0, the set 

Ee=[n\ j |E( r /g |90 - r E ( f |90E(g|90| ^ < e) 

is an IP*-set for all/ , g E L2(Z, % /x). 

Now we give several equivalent statements for mild [X-mixing and these statements 
will be used in next section to prove our main theorems. 

THEOREM 4.1. The following conditions are equivalent, 
(i) 7 is mildly y-mixing; 

(ii) For any IP-set I and I-representation p, there is a sub-IP-system Z ' c X = Z(7, <p) 
such that 

Urn j \E(Tcfg\0O - TaE(f\r)E(g\<y)\ dp, = 0 

forallftgeLXX,<B,ii); 
(Hi) For every \P-set /, there is an I-representation p and a sub-IP-system I ' c E = 

£(/, (p) such that 

Urn J \E(Tcfg\0O - TaE(f\<y)E(g\y)\ dp = 0 ; 

(iv) For any IP-set / C N and I-representation p, there is a sub-IP-system Z' C i = 
Z(7, ip) such that 

L2{X,O-\C),II)DKW,Y!)\ 

(v) For any \P-set / C N, there is an 1-representation p and a sub-IP-system Z' C 
Z = Z(7, p) such that 

L2(X,B-\c),ii)^K(!y,Y!)\ 

(vi) For every \P-set I and I-representation p, 

L2(Z, 0-\O, p) D AP(r , Z(/, p\ j). 

Before proving this theorem, we need following facts. 

THEOREM 4.2 (HINDMAN [5]). Let 7 - (J/=i Dj- Tnen tnere exists a homomorphism 
^'.7 -* T and Dt with 1 >i>r such that Dt D ifrifF). 

A proof of this theorem can be found in [5]. 

COROLLARY 4.3. Let I contain an IP-set and p be its representation. Then for any 
IP*-set /*, there is an homomorphism ip: J —• 7 such that I H I* D p o i/iif), and 
P o t/?(fF) is an IP-set. 
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PROOF. Let D, = { a a ; <p(a) G I HI*} and let D2 = { a G f ; p(a) fÈ / * } . 

Then J = Dx U D2. By Theorem 4.2, there is a ^ such that D{ D ^(J) or D2 D %!)(?). 
But /* is an IP*-set, p(D2) can not contain an IP-set. Hence D\ D t/;(J) which implies 
ini* Dtfoilj(f). m 

PROOF OF THEOREM 4.1. (ii) => (iii), (iii) => (i), (vi) => (iv) and (iv) =» (v) are trivial. 
We only need to prove (i) => (ii), (ii) ^> (iv), (v) => (iii) and (iv) => (vi). 

(i) => (ii) Let / be an IP-set and p> be an /-representation. For/, g G L2(X, #, /x), let 

££ = (n ; / |E(77*|90 - TnE(f\<y)E{g\<y)\ d»<e}. 

Now we inductively select {an} and {xjjn: J
7 —-> ?} such that: 

• ocj G Imagery); 
• cti n a,- = 0 for i ^ j ; 

• ViCO 3<M^) D •••; 
• inEl/2n D ipo^(f). 

By Corollary 4.3, there is a ^i- !F —> ? such that IHEl/2n D p o t/>i(J). Take «i G 
î/;(iT) such that < (̂ori) G £i/2"- Suppose that we already have chosen « i , . . . , a„_i and 
^ i , . . . , i/Vi-i- By Corollary 3.3, there is if;':: f —+ 7 such that 

<l>°i>n-\(!F)r\El/2n-i ~Dipo\l)n_xo\t)'(T). 

Now let \j)n - xjjn-i o \jjf. Since c*i D • • • D an-\ is a finite set, we can choose an G V>w(jF) 
such that at Pi ay = 0 for all j < n. Therefore an and x[)n are selected. 

Let ^'.J —* J defined by: I/;(J3) = fl /^ ai and I' - po -0( J ) . We have a sub-IP-system 

I i = !( / ' , (/? o VO C I = Z(7, <p o VO-

Since aw G ^ ( ^ ) when m > n, ip((3) G ^n(^) for all /? D 1,2,.. .,n = 0. Hence 
<£ o I/J(/3) G £"i/2« • This Zi depends on / and g. Since L2(X, #, //) is separable, we always 
can use diagonal method to obtain a subsystem U C Zi such that 

Hm j \E(Tcfg\0O - TaE(f\<y)E{g\<y)\ dp = 0 

for all/, g G L2(Z, 0, \x). 
(ii) => (iv) Let I be an IP-set and let p be an /-representation. By Corollary 2.4 and 

(ii), there is a sub-IP-system 
i ' c i : = i ( / , (/?) 

such that Z' satisfies Condition A and 

lirn, / \E(Tcfg\0O - TaE(f\<y)E(g\y)\ df2 = 0 

for all/ , g G L2(X, <B, /u). If E(/"|90 = 0, then 

lim / | E ( r < / ^ | 9 0 | ^ = 0. 
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By Theorem 3.7, we have: iff 1 L2(X,0-\c),n), then/ _L £ ( y , I ' ) . This implies 

I?{X,0-\O,ii)^W,Y!). 
(v) => (iii) For any IP-set /, there is an /-representation <p and sub-IP-system X' C 

Z(/, </?) such that 
L2(X,e-\c),ti)DK(ir,j:). 

Without loss of generality, we suppose that £' satisfies Condition A. By Theorem 3.7, 
we get that when E(f\y) = 0 

lim J\E(Tcfg\0O\dfi = O 

This is equivalent to (iii). 
(iv) => (vi) For any IP-system Z(/,99), by Corollary 2.4, there exists a sub-IP-system 

£' C Z(/, <£>) satisfying Condition A. Then we have: 

L2(X, 0-\O, /i) D ff(% 2') D AP(r? 2', J ) D AP(y, £(/, y), j ) . • 

5. Entropy characterizations of mild 9^-mixing and ^-rigidity. In this section, 
we will prove the Theorems 1.2 and 1.3 which give conditional sequence entropy char
acterizations of ^-rigidity and 9^-mild mixing for measure preserving transformations. 
As before, X = (X, % /z, T) is a dynamical system and J - (Y, C, v, T) is a factor of X. 
The notion of sequence entropy relative to a factor has been defined in the § 1 (see Defini
tion 1.1). Since conditional entropy for a finite partition has been used in Definition 1.1, 
we like to give the following definition for the sake of the completeness. 

DEFINITION 5.1. If £ is a finite and measurable partition of X, then entropy of £ 
relative to J is defined by: 

J J Bei 

Proofs of the next two lemmas can be found in [6, p. 65]. 

LEMMA 5.1. Let £, 77 be finite partitions. Then: 

| M 7 \ E l m - M 7 \ 7/1901 < J(Hy{ï\rj) + Hy{T)\§)dv 

for any sequence Y C N. 

LEMMA 5.2. There exists a countable set {£*} of finite partitions such that 
inf* J"(//y(£|£*) +Hy(£k\Q) dv = Ofor any finite partition £. 

Now we immediately have: 

LEMMA 5.3. There is a sequence (£* = { ^ ? ^ } \k= 1,2,...} of two cell partitions 
ofX such that 

.inf. [(Hy(th V • • • V a l O + tfv^le, V • • • V ^ ) ) d i / = 0 

for any finite partition £. 
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The following result is Lemma 4.15 in [10]. 

LEMMA 5.4. For each £ > 0 and r G N, there exists 8 = 6(£, r) > 0 (which depends 
only on e and r) such that if£ = {A\,..., Ar}, r\ - {C\,..., Cr} are two r-cell partitions 
of any measurable space X with EJ=j /x(A/AC/) < S then H(t;\ri) + //(r/|0 < £. 

Let X/ = I x [0, 1], % be the product a-algebra of # and Borel cr-algebra on [0, 1], 
and fix t>e m e product measure of// and Lebesgue measure A. Then we have a probability 
space (X/, <BI,IJ,X). Let 7r: X/ —> X defined by (JC, f) —* x. Then for any finite partition £ of 
X, we have //(£) = //(7r-1 (£))• We abuse the terminology and also refer to //, Hy as the 
entropies on X/ with respect t o / i x A and fiy x X respectively. By direct computation, 
we have the following lemma. 

LEMMA 5.5. Let g be a measurable function from X to [0, 1 ] and let Bbea measurable 
subset ofX. Define Bj = TT~1(B) and G/ = {(x,y) ; 1 > y > g(x)}, then: /iA(#/ÀG/) = 
S\g- l*|d/x. 

We are now in position to prove Theorems 1.2 and 1.3. 

PROOF OF THEOREM 1.2. (i) =̂> (ii). If T is 9^-rigid, there is an IP-set / and I-
representation ip such that K(y, Z) = L2(X, #, //). Here X = Z(/, <̂ ). By Proposition 3.8, 
there is a i/>: F̂ —-> 7 such that for any e > 0 and / G L2(X, #, JA), there is /3o and 
gi, #2, • • •, g* such that if/3 n/30 = 0, 

Now let If = (f o ij)(!F) and let y?' = <p o -0. We claim that for any y/-monotone subset 
r c / ; , / i r ( 7 l 9 0 = 0. 

Suppose that {a„ G 7} satisfies a-t D ay- = 0 for / ^y and r = {tn = (p'(an)}. For any 
e > 0 and any partition £ = {A, Ac}, one can choose <5 = <5(e, 2) according to Lemma 5.4. 
Then by Proposition 3.8, there exist No and functions g\, g2, • •. ,gk such that if n > NQ 

- (>;mf t l l^ -« / l l ,> f}< | -

Let: 
| . = ( # for0>g,->l 

10 otherwise. 
Then it is clear that 

v{y;&\\r-U-M,>i}<i 
Consider measure preserving transformation 7) onX/ = Xx [0, 1] defined by 7}(jt, y) = 

(Tx, y). Let G7j = {(*, y) ; g > y} and partition 7//j = {G/i7-, G^}. Let 
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then v(En) <8/2forn > No. Thus by Lemma 5.5, for y £ En 

inf pyx \(Ttf7T-l(A)AGIJ)= inf [ \Ttn\A-gj\d^y < inf ||7MA - & |L < 8/2. 

By Lemma 5.4 and the definition of the 8, we have 

inf Hy(ri-n-\0\riij)<e 
1<J<K v ' 

for n> NQ and y £ En. Hence: 

+ i///,(V^)^ 

[N0 + k //Vo + AC \ 

- ( ^ + T o g 2 + £ -
This gives hr(T,£\y) = 0 for any 2-cell partition £. Let £ be a partition of X and 
£ i , . . . , £m are some 2-cell partitions of X. Then, by Lemma 5.1, we have: 

hr(T,Z\0O < hr(T,y\y) + / K ( V &K) + «>(ÉI V &)) <*" 
^ / k k \ 

< 
/ • = 1 

By Lemma 5.3, we get /zr(?\ Cl^) = 0 for any finite partition £. 
(ii) => (iii) Let T = {ip(n)}. By definition one can get the result immediately. 
(iii) => (i) Let T = {an}. Define an IP-set Ir = {#„, + • • • + aHk ; n\ < • • • < n*} 

and an /p-representation ^p : v?r(/?) = #n- Then we have an IP-system £ = X(/p, ^r) . 
Since every IP-system contains an IP-system satisfying Condition A (see Corollary 2.4), 
we can suppose without loss of generality that Zp satisfies Condition A. We need to 
prove K(y, Ip) = L2(X, <B, /i). By Lemma 3.3, there exists a sub-a-algebra <D such that 
K(y, S r) = L2(X, <D, /i). If K(y, Zp) 7̂  L2(X, % /x), there exists £' G 2 with 5 ' £ £>. 
Take 

D = {x ; e < E(lfî/|£>) < 1 - e} G £>. 

Then //(D) > 0 for some £ > 0 (Otherwise E(lfl/1 CD) = 1 or 0 which means B' G £> ). Let 
B = B'DD. Then e < E(lfl|£>) < 1 - e on D; E(b|£>) = 0 on Dc. Taking the partition 
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£ = {B,BC}, we will find an (/2-monotone subset {tn} of/r such that h{tny(T, £|90 > 0 
which gives a contradiction. 

Suppose that t\ = </?r(#2), h - v?r(#2), • • •, tn-\ = (fr(^n-i) have been chosen such 
that 

# « n o < ( i - ( i / 2 ) Ê ) / i y ( Q 

for all C G Vj~/ 7*'£, J £ #; with v{Ej) < 2~j and7 < n - 1. Let/* = lB - E(lfi|D), 
then/fi _L #(9^ Z r). By Proposition 3.4, we get: 

lim IllTofBlcdiiy dv = 0 

for all C G V t / ^ '£ andy < n - 1. We may choose /„ = (fr(an) such that: 
• an Pi of, = 0 for 1 < 1 < n - 1; 
• jr-fBlcdfiy < (l/2)eny(Q for all C G VILl* 7*'£ and y £ En with v{En) < 2~\ 

Recall that e < E(l*|2>) < 1-e. Then for all C G Vïï1 T* Candy £ £„ with */(£«) < 2~n 

/ i ^ f l n O = Jr-EdBlmcdlLy + fT'-fBlcdlly 

< ( l - £ ) ^ ( 0 + - ^ ( 0 . 

Inductively, {tn} can be selected. 

Now we compute the entropy along {tn}. If v ^ Uïn0 £/» m e n for n> HQ 

Hy(r»i\n\J Ft) > -^^(T^BnC)(log^y(T^BnQ-\ogfiy(Q) 
v /=i y B,C 

-E^ ' 5 no( iog( i - ^)^(0 - iog^(oj 

- ^ ( r ^ ) i o g ( i - ^ ) . 

where the sums are taken over C G V^i* ^ S ince KfXi US, #i) = 0, we have 

U m m f / / , ( r ^ r V r ^ ) +/xy(r-B)log(l - l-e) > 0 

for a.e. (z/) y G F. By Fatou lemma, 

immf/^(r^lV TH) +/i>(̂ -«iog(i - ^)] ^ > 0. 

Therefore /*{,„} (T, £|90 > —^t(B) log(l — ^e) > 0. Since {fn} is an (^p-faithful subset of 
/r, we get a contradiction which implies T is ^-rigid. • 

> 
c 

> 
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PROOF OF THEOREM 1.3. (i) => (ii) Let I = 1(7, e). By Lemma 5.2, there is a 
countable set {£*} of finite partitions such that 

inf/(//,(C|6) + ̂ ( 6 l O ) ^ = 0 

for any finite partition £. We define inductively the sequence T = {tn} as follows. Let 
t\ = (f(a\) be any number and suppose that t\ = (p(ct\), h = ^(a2)? • •-, tn-\ = v(&n-\) 
have been defined. Let 

Nn= max j# (V^6 
\<k<n{ { ^{ 

Choose bn such that for any u, v G [0, 1] \u — v| < 8n implies 

\u\ogu — vlogvl < ——. 
nNn 

Since T is mildly ^/-mixing, there is a sub-IP-system Z ' c l such that 

lim / lim 
T, 

Vy(TpEnB)-Liy(TsE)LLy(B) dv = 0 

v{y ; \iLy{TpEnB) - fiy(T0E)^y(B)\ <6n}>\ 

for all £ G ^ , B G V/LI ! ^'£* a nd A: < n. Thus for èn > 0 there exists a /3o such that 

1 

for /? H /30 = 0, E G £*, 5 G N/7JÏ1 ^''S* a n ^ k < n. Choose a„ such that annf30 = (i and 
a„ n a,- = 0 for 1 <j <n- 1. 

Let 
C„ = {v ; l^r-EHB) - iiy(J*"E)iLy(B)\ < 6n} 

and note that z/(U,ïi f ig Q) = 1. Fix & and let >> G H^C/ for some j . Since 

\yiy(TtnEr\B) - iiy{TtnE)iiy(E)\ < Sn 

for n > max{7, k}, we get: 

X>v(^£n£) io g / ix r ' "^£)^ 

(3) < y — < y -

where the sums are taken over all sets E G £* and 5 G V/lV ^'C* f° r k < n. Since: 

Y,»vtfnE)liy{B)\ogiLy(r"E)viy{B) = J2^(Tt"E)\ogfiy(T
t"E)^^(B)\og^(B), 

EM E B 

(3) implies 

//v(V T'Zk) - HATHk) ~ HX(V T>^k) < Y, - = ^ - 0. 
• V,.=) / -V,.= 1 ' En n 
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One also can check that \Hy(\/1=l T*&) - Hy(T^k) -Hy(\J
nrx

x T<£k)\ is a bounded func
tion on Y with the bound 2 log#{£*}. By Lebesgue Dominated Convergence Theorem: 

#(V Ftkly) - H(r*tk\oo - H( V r>tk\or) - o. 
v/=i y v/=i y 

So for any k, //(V-=i F'tklDO ~ ^ T C 1 P'tklQO - H(ik\<y). Therefore hr(T, £k\o0 = 
#(£*|90 fo r all it. By Lemmas 5.1 and 5.2, 

hT{T,i\<y) = H{i\<y) 

for all finite partitions £. 
(ii) => (iii) By the définition of the IP-set we can get the result immediately. 
(iii) =̂> (i) Assume that T is not mildly ^-mixing. According to Theorem 4.1, there 

is an IP-set / and /-representation p such that X = Z(/, p) satisfies Condition A and 
K(y,?L) D L2(X,0-\C),IJ) but £ ( % ! ) ^ L2(X, rT^O, M). By Lemma 3.3, there 
exists a sub-cr-algebra £> such that K(y, X) = L2(X, £>, /i). Then (X, £>, /x, 7) is a fX-rigid 
dynamical system. Since £> D 0_ 1(O but £> / 0_1(C), there is a # G £> but 5 £ 0_1(C). 
Take £ = {5, £ c}, then H(i\j) > 0. By Theorem 1.2, there-exists a subset T of N such 
that for any sequence {Tn} of pairwise disjoint finite subsets of N /zf(7\ £|y) = 0. Here 
f = {tn = Haern a}. Hence hr(T, £\y) ^ H(£\y). This contradiction finishes the proof 
of our theorem. • 
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