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In this Part 2 we study further experimental properties of two-layer exchange flows
in a stratified inclined duct, which are turbulent, strongly stratified, shear-driven and
continuously forced. We analyse the same state-of-the-art data sets using the same ‘core’
shear-layer methodology as in Part 1 (Lefauve & Linden, J. Fluid Mech., vol. 937,
2022, A34), but we focus here on turbulent energetics and mixing statistics. The detailed
analysis of kinetic and scalar energy budgets reveals the specificity and scalings of ‘SID
turbulence’, while energy spectra provide insight into the current strengths and limitations
of our experimental data. The anisotropy of the flow at different scales characterises
the turbulent kinetic energy production and dissipation mechanisms of Holmboe waves
and overturning turbulence. We then assess standard mixing parameterisation models
relying on uniform eddy diffusivities, mixing lengths, flux parameters, buoyancy Reynolds
numbers or turbulent Froude numbers, and we compare our representative values
with the stratified mixing literature. The dependence of these measures of mixing on
controllable flow parameters is also elucidated, providing asymptotic estimates that may
be extrapolated to more strongly turbulent flows, quantified by the product of the tilt angle
of the duct and the Reynolds number. These insights may serve as benchmark for the future
generation of experimental data with superior spatio-temporal resolution required to probe
increasingly vigorous turbulence.
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A. Lefauve and P.F. Linden

1. Introduction

In Part 1 (Lefauve & Linden 2022a) we tackled a range of basic experimental properties of
the continuously forced, shear-driven, stratified turbulence generated by exchange flow in a
stratified inclined duct (SID). We studied the permissible regions of the multi-dimensional
parameter space, the mean flows and Reynolds-averaged dynamics, the gradient and
equilibrium Richardson numbers and the characterisation of the turbulent dynamics with
enstrophy and overturn volume fractions.

In this Part 2 we build on these results to tackle stratified turbulent energetics
and mixing, perhaps the most enduring challenge in the community. In a recent
review, Caulfield (2020) identified that there remain ‘leading-order open questions and
areas of profound uncertainty’ to ‘improv[e] community understanding, modeling, and
parametrization of the subtle interplay among energy conversion pathways, turbulence,
and irreversible mixing’ despite the ‘proliferation of data obtained through direct
observation, numerical simulation, and laboratory experimentation’. In another recent
review, Gregg et al. (2018) warned that ‘We [. . . ] do not know how relevant [idealized
problems addressed by laboratory or numerical studies] are to ocean mixing’ and
recommended that ‘numerical and laboratory studies should help identify mixing
mechanisms in the ocean with mimicking parameters that can be observed at sea,
e.g. profiles of shear, stratification, turbulent dissipation and dissipation of scalar variance’.

Our motivations are that (i) the features of SID flows, highlighted in Part 1, allow
them to mimic geophysically relevant, shear-driven, stratified turbulence in some of its
complexity; (ii) our 16 data sets of the density and three-component velocity fields in
a three-dimensional volume, also introduced in Part 1, provide state-of-the-art access to
the subtle energy pathways in ‘real’ (experimentally realisable) flows. In this paper we
therefore undertake a comprehensive energetics analysis of these data sets (made available
online, see Lefauve & Linden 2022b), drawing on insights from previous studies of the
SID (Meyer & Linden 2014, hereafter ML14; Lefauve, Partridge & Linden 2019, hereafter
LPL19; and Lefauve & Linden 2020, hereafter LL20) but using the same methodology and
non-dimensional shear-layer framework as in Part 1, for more added value for the wider
community.

The remainder of the paper is organised as follows. In § 2 we introduce the background
definitions and equations governing turbulent energetics in the SID. We will then make
progress on the following sets of questions, to each of which we devote a section:

§ 3 How do the mean and turbulent kinetic energy and scalar variance vary across the
Holmboe, intermittent and turbulent regimes? How do energy reservoirs and fluxes
scale with respect to one another and with the flow parameters? What do their spectra
reveal about these flows and about potential limitations of our measurements?

§ 4 How anisotropic are the velocity fields at larger and smaller scales? How does the
shear-driven, stratified nature of Holmboe waves or turbulence affect the production
and dissipation of turbulent kinetic energy?

§ 5 How accurate are ‘parameterisations’ of stratified mixing using standard models
such as eddy diffusivities or flux parameters? How do these quantities depend on
key flow parameters? What does this tell us about the length scales of stratified
turbulence in the SID? How can we extrapolate our results to more strongly turbulent
flows to inform future higher-resolution experiments?

Finally, we conclude in § 6 and distil the key insights gained for the three-pronged
(observational, numerical, experimental) modelling of stratified turbulence.
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Experimental properties of stratified turbulence

2. Background

In this section we give the background definitions and energy budget equations which form
the basis of our energetics analysis in §§ 3–5.

2.1. Definitions
We first split the total local specific kinetic energy of the flow K(x, t) ≡ (1/2)u · u =
K̄ + K′ into a mean and a turbulent (or perturbation) kinetic energy, respectively,

K̄( y, z) ≡ 1
2 ū · ū and K′(x, t) ≡ 1

2 u′ · u′, (2.1a,b)

where we recall that x, t,u, ρ are respectively the ‘shear-layer rescaled’ spatial
coordinates, time, velocity, and density (see Part 1, (3.3)), that the bar averages are
·̄ ≡ 〈·〉x,t, and that the prime variables are perturbations with respect to these x − t averages
(see Part 1, (4.1)).

By analogy, we also define the total scalar density variance Kρ ≡ (1/2)Risb ρ
2 = K̄ρ +

K′
ρ into a mean and a turbulent (or perturbation) scalar variance, respectively,

K̄ρ( y, z) ≡ 1
2 Risb ρ̄

2 and K′
ρ(x, t) ≡ 1

2 Risb ρ
′2, (2.2a,b)

where Risb is the shear-layer bulk Richardson number defined in Part 1 (3.4b). These
variances are useful and more direct and convenient alternatives to potential energies
when estimating mixing. In particular K̄ρ is more informative in SID flows than
in most canonical stratified shear layers since the average density field ρ̄ results
entirely from mixing inside the duct, rather than being set as an initial condition. No
mixing, i.e. the bimodal ±1 distribution from the external reservoirs, corresponds to
a maximum (1/Risb)〈K̄ρ〉 = 1/2 (and K′

ρ = 0). By contrast, complete mixing (uniform
ρ̄ = 0) corresponds to a minimum (1/Risb)〈K̄ρ〉 = 0, and a linear stratification with
uniform gradient across the shear layer ∂zρ̄ = −1 corresponds to an intermediate value
of (1/Risb)〈K̄ρ〉 = 1/3 (also note that in this latter case the non-dimensional buoyancy
frequency simplifies to N2 = Risb).

2.2. Evolution equations
The averaged equations of K̄, K̄ρ, and the temporal evolution equations of K′,K′

ρ follow
from the equations of motion (3.5) in Part 1

∂tK( y, z) = ΦK̄ − P + F − ε̄, (2.3a)

∂tK′(x, t) = ΦK′ + P − B − E, (2.3b)

∂tKρ( y, z) = ΦK̄ρ − Pρ, (2.3c)

∂tK′
ρ(x, t) = ΦK′

ρ + Pρ − χ, (2.3d)

where the mean temporal gradients over the data set interval t ∈ [0, Lt] have the form
∂tK = (1/Lt)(〈K〉x(t = Lt)− 〈K〉x(t = 0)) ≈ 0 in quasi-steady state (similarly for K̄ρ).
All Φ terms are transport terms that will be discussed in § 2.4.

The mean kinetic energy equation (2.3a) has three source/sink terms: the production
of turbulent kinetic energy P (generally positive) by interaction of the off-diagonal
(deviatoric) Reynolds stresses with the mean shear, the gravitational forcing term F
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A. Lefauve and P.F. Linden

(generally positive) transferring energy from the mean potential energy (not shown here)
and the viscous dissipation of the mean ε̄ (always positive)

P ≡ −u′v′∂yū − u′w′∂zū, F ≡ Risb sin θ ūρ̄, ε̄ ≡ 2
Res s̄ijs̄ij > 0, (2.4a–c)

where Res is the shear-layer Reynolds number defined in Part 1 (3.4a), the mean strain
rate tensor is s̄ij ≡ (∂xi ūj + ∂xj ūi)/2 and we implicitly sum over repeated indices (unless
specified otherwise).

The remaining equations (2.3b)–(2.3d) have four further volumetric terms: the turbulent
buoyancy flux B (transferring energy from the turbulent kinetic energy, generally
positive), the production of turbulent scalar variance Pρ (generally positive), the turbulent
dissipation E (always positive) and the turbulent scalar dissipation χ (always positive)

B ≡ Risb w′ρ′, Pρ ≡ −Risb w′ρ′∂zρ̄, E ≡ 2
Res s′

ijs
′
ij > 0, χ ≡ Risb

Res Pr
∂xjρ

′∂xjρ
′ > 0,

(2.5a–d)

where s′
ij ≡ (∂xiu

′
j + ∂xju

′
i)/2. All terms in (2.4) and (2.5) are functions of y, z only, except

for E and χ , which are functions of x, t.
We see in (2.5) that Pρ is proportional to B in the simple case of linear stratification.

Moreover, Pρ = B if ∂zρ̄ = −1 (linear mixing layer spanning the entire shear layer), since
in this case B is a source term for the turbulent potential energy, which is exactly equal to
K′
ρ (as noted by Taylor et al. 2019, § 3).

2.3. Approximations
A few simplifying approximations were made in (2.3)–(2.5). First, in (2.3c) we
neglected the molecular scalar dissipation Risb/(ResPr)(∂xj ρ̄∂xj ρ̄) ≈ 0 (requiring |∂xj ρ̄| �√

ResPr/Risb which is true here for Pr = 700). Second, in the definition of P we assumed
parallel mean flow, i.e. v̄, w̄ ≈ 0, and in Pρ we assumed ∂yρ̄ ≈ 0 (which are good
approximations). Third, in F we assumed no mean vertical buoyancy flux, i.e. w̄ρ̄ ≈ 0
(this term is key in horizontal exchange flows at θ = 0, but negligible in long ducts at
θ > 0 since the mean slope of the density interface is small, as explained in LPL19, § 4.3).
Fourth, in B we assumed u′ρ′, v′ρ′ ≈ 0 and cos θ ≈ 1.

2.4. Boundary fluxes
The transport terms Φ in (2.3) represent the divergence of advective, pressure and
viscous/molecular fluxes

ΦK̄ ≡ −∂x(uK)− ∂x(up)+ 2
Res ∂x(us11), ΦK′ ≡ ∂xi

(
−u′

iK
′ − u′

ip
′ + 2

Res u′
js

′
ij

)
,

ΦK̄ρ ≡ −∂x(uKρ), ΦK′
ρ ≡ ∂xi

(
−u′

iK
′
ρ + 1

Res Pr
∂xiK

′
ρ

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.6)

respectively, where, as above, we assumed parallel mean flow and negligible molecular
transport inΦK̄ andΦK̄ρ , and where ∂xφ denotes the mean gradient along x (non-zero if φ
is non-periodic). When averaged over a volume, these divergence terms become boundary
fluxes.
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Experimental properties of stratified turbulence

These boundary fluxes are typically neglected in the stratified turbulence literature,
because they usually conveniently vanish in idealised geometries (e.g. for periodic
boundary conditions), greatly simplifying (2.3). In the SID geometry, they are
unfortunately slightly more complicated as we explain below.

In the y and z directions, ΦK′
and ΦK′

ρ will not generally cancel if the volume average
is done over the shear layer (as in this paper) because the boundaries do not include the
duct walls (whereas LPL19, § 4.2.1 included them). In other words, turbulent fluctuations
can in principle be transported freely across our shear layer ‘imaginary’ boundary (y =
±Ly, z = ±1) to (or, more rarely, from) the near-wall region.

More importantly, in the x direction, most boundary fluxes can generally be neglected
when θ � arctan A−1, where A ≡ L/H is the length-to-height aspect ratio of the duct (high
in the long ducts of interest here, A = 30 in our set-up). In these so-called forced flows,
the mean slope of the density interface is small and the flow is approximately periodic
(see LPL19, § 4.3 and their Appendix B). This applies in particular to −∂x(uK), which is
important and <0 when θ ≈ 0, but unimportant and ≈0 in forced flows.

We, however, note two exceptions. First, our Part 1 results on the unexpected nature of
the estimated mean pressure gradient Π = −∂xp (weakening ū rather than strengthening
it) suggest that the simple hydrostatic pressure assumed in LPL19’s Appendix B may not
be correct and, consequently, that −∂x(up) may not be neglected. However, for simplicity,
and due to our inability to measure it directly, we ignore it in this paper until future
work sheds light on it. Second, the flux of mean scalar variance ΦK̄ρ > 0 represents the
continuous inflow of unmixed fluid from the reservoirs, countering the effects of mixing,
and must be retained to ensure that a steady state for K̄ρ is possible.

2.5. Steady-state balances
In our unsteady flows, steady state (∂t = 0) cannot be expected in the pointwise and
instantaneous sense of (2.3). It can, however, be expected in a time- and volume-averaged
sense, leading to the following balances:

0 ≈ 〈F〉 − 〈P〉 − 〈ε̄〉, (2.7a)

0 ≈ 〈P〉 − 〈B〉 − 〈E〉, (2.7b)

0 ≈ 〈ΦK̄ρ 〉 − 〈Pρ〉, (2.7c)

0 ≈ 〈Pρ〉 − 〈χ〉, (2.7d)

where we recall from Part 1 that 〈·〉 ≡ 〈·〉x,y,z,t. In the above, we assumed for simplicity that
all boundary fluxes were negligible, except the essential ΦK̄ρ sustaining the steady-state
scalar dissipation. We also assumed that all mean temporal gradients are negligible
〈∂tφ〉t = (1/Lt)(φ(Lt)− φ(0)) ≈ 0 (verified in our data).

These above balances can alternatively be expressed as two ‘independent’ estimations
of the mean turbulent dissipation rates 〈E〉, 〈χ〉

〈E〉 ≈ 〈P〉 − 〈B〉 (2.8a)

≈ 〈F〉 − 〈B〉 − 〈ε̄〉, (2.8b)

〈χ〉 ≈ 〈Pρ〉 (2.8c)

≈ 〈ΦK̄ρ 〉. (2.8d)
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A. Lefauve and P.F. Linden

Equation (2.8a) represents the classical balance of Osborn (1980), (2.8c) represents the
classical balance of Osborn & Cox (1972), while (2.8b) and (2.8d) are more specific to
SID flows.

3. Energetics

We now use experimental data to test the validity of the above equations and
approximations, and obtain further insight into the time- and volume-averaged energy
reservoirs and their fluxes in § 3.1, their spatio-temporal structures in § 3.2, their spectra
in § 3.3 and the limitations in their accuracy in § 3.4.

3.1. Time and volume averages

3.1.1. Energy reservoirs
In figure 1 we plot the steady-state energy reservoirs in all 16 data sets, both as function of
Res (panels a–f ), and as correlation plots (panels g–j).

Note that our definition of turbulent perturbations around the x − t mean flow can
attribute artificially high energies to L and H flows, whose perturbations u′ ≡ u − ū and
ρ′ = ρ − ρ̄ can exhibit slight residual x − t structure due to the nature of our exchange
flow (slightly non-parallel in x and/or accelerating or decelerating in t). Therefore,
in figure 1 we removed this artefact (not due to the turbulent or wave motions or
interest) by subtracting from 〈K′〉, 〈K′

ρ〉 the mean x − t variance corresponding to the
zero x-wavenumber and temporal frequency content of their respective spectra (i.e. we
subtracted from 〈u′2〉x,y,z,t, the components 〈〈u′〉2

x〉y,z,t and 〈〈u′〉2
t 〉x,y,z and similarly for

ρ′). We verified that I and T flows are almost unaffected by this correction. We return to
this in our discussion of energy spectra in § 3.3 and Appendix A.3.

The mean kinetic energy 〈K̄〉 (panel a) is approximately constant around 0.2 in all
flows, with values decreasing from 0.25 in L,H flows to 0.15 in T flows. The turbulent
kinetic energy 〈K′〉 (panel b) increases from 0 in L flows to around 0.01 in T flows (e.g.
T2, T3). The square-root ratio of turbulent-to-mean kinetic energies

√
〈K′〉/〈K̄〉 (panel c),

indicating the relative magnitude of velocity fluctuations, is 10 %–15 % in H flows, and
10 %–20 % in I flows (with significant spread) and up to 25 % in T flows.

We now turn to the scalar variance reservoirs. Although K̄ρ,K′
ρ are preferred when

discussing energy fluxes (as in § 2) because of their interpretation as proxy for potential
energy under linear stratification, we first consider in panels (d–h) the rescaled quantities
〈K̄ρ〉/Risb ≡ 〈ρ̄2〉 and 〈K′

ρ〉/Risb ≡ 〈ρ′2〉, which are more straightforward measures of
scalar variance. High values of mean variance 〈ρ̄2〉 ≈ 0.4 (panel d) confirm that very little
mixing takes place in L and H flows beyond molecular diffusion (close to the no-mixing
upper bound of 0.5, see dotted lines). Mixing increases in I flows, where an intermediate
layer of approximately uniform density achieves ‘more’ mixing than a uniformly linear
stratification (〈ρ̄2〉 < 1/3, see dotted lines), while T flows are halfway between linear
and full mixing (〈ρ̄2〉 ≈ 1/6). The turbulent variance 〈ρ′2〉 (panel e) is, surprisingly,
higher in some H flows than in most I and T flows. This reflects the fact that Holmboe
waves on a sharp interface can generate very large perturbations on either side of it (due
to high |ρ′| values), compared with a well-mixed turbulent layer (low |ρ| values). This
effect partially disappears when considering the relative square-root of turbulent-to-mean

variance
√

〈K′
ρ〉/〈K̄ρ〉 =

√
〈ρ′2〉/〈ρ̄2〉 (panel f ), typically higher in I and T flows, and

reaching a maximum of 25 %, just like the kinetic energies (panel c).
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Figure 1. Steady-state energy reservoirs in all 16 data sets. (a–c) Mean and turbulent kinetic energies, and their
square-root ratio, as function of Res (separating flow regimes). (d–f ) Mean and turbulent scalar variances and
their square-root ratio (rescaled from (2.1a,b) to obtain 〈ρ̄2〉, 〈ρ′2〉). (g–j) Correlation between scalar variance
and kinetic energies (in (i-j) we show the full K̄ρ,K′

ρ to test for potential-to-kinetic energy partitions). Symbol
shapes and colours follow the flow regimes, as in Part 1. All dashed lines have slope one. Dotted lines are
labelled explicitly.

We further see that the mean scalar variance 〈ρ̄2〉 is closely correlated to the mean
kinetic energy 〈K̄〉 (panel g), especially in I and T flows, where they become equal (dashed
line). This reflects our observation in Part 1 of self-similarity 〈ū〉y(z) ≈ 〈ρ̄〉y(z) in T flows,
i.e. that momentum and density become equally mixed. This general correlation in I and
T flows also extends to the turbulent energies 〈ρ′2〉 and 〈K′〉 (panel h).

We now turn to the potential-to-kinetic energy partitions. The mean partition 〈K̄ρ〉/〈K̄〉
(panel i) drops from ≈1 (equipartition, see dashed line) in L1 and H1 (where Risb ≈ 0.5–1)
down to ≈0.1 (1/10 partition, see dotted line) in the late I and T regimes (where
Risb ≈ 0.1 − 0.2). The turbulent partition 〈K′

ρ〉/〈K′〉 (panel j) follows a similar trend of
equipartition in all H flows, and asymptotic 1/10 partition in T flows (see the zoomed-in
inset for more details).

3.1.2. Energy fluxes
In figure 2 we plot the steady-state energy fluxes in all 16 data sets. All gradients were
computed using second-order accurate finite differences. Limitations in the resolution of
the data will be discussed in § 3.3 and Appendix B.

In panels (a–c) we investigate the dependence of the kinetic energy source 〈F〉 and
sinks 〈ε̄〉, 〈E〉 with respect to two key groups of parameters θRisb and θRes, respectively.
Note that θ is in radians, and recall from Part 1 (see figure 2) how these output parameters
depended on input parameters: Risb ∝ θ−0.9(Reh)−0.4 and Res ∝ θ0.7(Reh)1.4. As expected
from its definition (2.4a–c), 〈F〉 ∝ θRisb, with a factor ≈ 0.5 in L and H flows, decreasing
to ≈ 0.25 in T flows (due to a lower 〈ūρ̄〉). The mean dissipation 〈ε̄〉 dominates over the
turbulent dissipation 〈E〉 at low θRes (L and H flows), but decreases to become comparable
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Figure 2. Steady-state energy fluxes in all 16 data sets. (a) Mean kinetic energy forcing (power source) as
function of θRisb. (b–c) Mean kinetic energy dissipation, and turbulent kinetic energy dissipation (power sinks)
as function of θRes (≈ θReh identified as proxy for regime transitions in LPL19). (d–f ) Test of the approximate
kinetic balances (2.7a), (2.8a), (2.8b), respectively. (g–i) Test of the approximate scalar variance balances
(2.7c), (2.8c), (2.8d), respectively. (j–l) Test of three further commonly used ratios: 〈B〉/〈E〉 ≡ Γ , 〈B〉/〈P〉 ≡
Rf , and 〈B〉/〈Pρ〉 (≡1 when ∂zρ̄ = 1), respectively. All dashed lines have slope 1 and denote expected equality
between fluxes. Dotted lines are labelled explicitly.

or lower at higher θRes = O(100) (T2 and T3). These observations in panels (a–c) are
key – and almost defining – features of SID flows: hydraulic control of two-layer exchange
flows sets an upper bound on the magnitude of the mean flow (set by the dimensional scale√

g′H and thus 〈|ū|〉 � 1/2 or 〈K̄〉 � 1/4), causing a plateau in 〈ε̄〉 in the I/T regimes, and

937 A35-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.21


Experimental properties of stratified turbulence

thus an increase in 〈E〉, which eventually dominates to match the increased 〈F〉 at higher
θ (see ML14 and LPL19).

In panels (d–f ) we test the approximate kinetic energy balances of (2.7a), (2.8a), (2.8b),
respectively. The mean balance 〈P〉 ≈ 〈F〉 − 〈ε̄〉 is only verified (dashed line) in a subset
of flows (e.g. H1, H2, H4 I8, T2, T3). The systematic underestimation of 〈P〉 is due partly
to the neglected boundary flux 〈ΦK̄〉, and partly to our limited resolution of small-scale
fluctuations (which are needed to measure 〈P〉 but not 〈F〉 and 〈ε̄〉). Unfortunately, it is not
possible to estimate with confidence the relative importance of either source of error, since
boundary fluxes are notoriously inaccurate and we cannot know how much fluctuation
energy is present below our resolution. The turbulent balance of Osborn (1980) 〈E〉 ≈
〈P〉 − 〈B〉 is also verified in a (different) subset of flows. The general underestimation of
〈E〉, especially in I and T flows, is primarily due to the limited resolution of gradients
of small-scale velocity fluctuations (needed to measure 〈E〉 but not 〈P〉 and 〈B〉). The
balance 〈E〉 ≈ 〈F〉 − 〈B〉 − 〈ε̄〉 follows from the previous two balances, and is thus the
most poorly verified overall.

In panels (g–i) we test the approximate scalar variance balances (2.7c), (2.8c), (2.8d),
respectively. The balance between production of turbulent variance and advective flux of
mean variance (from unmixed fluid coming into the domain) 〈Pρ〉 ≈ 〈ΦK̄ρ 〉 (panel g)
is verified in most flows (e.g. H2, H4, T3 and most I flows except I4), although the
cluster near 0 is inconclusive. Some H flows (H2 and H4) even show equality between
negative values, which suggests that: (i) the net effect of Holmboe wave turbulence in the
measurement volume is to increase (rather than decrease) scalar variance, by sharpening
(rather than broadening) the mean density interface, consistent with the findings of Zhou
et al. (2017), Salehipour, Caulfield & Peltier (2016) and our Reynolds-averaged profiles in
Part 1; and/or (ii) this sharpening must be countering the net advection of mixed fluid
into the volume, which means that mixing must take place outside the length of the
duct occupied by Holmboe waves, presumably near the ends of the duct where plumes
discharge turbulently into the reservoirs and interact with the incoming fluid, entraining
mixed fluid back into the duct. Negative values of 〈ΦK̄ρ 〉 < 0 in I4, T1 and T2 are, however,
surprising and likely the result of experimental noise in the computation of this mean
gradient. The turbulent balance of Osborn & Cox (1972) 〈χ〉 ≈ 〈Pρ〉 > 0 (panel h), only
valid for broadening-type (I and T) flows (because of the neglect of 〈ΦK′

ρ 〉), cannot be
verified even in these flows. In most H flows, this balance is fundamentally impossible
since 〈Pρ〉 < 0. The systematic and severe underestimation of 〈χ〉 is due to our severely
limited resolution of small-scale density gradients (more severe than for 〈E〉, because ρ′
contains energetic length scales that are approximately a factor

√
Pr ≈ 25 smaller than u′).

Finally, the balance 〈χ〉 ≈ 〈ΦK̄ρ 〉 > 0 (panel i) follows from the previous two balances and
is thus equally poorly verified. We explain the reasons for these limitations in § 3.4.

In panels (j–l), we test the correlation of 〈B〉 with the three other turbulent fluxes
〈E〉, 〈P〉, 〈Pρ〉 respectively, in order to assess the relevance and numerical value of the
following ratios:

〈B〉
〈E〉 ≡ Γ,

〈B〉
〈P〉 ≡ Rf ,

〈B〉
〈Pρ〉 ≡ 1 when ∂zρ̄ = −1 everywhere. (3.1a–c)

The flux parameter Γ and the flux Richardson number Rf date back to Osborn (1980)
and have been extensively used in the literature to parameterise the ‘taxation rate’ of
stratification on turbulent dissipation (Caulfield 2020). Although often assumed constant,
dimensional analysis suggests that Γ and Rf are functions (θ,Res,Risb,R,Pr) until
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proven otherwise. First, our data show that 〈B〉 ∝ 〈E〉 only in late I flows and in all
T flows (panel j), where the slope indicates an asymptotic ratio Γ ≈ 0.1 (dotted line),
approximately half the commonly used value of 0.2 in the literature. The slightly negative
values of 〈B〉 can be explained by the slight non-periodicity of exchange flows at low
tilt angles 0 < θ � arctan A−1 ≈ 1/30 ≈ 2◦: the convective acceleration of each layer
(u′∂xu′ > 0) caused by a tilting interface produces downward flow (w′ < 0) in the dense
layer (ρ′ > 0) and vice versa, resulting in a net volume-averaged 〈B〉 = Risb〈w′ρ′〉 < 0
in the absence of turbulence. This effect vanishes in more turbulent flows at larger tilt
angles, where we instead tend to slightly overestimate Γ by our underestimation of its
denominator 〈E〉 (compared with its numerator 〈B〉, due to limitations in our computation
of small-scale gradients). Second, we see that 〈B〉 ∝ 〈P〉 in most I and T flows (panel k),
where the slope indicates an asymptotic ratio Rf ≈ 0.05 (dotted line), approximately a
third of the commonly used value of 0.15 in the literature. Third, we see that 〈B〉 ≈ 〈Pρ〉
(dashed line) in most I and T flows (panel l), which is consistent with the theory under
linear stratification (where ∂zρ̄ = −1), despite such a stratification being only achieved
approximately in T3 (see Part 1, figure 3p). We return to these parameters in more detail
in § 5.

3.1.3. Estimations of 〈E〉 and 〈χ〉 from non-dimensional parameters
In this section we combine the steady-state energy balances of § 2.5 and the experimental
results of § 3.1.2 to propose indirect estimations (or proxies) of 〈E〉 and 〈χ〉 that are
insightful and more accurate than their direct computations, which rely on small-scale
gradients.

From (2.8a) and (3.1), we take advantage of the fact that P is measured with better
accuracy than E to propose

〈E〉 ≈ 〈P〉 − 〈B〉 (3.2a)

≈ (1 − Rf )〈P〉 (3.2b)

≈ 1
1 + Γ

〈P〉, (3.2c)

which means that

Rf ≈ Γ

1 + Γ
or Γ ≈ Rf

1 − Rf
. (3.3)

These estimations depend on the balance (2.8a) and the assumption (3.1) that the fluxes
〈E〉, 〈B〉, 〈P〉 are proportional to one another, approximately verified in T flows. Note,
however, that our measurements gave slightly incompatible values of Γ ≈ 0.1 and Rf ≈
0.05.

To address this, we first note that Γ = 0.1 is mostly likely an overestimate due to the
greater underestimation of its denominator 〈E〉 (which relies on gradients of fluctuations
which have higher energy content at higher, unresolved wavenumbers), compared with its
numerator 〈B〉 (which relies on fluctuations only). Figure 2(e–f ) suggests that 〈E〉 may
be underestimated by as much as a factor of 2, bringing the actual value of Γ closer to
0.05. Second, we note that Rf ≈ 0.05 (and therefore Γ ≈ 0.05/0.95 ≈ 0.05) appears more
trustworthy because both its numerator 〈B〉 and its denominator 〈P〉 rely on fluctuations
only, rather than gradients. Third, we add to these main comments a weaker nuance that
Rf = 0.05 might actually be a slight underestimate due to its numerator 〈B〉 involving
ρ′, whose energy spectrum extends further in wavenumber space at Pr = 700 than its
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numerator 〈P〉 involving u′ and v′, and is thus comparatively more poorly resolved (see
§ 3.1.4 for more details). In summary, we conclude that 0.05 and 0.1 are robust lower
and upper bounds, i.e. Γ ≈ Rf ≈ 0.05–0.1, with a greater confidence for the lower range
0.05–0.07.

From (2.8b), we take advantage of the fact that F is measured with even better accuracy
than P to propose a series of further approximations of 〈E〉 valid in the limit of very
turbulent flows (θRes � 100)

〈E〉 ≈ 〈F〉 − 〈B〉 − 〈ε̄〉 (3.4a)

≈ 〈F〉 − 〈B〉 if 〈E〉 � 〈ε̄〉 (hydraulic control, figure 2b–c) (3.4b)

≈ (1 − Rf )〈F〉 (3.4c)

≈ 0.25 (1 − Rf ) θ Risb if 〈F〉 ≈ 0.25 θ Risb ( figure 2a) (3.4d)

≈ 0.037 (1 − Rf ) θ if Risb ≈ 0.15 (Part 1 figure 2b) (3.4e)

≈ 0.035 θ if Rf ≈ 0.05 ( figure 2k), (3.4f )

where we recall that θ is in radians. Note that using the upper bound corresponding to
Γ ≈ 0.1 in the last line (3.4f ) (see figure 2j) would give an almost identical expression
〈E〉 ≈ 0.034θ .

From (2.8c), we propose the corresponding approximation of 〈χ〉, in the limit of very
turbulent flows with linear stratification where 〈B〉 ≈ 〈Pρ〉 (figure 2l)

〈χ〉 ≈ Rf 〈F〉 ≈ 0.037 Rf θ ≈ 0.0019 θ. (3.5)

We also note that, under all the above assumptions, our estimations (3.4f ) and (3.5) yield
the following ratio of scalar variance to kinetic energy dissipation:

〈χ〉
〈E〉 ≈ 〈B〉

〈P〉 − 〈B〉 ≈ Rf

1 − Rf
≈ Γ, (3.6)

which, as we have seen, gives values between 0.05 and 0.1. This expression has the merit
of linking Γ,Rf with a natural measure of the irreversible ‘tax’ levied by stratification on
turbulence. The key question becomes: How do Γ,Rf scale with the non-dimensional flow
parameters? We tackle this parameterisation of mixing in § 5.

Finally, we note that LPL19 explained the transitions between flow regimes by
using the simple approximation 〈E〉 ≈ 〈P〉 ≈ 〈F〉 ≈ (h2δu) θ/8 ≈ 0.04θ (where the
factor h2δu ≈ 3 converts their hydraulic non-dimensionalisation to our shear-layer
non-dimensionalisation). Their expression is in good agreement with (3.4f ). They argued
that regime transitions are caused by thresholds in the normalised turbulent strain rate,
which we write as

〈s′
ijs

′
ij〉 ≡ Res

2
〈E〉 ≈ 0.02 (1 − Rf ) θRes ∝ θRes, (3.7)

assuming Rf = const., highlighting the key role of the group of parameters θRes.
The above data on mean energy reservoirs and fluxes confirm and extend LPL19’s

findings that flows with a similar product θRes (but different individual values of θ and
Res) behave similarly. Note that LPL19’s hydraulic formulation used the product θReh

(where Reh is defined in Part 1, (3.2a)), while our more accurate shear-layer formulation
uses the product θRes ∝ θ1.7(Reh)1.4.

Our data are also consistent with the findings in Part 1 that quantitative turbulent
fractions scale strongly with both θ and Res (enstrophy fraction ∝ θ2.7(Res)2.8, and
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overturn fraction ∝ θ3.2(Res)1.8). Since the production of perturbation enstrophy by vortex
stretching is given by s′

ij ω
′
iω

′
j, there is in fact a direct relation between an increasingly large

turbulent strain rate s′
ijs

′
ij (slaved to θRes) and increasingly extreme enstrophy events, and

thus enstrophy fraction (Johnson & Meneveau 2016). The relation to density overturns is
more indirect; first because vorticity can be decomposed into a rotating and a shearing part
(Tian et al. 2018) (the rotating part being associated with overturns but not the shearing
part), and second because overturns feed back into the enstrophy production through the
baroclinic term.

3.1.4. Kolmogorov and Batchelor length scales
The estimation of the viscous dissipation of turbulent kinetic energy 〈E〉 in (3.4f ) allows
us in turn to give a practical volume-averaged estimate of the Kolmogorov length scale
K , marking the end of the inertial subrange for K′ and K′

ρ . Defined dimensionally as
(ν3/〈E〉)1/4, its non-dimensional expression in shear-layer units is

K ≡ 〈E〉−1/4(Res)−3/4 (3.8a)

≈ 2θ−1/4 (Res)−3/4, (3.8b)

assuming for simplicity that 1 − Rf ≈ 1.
We also estimate the Batchelor length scale B, marking the end of the viscous

convective sub-range for K′
ρ , as

B ≡ KPr−1/2 ≈ 0.1 θ−1/4 (Res)−3/4 for Pr = 700. (3.9)

These estimates give K ≈ 0.02 and B ≈ 0.0007 for T2 and T3. For these data sets, we
thus only have suitable resolution in x, z for the velocity field (since dx = dz ≈ 1.5K ≈
40B and dy ≈ 5K ≈ 130B, see Part 1, Appendix B).

These estimates also suggest that while the magnitude of energy reservoirs and fluxes
are strong functions of θ , the Kolmogorov and Batchelor scales are stronger functions
of Res than of θ . In particular, we note that in flows having identical ‘θRes intensity’,
still have K , B ∝ (Res)−1/2, suggesting inherently different small-scale dynamics in the
same flow ‘regime’. This is consistent with the different ‘flavours’ of stratified turbulence
described in Part 1, § 6.4, wherein high-θ , low-Res flows have greater overturns, while
low-θ , high-Res flows have more extreme enstrophy events.

3.2. Spatio-temporal profiles
In figure 3 we plot the vertical, spanwise and temporal structure of the turbulent energy
reservoirs (K′,K′

ρ)(x, t) and the volumetric fluxes E(x, t) and (F , ε̄,P,Pρ,B)( y, z). We
show z profiles in the left column (averaged in x, y, t or y), the y profiles in the middle
column (averaged in x, z, t or z) and the t profiles in the right column (averaged in x, y, z or
y, z). We only show six data sets whose energetics previously revealed interesting aspects
representative of H flows (H1 and H4, first and second rows), I flows (I7 and I8, third
and fourth row) and T flows (T1 and T3, fifth and sixth row, noting that T2 was omitted
because it is similar to T3). The mean energy reservoirs K̄, K̄ρ are omitted for clarity (but
can be visualised by mentally squaring ū, ρ̄ in Part 1, figure 3). Note that χ and ΦK̄ρ are
omitted too; the former because of its severe underestimation and low values (typically
below the axis limits), and the latter as a consequence of our focus on kinetic energy
budgets.
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Figure 3. Profiles of turbulent energy reservoirs and fluxes in the vertical direction z (a,d,g,j,m,p); the spanwise
direction y (b,e,h,k,n,q); and time t (c, f,i,l,o,r) in six data sets: (a–c) H1; (d–f ) H4; (g–i) I7; (j–l) I8; (m–o) T1;
(p–r) T3. Axis limits and labels are identical in all panels of the left, middle and right column, respectively.
Note the semi-log scale in all panels. Data that are inferior to the lower axis limit are omitted (e.g. F partially
<0 near z = 0 in the left columns, and Pρ,B typically <10−4 in the middle and right columns except in T3).
Also note that F , ε̄,P,Pρ,B are by definition time independent (c, f,i,l,o,r).

First, looking at the vertical profiles, K′ (in solid black) becomes nearly flat and
symmetric over most of the shear layer as the flow becomes increasingly turbulent
(panels g,k,n,q). The forcing F (in green) is always highest near the top and bottom edges
of the shear layer (where |ū| and |ρ̄| are highest) and vanishes in the middle (where it
reaches slightly negative values, not shown on the log scale, where the ū = 0 and ρ̄ = 0

937 A35-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.21


A. Lefauve and P.F. Linden

levels are offset). The turbulent dissipation E (in blue) closely matches the structure of K′
in all flows, albeit with approximately 1/10 magnitude (giving an approximate turbulent
dissipation time scale K′/E = O(10 A.T.U.)). In T3 only, the turbulent dissipation exceeds
the mean dissipation ε̄ (in cyan) throughout most of the shear layer (panel q). The mean
dissipation ε̄ highlights the structure of the mean shear ∂zū, typically higher on either
side of the layer of mixed density, which matches more closely the structure of K′

ρ

than of K′. The scalar variance K′
ρ (in dotted black) has a much sharper and sometimes

asymmetric peak than K′, as seen in H flows (symmetric Holmboe waves in panel (a),
asymmetric Holmboe waves in panel (d)) and some I flows (larger variance at the lower
edge of the mixed layer in panel (g)). In I and T flows, K′

ρ tends to exhibit two peaks
on either side of the mixed layer, due to overturning motions entraining fluid from the
unmixed layers. In these flows the buoyancy flux B (in magenta) and production of scalar
variance Pρ (in dotted red) also tend to be nearly equal (as would be the case under linear
stratification), and to closely match the structure of K′

ρ (albeit with smaller magnitude,
see panels (g,k,n,q)). Finally, in T flows, the buoyancy flux B (in magenta) and the
production of turbulent energy P (in red) have very similar profiles, corresponding to
a uniform flux Richardson number Rf (z) ≈ 0.05. This may be another hallmark of the
self-organising equilibrium of stratified turbulent shear layers, related to the convergence
of the gradient Richardson number to an equilibrium value ≈0.10–0.15 as shown in
Part 1.

Second, looking at the spanwise profiles, K′ nearly always has a sharper peak than the
nearly flat K′

ρ (panels e,h,l,o,r), a situation exactly opposite to that of their vertical profiles.
The peak in K′ near y = 0 is also much sharper than that of the mean flow ū (see Part 1,
figure 3), suggesting a peak in the ratio of turbulent-to-mean energy K′/K̄ near y = 0.
This dichotomy between peaked vs flat spanwise profiles also extends to the turbulent
fluxes P,Pρ,B vs the mean fluxes F and ε̄. Moreover, we know that outside the shear
layer (|y| > Ly, |z| > 1) the turbulent fluxes decay to zero whereas the mean fluxes remain
high.

Third, in our interpretation of the z and y profiles, we recall that assuming a steady
state and negligible boundary fluxes ΦK̄, ΦK′

should yield local (point-wise) equality
of the following fluxes: 〈F〉y ≈ 〈P〉y + 〈ε̄〉y and 〈E〉y ≈ 〈P〉y − 〈B〉y at all z (and vice
versa, equality of z averages at all y, as in (2.7)). In other words, these fluxes need to
approximately balance everywhere both in z and y for K′(x, t) to be steady (in term of
curves: ‘green = red + cyan’ and ‘blue = red − magenta’). As we see in the left and
middle columns, this is rarely exactly the case in our data, presumably due, again, to
our under-resolution of turbulent variables (and their gradients), and because of the
existence of non-negligible boundary fluxes (ΦK̄, ΦK′

)( y, z) /= 0 due to (i) the slight
non-periodicity of SID flows in x: ∂x(uK), ∂x(u′K′); (ii) the inevitable advective transport
of K′ across our artificial ‘shear layer’: ∂y(v′K′)+ ∂z(w′K′); (iii) the unknown work of the
mean and turbulent pressures in x, y, z.

Fourth, looking at the temporal profiles, the amplitude of the fluctuations in K′,K′
ρ, E

is small in H1, H4, T3 (panels c, f,s), and much larger in I7, I8, T1 (panels i,m,p). This is
consistent with our nomenclature of the I regime as intermittently turbulent, and with
our previous finding that T1 is actually closer to I flows than to T2 and T3, whose
fluctuations are steadily large. Moreover, K′ and K′

ρ are not generally correlated in I
and T flows, i.e. the intensity of velocity and density fluctuations do not temporally vary
hand in hand (as might be incorrectly generalised from the time- and volume-averaged
statement (3.6)). Finally, we recall that the temporal profiles of K′ and K′

ρ should only
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reflect (with opposite correlation) the profiles of E and χ , respectively, since all other
fluxes plotted are (by definition) time independent, and boundary fluxes are neglected.
The negative correlation between K′ and E is, however, not always observed in our data
(in fact, they appear almost positively correlated in most panels). These last two findings
are not surprising, especially in light of our findings in Part 1 (figure 7) that turbulent
fractions based on enstrophy or overturning can be largely uncorrelated, due to spatial
heterogeneity of turbulent patches and the non-periodicity of our measurement volume
along x.

3.3. Spectra
We now delve deeper into the flow energetics by investigating spectra. We start with spectra
of the turbulent kinetic energy and scalar variance along x, before focusing on individual
velocity components and all variables x, y, z, t. The limitations in our measurements of
turbulent energetics, frequently hinted at in the above sections, will be summarised in
light of spectral results in § 3.4.

3.3.1. Spectra of K′,K′
ρ in x

We define the spectral densities in x of the mean turbulent kinetic energy Ex
K′ and scalar

variance Ex
K′
ρ

such that∫ kx,max

0
Ex

K′ dkx = 〈K′〉,
∫ kx,max

0
Ex

K′
ρ

dkx = 〈K′
ρ〉. (3.10a,b)

Their unambiguous definitions and the details of their practical computation from our
discrete gridded data are given in Appendix A. In the above, kx,max ≡ π/dx is the
maximum (Nyquist) wavenumber that can be resolved in x. The (unusual) need to integrate
from kx = 0 rather than from the minimum wavenumber kx min ≡ π/Lx comes from the
fact that energy is contained in the mean (kx = 0), an inevitable consequence of the above
definitions and of our definition of fluctuations around x − t averages (more details in
Appendix A.3).

In figure 4, we plot the densities Ex
K′ (black solid) and Ex

K′
ρ

(grey dashed) for all data sets.
To correct for errors inherent to computing Fourier transforms of noisy and non-periodic
data (over-estimating high frequencies), here we plot estimations of these densities (i.e.
periodograms) using Welch’s averaging method. This standard method divides each
original signal along x into a series of overlapping segments, applies a window function to
render them periodic, and returns the average square magnitude of their discrete Fourier
transform (more details in Appendix A.4).

Since we do not expect any turbulent signal in our laminar data set, the L1 spectra
(panel a) are plotted as a ‘control’, i.e. a baseline measure of inevitable artefacts due to the
nature of our data and analysis. In panel (a), Ex

K′ exhibits a distinct hump at intermediate
wavenumbers (kx ≈ 2–30), correlated with a distinct hump or flattening of Ex

K′
ρ
. This

artefact is also found in varying degrees in most other data sets around kx ≈ kx,max/2,
affecting our most turbulent data to a lesser degree (panels l–p).

Putting this ‘hump’ artefact aside, most H, I and T spectra exhibit relatively similar
shapes. The kinetic energy spectrum Ex

K′ is flat in the energy-containing range kx � 1
(length scales � 6), decaying approximately as k−β

x in the inertial sub-range, with typical
values around β ≈ 2.0–3.5 (on either side of the ‘hump’), and a slightly different
power law decay near kx,max. This decay exponent β is thus significantly larger than
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Figure 4. Spectral density along x of the turbulent kinetic energy Ex
K′ and scalar variance EK′

ρ
for all data

sets, calculated with Welch’s averaging method. The range of non-zero wavenumbers shown [kx,min, kx,max] =
[π/Lx,π/dx] varies slightly among data sets because of different domain lengths 2Lx and resolutions dx (see
Part 1, Appendix B). Note the kx = 0 energy content (see text and Appendix A for details). Axis limits and
labels are identical in all panels.

the classical Kolmogorov value of β = 5/3 ≈ 1.7 expected in the forward cascade of
isotropic turbulence (Pope 2000, § 6.5), as well as in the horizontal spectrum of strongly
stratified turbulence (Lindborg 2006). At low wavenumbers, these steep horizontal spectra,
indicative of an incomplete cascade, may be due to the relatively weak turbulent intensity
of our data sets, in which ‘the energy is mainly dissipated by vertical shearing at scales
close to the forcing scales’, as explained in Brethouwer et al. (2007, § 5). At high
wavenumbers, this steepness may be due to the low-pass filtering effects of particle image
velocimetry (PIV), which obtains velocity vectors from ‘discrete interrogation windows’
that artificially reduce high-wavenumber content, as explained in Appendix B.2.

The scalar variance spectra Ex
K′
ρ

exhibit a shape similar to Ex
K′ , albeit with slightly

smaller amplitude (as expected from the asymptotic 1/10 partition in figure 1j). These
spectra also have a smoother inertial sub-range decay extending all the way to kx,max, at
least in the most turbulent data (panels k–p), where the scaling k−β

x is in better agreement
with the expected value β = 5/3 (Kundu, Cohen & Dowling 2016, § 12.11).

3.3.2. Spectra of all components in x, y, z, t
In figure 5 we plot these spectral densities in x (top row), y (second row), z (third
row) and t (bottom row) for three representative data sets H1 (left column), I2 (middle
column) and T3 (right column). To investigate the effects of the non-periodicity of our
data on the energy spectra, we plot in x the energy densities obtained using the standard
discrete Fourier transform (DFT) periodogram (thin lines) and using Welch’s estimated
periodogram (thick lines, as in figure 4). Note that we only show the Welch in t for
conciseness, and we only show the DFT in y and z because the smaller numbers of
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Figure 5. Spectral density of energy in individual velocity components u′ (blue), v′ (green), w′ (red) and of
K′
ρ (grey) in all directions x (a–c), y (d–f ), z (g–i) and t (j–l) for three representative data sets H1 (a,d,g,j),

I2 (b,e,h,k) and T3 (c, f,i,l). The mean energies (1/2)〈u′2〉, (1/2)〈v′2〉, (1/2)〈w′2〉 and 〈K′
ρ〉 are given by

one-dimensional integration of any respective density, e.g. (1/2)〈u′2〉 = ∫ kx,max
0 Ex

u′ dkx = ∫ ky,max
0 Ey

u′ dky =∫ kz,max
0 Ez

u′ dkz = ∫ ω,max
0 Et

u′ dω, etc. Mean values at kx, ky, kz, ω = 0 are not shown for clarity. The spectral
range depends on domain length and resolution (kx, ky, kz, ω) ∈ [π/Lx,π/dx] × [π/Ly,π/dy] × [π,π/dz] ×
[2π/Lt,π/dt]. Note the different axis scales between (a–i) and (j–l). In x, we compare spectra obtained by the
standard DFT (thin lines) and by Welch’s method (thick lines). In y, z we only show the former, and in t we
only show the latter (see text for more details).

data points in these directions render Welch’s segmentation inappropriate (more details
in Appendix A.4).

We see in panels (a–c) that the standard DFT (thin lines) consistently overestimates the
high-wavenumber content (kx � 30) compared with the Welch (thick lines), as expected
from the fact that the latter is designed to minimise the effects of edge discontinuities
in our data, incorrectly rendered as high-wavenumber energy by the standard DFT
(called spectral leakage, or the Gibbs phenomenon, see Appendix B.1). Given these
observations, we should remain critical in our interpretation of DFT spectra in y, z
(panels d–i), where spectral leakage is expected to be more significant than in x due
to the shorter size of the signals. We hypothesise that these spectra exhibit an inertial
sub-range decay closer to k−5/3 in y and z than in x as a result of greater spectral
leakage (overestimating high-wavenumber energy) countering the effects of PIV filtering
(underestimating high-wavenumber energy).

We further see that u′ usually has the most energy across all wavenumbers and
frequencies, and Eu′ > Ev′ > Ew′ . The lowest energy in w′ is consistent with the
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expectation that vertical motions are partially hindered by the stable stratification at
Risb > 0. The higher energy in u′ than in v′, particularly clear at very low streamwise
wavenumbers kx � 1, is partly due to our definition of fluctuations around x − t averages
and to the fact that the flow is not perfectly parallel (i.e. u′ can have a slight residual
large-scale variance along x, as explained in Appendix A.3).

The above observation that Eu′ > Ev′ > Ew′ has a few notable exceptions. First, we
diagnose that the hump artefact in Ex

K′ observed in most panels of figure 5 appears
primarily caused by v′ since Ex

v′ > Ex
u′ at medium and high kx (green lines in panels a–c),

independently of the method (DFT or Welch). This artificial medium-scale structure
in v′(x) may come from the delicate stereo PIV calculation of v (the component
perpendicular to the laser sheet). Second, H1 exhibits Ev′ ≈ Ew′ across most wavenumbers
(panels a,d,g) and even Ev′ < Ew′ in the frequency range ω ≈ 0.3–1.5 (panel j), which
is consistent with the presence of Holmboe waves, known to generate vigorous vertical
motions even in the presence of strong stratification (here Risb = 0.567).

The signature of Holmboe waves is indeed clear in the H1 temporal spectra at ω ≈ 0.5
(panel j), and also detectable in the longitudinal spectra Ex

w′,Ex
K′
ρ

around kx ≈ 1 (panel a,
thin red and grey lines). These peaks suggest a typical phase speed c ≈ ω/kx ≈ 0.5 in
agreement with observations in the spatio-temporal domain (not shown here). We also
note in intermittent flow I2 a similar, albeit fainter, peak in all longitudinal spectra (panel b,
thin lines), suggesting the faint presence of similar waves, in agreement with observations
near the laminar/turbulent transitions (not shown here). Such spectral peaks are absent
in the turbulent flow T3 (right column), suggesting dynamics across a broader range of
spatio-temporal scales.

3.4. Discussion and limitations
Based on the above insight from our energy spectra, we identify six key effects limiting
the accuracy of our direct laboratory measurements of energy reservoirs and fluxes:
(i) non-periodic and finite-length data; (ii) particle image velocimetry (PIV) and laser
induced fluorescence (LIF) filtering; (iii) resolution of the Kolmogorov and Batchelor
length scales; (iv) volume reconstruction and spanwise distortion; (v) temporal resolution
and aliasing; and (vi) finite differentiation. We provide more details on each item in
Appendix B and explain how these limitations apply in particular to 〈E〉 and 〈χ〉, for
which proxies were proposed in § 3.1.3 (anticipating these limitations).

Indirect estimations in spectral space appear an attractive alternative to such direct
estimations in physical space. A method can be conceived of as follows: the energy spectra
of EK′,EK′

ρ
are fitted to known theoretical ‘model’ (ansatz) spectra, multiplied by k2

to yield the corresponding dissipation spectra, and integrated to obtain 〈E〉, 〈χ〉. Such
spectra could include a k−5/3 inertial sub-range scaling until 2π/K for EK′,EK′

ρ
, and a

k−1 viscous convective sub-range scaling until 2π/B for EK′
ρ
. However, this method has

its own limitations. The inhomogeneity and anisotropy of our flows, key in the computation
of ∂xju

′
i and ∂xiρ

′, would require separate manipulation of the spectra of u′2, v′2,w′2, ρ′2
in each direction kx, ky, kz, and a priori knowledge of K and B (for which the estimations
(3.8)–(3.9) could be used). Although scaling arguments and various ad hoc anisotropy
assumptions have been used (e.g. Häfeli et al. 2014, § 2), these remain speculative and
would require further scrutiny.

To make progress in this direction, the anisotropy of the velocity field is treated next in
§ 4, while the parameterisation of turbulent energetics is treated last in § 5.
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4. Anisotropy

Anisotropy is expected in SID flows due to the symmetry-breaking effects of the
streamwise forcing, mean shear, vertical stratification (and, perhaps, the boundary
conditions of the apparatus). In this section we investigate the large-scale anisotropy of
the velocity field (controlling the production P) in §§ 4.1–4.2, followed by the small-scale
anisotropy of the velocity gradients (controlling the dissipation E) in § 4.3.

4.1. Reynolds stresses and Lumley triangle

We recall that the specific turbulent kinetic energy K′ ≡ (1/2) tr u′ ⊗ u′ is the isotropic
part of the Reynolds stress tensor (half the trace of the one-point, one-time velocity
cross-correlation tensor). By the Cauchy–Schwartz inequality, this diagonal part (isotropic
‘pressure’) sets a bound on the magnitude of the off-diagonal part (deviatoric stresses):
K′ � |u′v′|, |u′w′|, or |v′w′| (Pope 2000, eq. (5.109)). In idealised isotropic turbulence, all
deviatoric stresses are zero, thus there is no transfer between mean and turbulent kinetic
energy, hence P = 0. By contrast, in shear-driven turbulence, this bound becomes more
meaningful due to the crucial production of K′ at rate P > 0 resulting from u′w′ /= 0, i.e.
from the net correlation of anisotropic eddies at large (energy-containing) scales.

To quantify this anisotropy of the Reynolds stresses, we consider the widely used
normalised velocity anisotropy tensor b, defined as the deviatoric part of the normalised
Reynolds stress tensor u′ ⊗ u′/(2K′) with components

bij( y, z) ≡
u′

iu
′
j

u′
lu

′
l

− δij

3
, (4.1)

as in Pope (2000) (§ 11.3.2). Since by definition tr b = bii = 0 (first invariant), this tensor
has only two independent invariants: IIb ≡ tr b2/2 (second invariant) and IIIb ≡ det b =
tr b3/3 (third invariant), which are more conveniently defined in normalised form as

η( y, z) ≡
√

IIb

3
, ξ( y, z) ≡ 3

√
−IIIb

2
. (4.2a,b)

The local state of large-scale anisotropy of a turbulent flow at any point y, z can
therefore be described by a point in the ξ–η plane, lying inside the so-called Lumley
triangle (Lumley 1978), drawn with thick lines in figure 6(a). The point ξ = η = 0
corresponds to isotropic turbulence; the left (respectively right) straight edge η = ∓ξ/2
correspond to oblate (respectively prolate) axisymmetric turbulence, i.e. one principal
eigenvalue being smaller (respectively larger) than the other two; and the top curved edge
η =
√

1/27 + 2ξ3 corresponds to two-component turbulence (one principal eigenvalue
being zero). In summary, the vertical axis η quantifies the degree of anisotropy, while the
horizontal axis ξ quantifies its shape (oblate ξ < 0 vs prolate ξ > 0).

In figure 6(a,b) we plot the mean 〈ξ〉y,z and 〈η〉y,z in all 16 data sets. First, we observe
in panel (a) that all points are clustered in a narrow top-right region of strong prolate
anisotropy, shown in greater detail in panel (b). This is consistent with our prior spectral
observation that the streamwise velocity perturbations dominate over the other two:
|u′|2 > |v′|2, |w′|2. Second, our ‘control’ data set L1, being non-turbulent and therefore
primarily affected by unphysical artefacts, distinguishes itself by being the only data set
lying outside of Lumley’s realisability triangle (though all y, z points are by construction
inside, the y–z average does not have to be since this ‘curved triangle’ is not convex).
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Figure 6. Degree and shape of Reynolds stress anisotropy in all 16 data sets. (a,b) Mean values 〈ξ〉y,z, 〈η〉y,z
(zoomed in detail in b). The Lumley triangle is highlighted by thick lines, and the limiting cases of turbulence
are shown schematically with principal axis coordinates. (c–r) All nynz data points of (ξ, η)( y, z), coloured
with the absolute vertical coordinate |z| within the shear layer.

Third, asymmetric H flows (H2, H4) lie closer to the two-component (top) limit, while
symmetric H flows (H1, H3) and most I/T flows lie closer to the prolate axisymmetric
(right) limit. Fourth, almost all I flows exhibit stronger anisotropy than H and T flows,
and lie closer to the one-component limit. This is a result of greater temporal variability
(intermittency) in the streamwise component u′ ≡ u − 〈u〉x,t, defined with respect to the
streamwise and temporal average. We verified that removing intermittency effects by
defining perturbations with respect to the streamwise average alone (u − 〈u〉x) did move I
flows slightly away from the one-component limit, but it did not change the qualitative
picture of panels (a,b). We also verified that removing streamwise variance effects
(∂xū /= 0) by defining perturbations with respect to the temporal average alone (u − 〈u〉t)
changed the picture very little. In other words, u′ always dominates and anisotropy is
not significantly biased by our definition of u′ ≡ u − 〈u〉x,t (used throughout Part 1 and
Part 2).

In figure 6(c–r) we plot the underlying nynz data points within the triangle for each data
set (of which panels a and b show the centre of mass), to highlight the anisotropy over
the full range of y and more particularly of z (in colour). In all flows, we observe large
spatial variations around the mean, closely following the prolate axisymmetry limit (right
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edge), i.e. a state in which v′,w′ have nearly (but not exactly) equal magnitude, while being
dominated by u′, no matter the y, z location. This general trend is nuanced by the following
subtleties. First, H flows exhibit the greatest variations, and are unique in that they include
pockets of oblate anisotropy (ξ < 0) for |z| ≈ 0.3–1. Second, some I/T flows (I3, I6, T1,
T2) have data points at |z| � 0.3 which deviate significantly away from the right edge
(axisymmetry) and lie closer to the centre of the triangle. Third, the data points closest
to the mid-point of the shear layer (|z| � 0.2, in black) tend to be the most anisotropic
(largest η) in H/I flows but the least anisotropic in T flows (smallest η).

These findings are qualitatively consistent with the unforced direct numerical
simulations (DNSs) of Smyth & Moum (2000a), who observed oblate axisymmetry
during the initial growth of the Kelvin–Helmholtz instability and the turbulent transition,
followed by prolate axisymmetry during the turbulent and decay phases (see their
figure 6).

4.2. Spatial profiles
To delve deeper into these tantalising observations, we plot in figure 7 the spatial structure
of η( y, z), ξ( y, z), and the vertical structure of the six individual components of the
(symmetric) tensor 〈(bij)〉y(z) for the four representative data sets H4, I4, I6 and T2. In the
contrasting cases of H4 and T2, we also plot the underlying probability density function
(p.d.f.) of the (u′,w′) data at three distinct vertical locations.

First, starting with the y–z structures (colour plots in the left two columns), we find
that the region of weak oblate anisotropy in H4 (light grey in panel a and light blue in
panel b) lies at the periphery of a core of strong prolate anisotropy (this subtle structure is
lost in the y and z averages superimposed in white). We explain this oblate pocket by the
particular structure of confined Holmboe waves described in Lefauve et al. (2018) in this
same H4 flow, and in particular by the large values of v′ and its odd symmetry about the
y = 0 axis, responsible for the divergence and convergence of streamlines in z = const.
planes around the upward-pointing crests of the density interface (see their figure 8(k,l)
and point (v) in their § 6.1.2). By contrast, I/T flows have a more uniform structure,
ranging from strong prolate anisotropy in I4 (panels f,g) to weaker and less prolate
anisotropy in I6 (panels j,k) and T2 (panels n,o) especially in the most turbulent region
|z| � 0.5.

Second, moving on to the diagonal components (third column), we confirm our above
claims that b11 = u′2/(2K′)− 1/3 (and therefore u′) dominates in all flows, where it
approaches its upper bound of 2/3 in the most anisotropic z locations (darkest colours
in the first two columns), while the complementary b22, b33 approach their lower bound of
−1/3. Furthermore, b22 > b33 in all flows (and therefore v′ dominates over w′), a natural
consequence of stratification inhibiting vertical motions.

Third, moving on to the off-diagonal components (fourth column), we recall that they
are all bounded above and below by ±1/2 by the Cauchy–Schwarz inequality. We find that
b13 ≡ u′w′/(2K′) dominates over b12, b23 almost everywhere in all flows, being always
positive and even reaching 〈b13〉y(z = 0) = 0.125 in T2 (panel q), i.e. no less than 25 %
of its upper bound. This proves that while w′ contributes less than v′ to the reservoir
K′, it contributes much more than v′ to the production of K′ because of its much greater
correlation with u′, recalling that the logarithmic production rate ∂t(ln

√
K′) = ∂tK′/(2K′)

is P/(2K′) ≡ −b12∂yū − b13∂zū. The broad peak of b13 in the vigorous flows I6 and T2
(panels m,q) is absent in the less vigorous flow I4 and in the Holmboe flow H4 (panels d,i),
the latter having instead two narrower peaks at z ≈ −1 and z ≈ 0.
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Figure 7. Spatial structure of the anisotropy tensor b of data sets H4, I4, I6, T2 (top to bottom row). Left to right
columns: second invariant η( y, z), third invariant ξ( y, z) (including the averages in each direction, superposed
in white); vertical structure of the diagonal components b11, b22, b33 averaged in y; vertical structure of the
off-diagonal components b12, b13, b23 averaged in y. In (e,r) we also show the p.d.f. of the (u′,w′) clouds
(rescaled histogram, here four equidistant contours at 20, 40, 60, 80 %) for H4 and T2 at three different vertical
locations flagged by asterisks in (d,q) (these are z ∈ [−1,−0.9], [−0.55,−0.45], [0.05, 0.15] in H4, and z ∈
[−0.9,−0.8], [−0.55,−0.45], [−0.05, 0.05] in T2, noting that in both we restrict the region to |y| � 0.5 to
show a stronger signal).

Fourth, these contrasting 〈b13〉y(z) profiles in H4 and T2 can be understood by their
respective p.d.f.s in the u′ − w′ plane (fifth column). In the Holmboe flow (panel e) the
z ≈ −1 peak (denoted by ∗) is due to a compact but fairly tilted distribution towards the
first and third quadrant (u′w′ > 0), while the z ≈ −0.5 trough (∗∗) is due to a broader but
more up–down symmetric distribution, and the z ≈ 0 peak (∗∗∗) is due to a yet broader,
but thinner and more tilted distribution. In the turbulent flow (panel r) the increase of
〈b13〉y(z) with decreasing |z| is due to a broader distribution (compare ∗ and ∗∗) followed
by an increased tilt (compare ∗∗ and ∗∗∗).

Fifth, it is possible to improve the quantification of this tilt of (u′,w′) distributions
by investigating the orientation of the principal axes of b, given by its eigenvectors
assembled in a matrix V such that b ≡ (bij) = VΛV −1 (where Λ is the diagonal matrix of
principal eigenvalues). To avoid the intricate analysis of three Euler angles describing the
three-dimensional rotation matrix V , we take advantage of the fact that |b12|, |b23| � |b13|
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in T2 to simplify the analysis to a single angle β describing the two-dimensional rotation
Ṽ (around the v′ axis) of the reduced b̃ ≡ [b11 b13; b13, b33]. This angle β( y, z) locally
quantifies the tilt between the u′ axis and the major principal axis, and we therefore expect
0 < β � 90◦ based on panel (r). Although we do not plot it for conciseness, the profile of
〈β〉y(z) follows almost exactly that of 〈b13〉y(z), with a minimum value of 5◦ at |z| = 1 and
a maximum value of 16◦ at |z| = 0, in excellent agreement with the qualitative insights
derived from panel (r).

4.3. Velocity gradients and dissipation surrogates
We now investigate the anisotropy of velocity gradients, controlling the rate of turbulent
dissipation, which is by definition the sum of 12 squared gradient terms belonging to three
key groups

〈E〉 ≡ 2
Res 〈s′

ijs
′
ij〉 = 2

Res

〈
(∂xu′)2 + (∂yv

′)2 + (∂zw′)2︸ ︷︷ ︸
longitudinal

+ (∂yu′)2 + (∂zu′)2 + (∂xv
′)2 + (∂zv

′)2 + (∂xw′)2 + (∂yw′)2︸ ︷︷ ︸
transverse

+ ∂yu′∂xv
′ + ∂zu′∂xw′ + ∂zv

′∂yw′︸ ︷︷ ︸
asymmetric

〉
. (4.3)

In idealised homogeneous isotropic turbulence, all terms belonging to the same group
(longitudinal, transverse or asymmetric) are equal. Using the continuity equation ∂xiu

′
i =

0, it can further be shown that any transverse term is twice as large as any longitudinal
term (e.g. 〈(∂yu′)2〉 = 2〈(∂xu′)2〉, etc) while any asymmetric term is negative and only half
as large (e.g. 〈∂yu′∂xv

′〉 = (−1/2)〈(∂xu)2〉, etc.) (Almalkie 2012, pp. 22–23). Plugging in
these relations into (4.3) allows us to estimate 〈E〉 under the assumption of isotropy using
only one term (instead of 12), as follows:

〈E〉 ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

15
Res 〈(∂xiu

′
i)

2〉 (longitudinal surrogate)

15
2Res 〈(∂xiu

′
j)

2〉, i /= j (transverse surrogate)

− 30
Res 〈∂xiu

′
j∂xju

′
i〉, i /= j (asymmetric surrogate),

(4.4)

where, importantly, we do not sum over repeated indices here. These simple
one-dimensional and one-component surrogates have been used for decades in laboratory
and field measurements due to the difficulty of measuring more than one or two terms
(although there exist more sophisticated multi-component models that relax isotropy, and
e.g. assume axisymmetry instead). Our data sets provide us with the complete set of twelve
terms in all directions (x, y, z, t) and thus allow us to test the validity of these (time-
and volume-averaged) surrogates and, thus, of the underlying assumption of small-scale
isotropy.
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To do so, we arrange the above 12 candidates into the following ‘surrogate dissipation
matrix’ 〈εij〉, and define its relative estimation error 〈ε̃ij〉 as

〈εij〉 ≡ 15
Res

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈(∂xu′)2〉 1
2
〈(∂yu′)2〉 1

2
〈(∂zu′)2〉

1
2
〈(∂xv

′)2〉 〈(∂yv
′)2〉 1

2
〈(∂zv

′)2〉
1
2
〈(∂xw′)2〉 1

2
〈(∂yw′)2〉 〈(∂zw′)2〉

−2〈∂yu′∂xv
′〉 −2〈∂zu′∂xw′〉 −2〈∂zv

′∂yw′〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 〈ε̃ij〉 ≡ 〈εij〉 − 〈E〉

〈E〉 ,

(4.5a,b)
where the top 3 × 3 block contains the three longitudinal terms (diagonal) and the six
transverse terms (off diagonal), as in Portwood, de Bruyn Kops & Caulfield (2019). The
fourth row contains the three asymmetric terms; these are rarely used in applications
because they are impractical, but we include them nonetheless to obtain a complete picture
of small-scale anisotropy.

In figure 8 we visualise the relative error matrix 〈ε̃ij〉 in all H, I and T flows, together
with their ‘intra-regime mean’ on the left. Each entry in each 4 × 3 matrix is coloured
according to its departure away from isotropy; a negative value means that the surrogate
is an underestimation (in blue, bounded below by −1), while a positive value means that
the surrogate is an overestimation (in red, not bounded above but always <3 here). We
keep in mind the potential inaccuracies of these data based on velocity gradients, given
the limitations highlighted in § 3.4 and Appendix B.

Focusing first on the individual data sets (right part of the figure) and considering
the global pattern of each matrix, we find strong similarities between all flows, and
more specifically, between all flows within a same regime (H, I or T), with perhaps only
one exception in H3 (panel d). Importantly, terms that are clearly positive (respectively
negative) are robustly so across most flows. This implies that intra-regime means of each
matrix entry do not artificially cancel out values of opposite signs (which would incorrectly
imply isotropy) and, therefore, that these means give a meaningful representative picture
of each regime.

Focusing then on these robust means (panels a, f,o), we also find similarities between
them. First, (∂zu′)2 (top right term) is consistently overwhelming, and overestimates
〈E〉 by as much as 200 % (H flows), 230 % (I flows) or 140 % (T flows). This can be
attributed to the influence of the mean shear (∂zu′)2. In I/T flows, (∂yu′)2 and (∂zv

′)2
also tend to consistently overestimate 〈E〉, whereas they are reliable in H flows. Second
(∂xw′)2 consistently underestimates by 80 %–90 %, while all four other terms involving w′
gradients (bottom right 2 × 2 block) consistently underestimate by 20 %–70 %. This can be
attributed to the stable mean stratification, hindering vertical motion. Third, all x gradients
(first column of each matrix) are generally weak. This can be attributed to the elongation of
flow structures along x by the mean shear. Fourth, the best estimates (lightest shade) vary
slightly from regime to regime, but three terms stand out as consistently reliable: (∂yv

′)2,
(∂zv

′)2, and ∂yu′∂xv
′ (having <35 % relative error everywhere, sometimes much less).

Finally, we plot the Euclidian (Frobenius) norm of each matrix ||〈ε̃ij〉|| ≡ (
∑

i,j〈ε̃ij〉2)1/2

(panel s) against the product of parameters θRes, identified in (3.7) as controlling
the dissipation (norm of the strain rate tensor). The general trend is a decrease of
small-scale anisotropy with increasing θRes (stronger turbulence), from typical values
of 200 %–300 % in H-I flows (except H3) to values below 200 % in T flows. This trend
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Figure 8. Anisotropy of the 12 density gradients in (4.3), measured by the error made by using them as
surrogates for 〈E〉 based on the assumption of isotropy (as in (4.4)) in all H, I and T data sets. Colours show the
value of each entry of the 4 × 3 matrix of relative error 〈ε̃ij〉 defined in (4.5a,b). All H, I, T data sets are shown,
together with their mean across each regime in the left-most panels (a, f,o). Blue indicates an underestimation,
red indicates an overestimation and darker shades indicate poorer estimation, i.e. stronger anisotropy. (s) Matrix
norm quantifying dissipation anisotropy vs θRes (isotropy corresponds to ||〈ε̃ij〉|| = 0 %.

suggests that even stronger turbulence (θRes � 100) would continue to approach greater
isotropy. This was indeed observed by Itsweire et al. (1993), Smyth & Moum (2000a) (see
their figure 14), Hebert & de Bruyn Kops (2006), Lang & Waite (2019) (see their figure 4b)
and Portwood et al. (2019) (see their figure 2) with increasing ‘dynamic range’, quantified
by the buoyancy Reynolds number Reb. We define Reb in the next section, explain its
relation to θRes, and introduce other ratios of kinematic and dynamic scales to tackle
parameterisations.
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5. Parameterisations

In this section we study the parameterisation of turbulent fluxes using simpler flow
quantities such as mean gradients or scalar parameters. After providing the background
and definitions of various measures of mixing and parameterisation approaches in § 5.1,
we assess these parameterisations in § 5.2–5.4 with an in-depth analysis of data sets I6–T3
to seek ‘asymptotic’ scaling laws valid in strongly turbulent flows.

5.1. Background: measures of mixing

5.1.1. Direct measures: eddy diffusivities
Stratified turbulent mixing is usually modelled in large-scale circulation models by a single
parameter, the eddy (or turbulent) diffusivity for the stratifying agent (heat or salt) κT ,
and for the momentum νT . This turbulence closure scheme relies on the simple turbulent
flux–mean gradient relations (see Pope 2000, Chap. 10)

κT

Res ≡ −w′ρ′

∂zρ̄
≡ B

¯̄N2
,

νT

Res ≡ −u′w′

∂zū
≈ P

¯̄S2
. (5.1a,b)

The approximation in νT reflects the fact that production is dominated by the vertical
shear |u′w′∂zū| � |u′v′∂yū| in our flows. Importantly, the Res factor comes from the fact
that we choose to define both eddy diffusivities as non-dimensional ratios relative to the
molecular value for momentum ν, rather than relative to the (default and implicit) inertial
scale (�UδuHh)/16 (recall Part 1, § 3.2–3.3). Other authors legitimately choose to define
κT relative to the molecular value for the scalar κ , which then gives κT/(ResPr) ≡ B/ ¯̄N2.
Also recall (Part 1, § 5) the definitions of the square buoyancy frequency ¯̄N2 ≡ −Risb ∂zρ̄

and square shear frequency ¯̄S2 ≡ (∂zū)2 based on the mean flow (the double overline
avoids confusion with ∂zρ and (∂zu)2 which are different quantities not discussed here).
The gradient Richardson number based on the mean flow was defined as Rig ≡ ¯̄N2/ ¯̄S2.

Despite being used as the ‘direct’ (or ‘ultimate’) measures of mixing in most practical
models, eddy diffusivities are necessarily simplistic descriptions of the process of stratified
turbulent mixing. They have been criticised for their apparent inability to address
the complex underlying energetics, in particular to disentangle the partition between
irreversible mixing and reversible stirring in B (Salehipour & Peltier 2015). However, upon
inspection of the budget equation (2.3), we find that under linear stratification (B ≈ Pρ)
and neglecting boundary fluxes (ΦK′

ρ ≈ 0), the buoyancy flux appears to be in ‘lock
step’ with the irreversible dissipation of scalar variance B ≈ χ , which, again under linear
stratification, is equivalent to the dissipation of perturbation available potential energy,
i.e. irreversible mixing (Caulfield 2020). This led some authors to argue that defining κT

using χ/ ¯̄N2 was generally more appropriate than using B/ ¯̄N2, an approach known as the
‘Osborn–Cox method’ after Osborn & Cox (1972) (see Salehipour & Peltier (2015); Gregg
et al. (2018) and Taylor et al. (2019) for more details). Following this line of thought, some
authors define the flux coefficient Γ as χ/E , which agrees with our approximation (3.6).
However, unlike DNS data, our experimental data do not allow us to access χ directly with
good accuracy, which is why we pursue an indirect approach, discussed next.

5.1.2. Indirect measures: flux coefficients, mixing lengths
Starting with the original definition (5.1a,b), we attempt to relate the elusive B to the more
tangible E (the ‘turbulence intensity’). This approach proposes equivalent definitions for
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κT , νT using our previous definitions of Γ,Rf ,Rig and of a new turbulent Prandtl number
PrT

κT ≡ ResΓ 〈E〉
〈 ¯̄N2〉

≡ Γ Reb, PrT ≡ νT

κT
≡ 〈P〉

〈B〉
〈 ¯̄N2〉
〈 ¯̄S2〉

≈ 〈Rig〉
Rf

≈ 1 + Γ

Γ
〈Rig〉, (5.2a,b)

where the buoyancy Reynolds number Reb ≡ Res〈E〉/〈 ¯̄N2〉 is a measure of the ‘turbulence
intensity’ that we will return to in § 5.1.3. The first approximation in PrT comes from
〈 ¯̄N2〉/〈 ¯̄S2〉 ≈ 〈 ¯̄N2/ ¯̄S2〉, and the second approximation comes from the approximate link
between Γ and Rf in (3.3), valid under the simplified balance (2.8a) of Osborn (1980).

Eddy diffusivities can also be expressed using the Prandtl mixing length model, which
posits that the turbulent fluxes depend quadratically on the mean gradients

L2
ρ ≡ −w′ρ′

|∂zū|∂zρ̄
≡ B

¯̄S ¯̄N2
, L2

m ≡ −u′w′

|∂zū|∂zū
≈ P

¯̄S3
,

L2
ρ

L2
m

= PrT , (5.3a–c)

and therefore that κT = L2
ρ
¯̄S, νT = L2

m
¯̄S where Lρ, Lm are the non-dimensional ‘mixing

lengths’ for density and momentum, respectively. They can be interpreted as the typical
distance travelled by a fluid parcel before its density or momentum becomes mixed with
its surroundings (analogous to the mean free path of a molecule in the kinetic theory
of gases). The stratified shear flow experiments of Odier et al. (2009), Odier, Chen &
Ecke (2012) and Znaien et al. (2009) showed that Lρ, Lm were approximately uniform in z
(instead of κT , νT ), i.e. that the quadratic flux-gradient relationships (5.3a–c) were better
approximations than the linear flux-gradient relationships (5.1a,b).

Nevertheless, putting this aside for now and assuming the validity of the widely used
eddy diffusivity model (5.1a,b), the key challenge of parameterising κT (and its related
νT ) using (5.2a,b) becomes equivalent to parameterising the dependence of the indirect
(or ‘proximate’) parameter Γ (or its related Rf ) on a few key non-dimensional parameters
best characterising the flow, an approach known as the ‘Osborn method’ after Osborn
(1980) (see Salehipour & Peltier (2015), Gregg et al. (2018) and Taylor et al. (2019) for
more details). To achieve this, different dynamical balances have been proposed, based on
the ratios of relevant length scales or time scales which we discuss next.

5.1.3. Parameters based on length scales and time scales ratios
Further to our definitions in § 3.1.4 of the microscopic Kolmogorov length scale K (see
(3.8)) and Batchelor length scale B (see (3.9)), we now define the Ozmidov length scale
O and the Corrsin length scale C, which represent the smallest scales at which the
distorting influences of background stratification and shear, respectively, are felt (Smyth &
Moum 2000b). Their non-dimensional expressions in shear-layer units are

O ≡
(

〈E〉
〈 ¯̄N3〉

)1/2

≡ 〈E〉1/2

(Risb)
3/4〈|∂zρ̄|3/4〉 , C ≡

(
〈E〉
〈 ¯̄S3〉

)1/2

≡ 〈E〉1/2

〈|∂zū|3/2〉 . (5.4a,b)

Note the subtle fact that the y − z averaging (integration) is made after raising the power
in the denominator, contrary to the numerator. This choice is often ambiguous in the
literature, and in the following we average ¯̄N, ¯̄S sometimes before, and sometimes after
raising the power, for notational convenience. However, this (common) abuse of notation
is justifiable in the more strongly turbulent flows I6–T3 in which ¯̄N, ¯̄S ≈ const. (thus the
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power and integration operators commute with good accuracy). In these flows we have the
following separation of scales:

O

C
≈ 〈|∂zū|3/2〉

〈|∂zρ̄|3/4〉(Risb)
−3/4 → (Risb)

−3/4 → 5, (5.5)

using |∂zū| ≈ |∂zρ̄| → 1 and Risb → 0.15. In other words, there exists a moderate range
of eddy sizes that are significantly more influenced by shear than by stratification, i.e. the
turbulence is slightly dominated by shear.

The separation between the Ozmidov and the Kolmogorov scales is usually quantified
by the buoyancy Reynolds number Reb (first mentioned in (5.2a,b))

Reb ≡ Res 〈E〉
〈 ¯̄N2〉

=
(
O

K

)4/3

= Res(Risb)
−1 〈E〉

〈|∂zρ̄|〉 (5.6a)

→ 0.2θRes (5.6b)

≈ 10–20 for θRes = 50–110. (5.6c)

The turbulent estimate (5.6b) assumes: (i) Risb → 0.15 (Part 1, figure 2b), (ii) 〈E〉 →
0.035θ in (3.4f ) and (iii) 〈|∂zρ̄|〉 → 1, the latter being verified to better than 5 % in I6–T3.
This expression is slightly different from that of LPL19 who proposed Reb → 0.12 θReh

(see their (6.9) and (6.10)), using the hydraulic Reynolds number (instead of the shear-layer
Reynolds number), and averaging data across the whole duct cross-section (instead of the
more vigorous ‘core’ shear layer only). Our previous estimate yields (5.6c) in I6–T3 (see
figure 2(c)). We conclude from this separation of scales that there exists a range of eddy
sizes that are too small to be significantly affected by stratification but too large to be
dominated by viscous dissipation, which is a requirement for the existence of stratified
turbulent dynamics (although Reb = 30 is usually viewed as a minimum threshold).

The indirect measure of mixing Γ has often been assumed constant ≈ 0.2 by physical
oceanographers (corresponding to the upper bound set by Osborn (1980), as mentioned
in § 3.1.2). The DNSs of Shih et al. (2005) suggested that this constant value was indeed
accurate in ‘transitional’ turbulence (Reb ≈ 7–100), but that Γ ∝ Re−1/2

b in ‘energetic’
turbulence (Reb > 100); a scaling that has been much debated and reinterpreted since.

It is now widely acknowledged that the challenge of isolating the key non-dimensional
parameters controlling turbulent mixing was due to the pervasive tendency for these
parameters to be correlated in often-unsuspected, flow-specific and potentially misleading
ways. As an example, Maffioli, Brethouwer & Lindbord (2016) and Garanaik &
Venayagamoorthy (2019) recently argued that Γ should not be a function of the
(ambiguous) parameter Reb, but of a (more fundamental) turbulent Froude number Fr
instead. This Froude number is defined as the ratio of the turbulent kinetic energy
dissipation frequency E/K′ to the buoyancy frequency (or the ratio of the buoyancy time
scale to the dissipation time scale)

Fr ≡ 〈E〉
〈K′〉〈 ¯̄N〉

≡ (Risb)
−1/2〈|∂zρ|−1/2〉(〈K′〉/〈E〉)−1 (5.7a)

≈ 0.3, (5.7b)

using Risb → 0.15, 〈|∂zρ̄|〉 → 1 and the approximate energy dissipation time scale
K′/E ≈ 10 observed in § 3.2. Their scaling analyses and triply periodic, spectrally forced
DNSs suggest that Γ ≈ 0.5 ∝ Fr0 in strongly stratified flows (Fr � 1); that Γ ∝ Fr−1
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Figure 9. Key length scales in SID turbulence. Relative positions and scale separation factors are based on
the simple volume-averaged estimates of § 5.1.3 in the asymptotic turbulent regime (θRes � 100). Note the
logarithmic axis. Non-dimensional values (in shear-layer variables) and dimensional values (in mm) are for
data set T2. The Kolmogorov scale K (in red) has two slightly incompatible scalings (3.8) and (5.6), flagged
by ‘?’ (the lighter shade highlights the less trustworthy (5.6)). Ideally the PIV resolution would approach K ,
and the LIF resolution (here assumed equal to the PIV) would approach B.

in moderately stratified flows (Fr ≈ 1); and that Γ ∝ Fr−2 in weakly stratified flows
(Fr � 1). Note that their argument relies on a definition of Γ using the ratio of irreversible
components χ/E , which is only consistent with our definition B/E under conditions of
‘lock step’ between B and χ explained in § 5.1.1 (asymptotically satisfied at large θRes).

This turbulent Froude number is connected to a further key scale, the Ellison scale

E ≡ 〈ρ′2〉1/2

〈|∂zρ|〉 → 0.07–0.12, (5.8)

using |∂zρ| → 1, and 〈ρ′2〉 ≈ 0.005–0.015 for I6–T3 as observed in figure 1(e). It
measures the typical vertical distance travelled by fluid parcels to achieve a stable
equilibrium density profile through adiabatic sorting. It is closely related to the Thorpe
scale T , defined directly on any instantaneous vertical density profile as the root
mean square of these sorting displacements (Mater, Schaad & Venayagamoorthy 2013).
Garanaik & Venayagamoorthy (2019) argued that Fr ≈ (O/E)

2 when Fr � 1; that
Fr ≈ LO/LE when Fr ≈ 1; and that Fr ≈ (LO/LE)

2/3 when Fr � 1. Our estimate (5.7b)
suggests that I6–T3 are relatively strongly stratified, hence that

E

O
≈ Fr−1/2 → 2, (5.9)

i.e. that the separation between the Ellison and Ozmidov scales is very modest.
Figure 9 summarises the above estimates by showing the relative position of these length

scales expected in the asymptotic turbulent regime. In addition to the general separation
factors between different scales, we also give the corresponding specific values for each
scale in data set T2 (non-dimensional value in shear-layer units and dimensional value in
mm). In dark grey we highlight scales that are fixed (the reference shear-layer half-height
1) or slaved by approximately constant parameters (E in (5.8), O in (5.9), C in (5.5)
and B in (3.9)). In blue we highlight scales that are specified by the apparatus and thus
subject to change by the experimenter (the duct height 4/h and length 120/h, as well as
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the PIV vector resolution, where h, dx, dy, dz, nx, ny, nz were given in Part 1, table 1). In
maroon we highlight the only scale, K , which is directly controlled through the two key
variable flow parameters θ,Res (K can be visualised as a ‘slider’, unconstrained by other
scales). Its definition (3.8) and the use of our turbulent estimate (3.4f ) provided a (likely
correct) scale separation factor of −1

K ≈ 0.5θ1/4(Res)3/4 (with respect to the shear-layer
scale 1). However, the scaling arguments in this section yield a slightly incompatible −1

K ≈
Re3/4

b Fr−1/2〈ρ′2〉−1/2 ≈ 20 Re3/4
b ≈ 6θ3/4(Res)3/4 (combining three factors to reach the

shear-layer scale 1). This (likely incorrect) scaling in θ3/4 can likely be explained by a
weak, neglected dependence of Fr and 〈ρ′2〉 on θ (i.e. O and E are not exactly constant).

This figure highlights that in the SID experiment, increasing θ and Re (in red) will lead
to a decreasing Kolmogorov scale K , while (importantly) keeping the other scales above it
approximately constant (in grey). As a result, ratios such as C/K and O/K will increase
with θRe, and SID turbulence will become increasingly isotropic.

5.1.4. Objectives
In the next three §§ 5.2–5.4 we will analyse data sets I6–T3, beyond the simple volume
averages used above, with the following two specific objectives.

First, dimensional analysis suggests that all measures of mixing, from the direct eddy
diffusivities, to the indirect flux coefficients, to the key dynamical parameters Reb,Fr
should generally be functions of our five non-dimensional parameters (θ,Res,Risb,R,Pr).
Since we have a fixed Pr = 700, and Risb ≈ 0.15,R ≈ 2, we will only probe the
dependence on θ and Res.

Second, a slight abuse of notation in the above must be acknowledged: κT , νT in (5.2a,b)
used time and volume (bracket) averages and are scalar quantities uniform in space (like
Γ,Rf in (3.1), and Reb,Fr), whereas κT , νT in (5.1a,b) used only x − t (bar) averages
and were functions of y, z. Our second objective in the next sections will therefore be to
use all data points in y − z to examine the (hitherto implicit) relevance of using uniform
values for κT , νT , Lm, Lρ,PrT , Γ,Rf ,Reb,Fr, and, thus, of the implicitly assumed linear
relationships between their respective numerators and denominators.

We tackle eddy diffusivities, mixing lengths and the turbulent Prandtl number in § 5.2,
the flux coefficient, flux Richardson number (as well as the B/Pρ ratio) in § 5.3, and finally
the buoyancy Reynolds number and turbulent Froude number in § 5.4.

5.2. Eddy diffusivities, mixing lengths, turbulent Prandtl number
In figure 10 we test the flux-gradient relations (5.1), (5.3) with the full clouds of nynz data
points (left three columns). Linear fits with enforced zero intercept are plotted in blue, and
provide the eddy diffusivities νT , κT , while quadratic fits with enforced zero intercept are
shown in purple, and provide the mixing lengths Lm, Lρ . These ‘fit’ values are then plotted
in the rightmost column.

First, focusing on the left three columns, we find that the clouds generally have a wide
spread, making the fits fairly poor (also note the log–log axes). Despite this spread, the
fits capture a clear monotonic tendency, particularly visible in the upper boundary of each
cloud (high flux values) which are indeed bounded by an approximately linear or quadratic
flux relation. The symbol colours, indicating |z|, reveal that these high flux values tend to
occur close to the mid-point of the shear layer (|z| ≈ 0, dark colour), though less so in the
buoyancy flux (second column). The symbol sizes, inversely proportional to |y|, do not
reveal any clear correlation between flux-gradient behaviour and spanwise location, other
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Figure 10. Eddy diffusivities and mixing lengths in data sets I6–T3 (top to bottom row). Clouds of nynz points

of u′w′ ≡ P/ ¯̄S vs −∂zū ≡ ¯̄S (first column); w′ρ′ ≡ B/Risb vs −∂zρ̄ ≡ ¯̄N2/Risb (second column); w′ρ′ ≡ B/Risb
vs ∂zū ∂zρ̄ ≡ ¯̄S ¯̄N2/Risb (third column). Note the log–log axes, and symbol colour and size respectively indicating
the |z| and |y| location. Linear and quadratic least-squares fits provide the eddy diffusivities (in blue, after
multiplying by Res as in (5.1a,b)) and mixing lengths (in purple). Diamonds show the volume-averaged values
of the flux vs gradient (blue) or square gradient (purple). (s–x) The νT , κT ,Lm,Lρ values (s–t) against one
another, giving the ratio PrT = κT/νT = L2

ρ/L
2
m (PrT = 1, 3, 10 shown); (u–x) against the input parameters

θRes. Values obtained from the fit are indistinguishable from those obtained from the diamonds.
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than the fact that |y| contributes to the spread of the clouds. Although the coefficients
of determination are generally very low (r2 < 0.2), the constant eddy diffusivity model
(linear fit) does slightly better than the constant mixing length model (quadratic fit) overall.
However, this is not very significant because uniform eddy diffusivities and uniform
mixing lengths actually become compatible in our asymptotic case of uniform shear ¯̄S ≈ 1,
since by definition (κT/Res) ≡ L2

ρ
¯̄S and (νT/Res) ≡ L2

m
¯̄S. In other words, our range of

¯̄S ≡ −∂zū ≈ 0.5–1.5 (see left column) is not wide enough to convincingly argue in favour
of either model.

Second, the diamond symbols show the volume average of the flux – the numerator –
against the volume average of the gradient (in blue) or square gradient (in purple) – the
denominator. As expected from our above comment that uniform eddy diffusivities and
mixing lengths are compatible, blue and purple diamonds lie close to one another, near
the horizontal values of 1 ≈ |∂zū| ≈ |∂zū|2 ≈ |∂zρ̄| ≈ ∂zū∂zρ̄. Moreover, most diamonds
sit very close to the fits (lines) of their respective colour in the left two columns, but
consistently above them in the third column. This proves that the definitions of νT , κT , Lm
by volume averages would produce good approximations of the fit of the underlying
distribution (i.e. the fit goes through the centre of mass of the cloud), whereas the definition
of Lρ by volume averages would produce an overestimation.

Third, moving on to the rightmost column, we find good correlations κT ∝ νT (panel s)
and Lρ ∝ Lm (panel t), corresponding to a constant turbulent Prandtl number PrT ≈ 3
(dashed line), except in I8 which has PrT ≈ 7. This is entirely consistent with the
approximation in (5.2) and our previously quoted asymptotic values of Rig ≈ 0.15
(Part 1, § 5) and Rf ≈ 0.05 (§ 3.1.2) giving PrT ≈ 3. This value is comfortably above 1,
despite the tendency to self-similarity of the mean velocity and density profiles observed
in T flows (〈ū〉y(z) ≈ 〈ρ̄〉y(z), see Part 1, figure 3). This value is, however, consistent with
the DNSs of Salehipour & Peltier (2015) (see their figure 10, at higher Res but similar Risb)
who found PrT ≈ 3 at Reb ≈ 5–15. Actual values for the diffusivities range from νT ≈ 1
in I6–T1 to νT ≈ 3 in T2–T3, a substantial but not overwhelming increase with respect to
the molecular value for momentum ν. The corresponding range κTPr ≈ 700/3–700 is, by
contrast, an overwhelming increase with respect to the molecular value for density κ , i.e. a
high ‘eddy Péclet number’. Mixing lengths Lm, Lρ are of the order of the Kolmogorov
length K (see estimate in § 3.1.4) and of the resolution of our measurements in x, z
(see Part 1, table 3). Finally, all quantities typically increase monotonically with θRes

(panels u–x), though T1 is an outlier that appears less energetic than suggested by its θRes

value. We conclude that νT , κT appear linear or superlinear in θ and Res.

5.3. Flux coefficient, flux Richardson number and B/Pρ
In figure 11, we test the relations in (3.1) with clouds of nynz data points (left three
columns). The diamond coordinates are given by the numerator and denominator (volume
averages) of (3.1); these were already plotted for all 16 data sets in figure 2(j–l). Linear
fits with enforced zero intercept are also shown in blue, and provide the values for Γ , Rf ,
B/Pρ plotted in the rightmost column.

First, focusing on the left three columns, we find that the clouds of the leftmost column
have the largest spread, followed by those of the second column, and finally those of
the third column, which are tighter around the fit. As a result, though the linear fits
capture a clear trend, a constant Γ is a relatively poor model (mean r2 = 0.30), while
constant Rf and B/Pρ are better models (mean r2 = 0.63 and 0.66, respectively). Besides,
the symbol colours or sizes do not reveal any clear pattern between this behaviour
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Figure 11. Flux coefficient, flux Richardson number and B/Pρ ratio in data sets I6–T3 (top to bottom rows).
Clouds of nynz points of the numerator B vs the respective denominator: Ē (first column); P (second column);
Pρ (third column). Log–log axes with identical vertical axis for all panels (a–r). Symbol styles and diamonds
are as in figure 10. (s–v) Γ,Rf ,B/Pρ vs θRes (values obtained from the linear fit or from the diamonds are
indistinguishable).

and the position |z|, |y| within the shear layer. The diamonds generally lie very close
to the fit, which means that our previous volume-averaged estimations of figure 2(j–l)
(Γ ≈ 0.1,Rf ≈ 0.05, 〈B〉/〈Pρ〉 ≈ 1) were good approximations.
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Second, the values in the rightmost column confirm indeed that Rf ≈ Γ/2 (panel s,
dotted line), which we recall is qualitatively sensible (Rf < Γ ) but quantitatively
inconsistent with (3.3). As explained in § 3.1.3, this is likely due to a systematic
underestimation of 〈E〉, making Γ ≈ Rf ≈ 0.05–0.07 more likely at high θRes

(panels t–u). Moreover, we confirm that our data suggest B/Pρ → 1 at high θRes

(panel v), a necessary condition for the attractive ‘lock step’ between B and χ .

5.4. Buoyancy Reynolds number, turbulent Froude number
In figure 12, we test the relations in (5.6a) (left two columns) and (5.7a) (right two
columns) with clouds of nynz data points, as in the previous two figures, to explore the
extent to which the definitions of Reb and Fr (based on mean quantities) are satisfied
pointwise. Linear fits with enforced zero intercept are also shown in blue, and provide
the values for Reb,Fr plotted in the bottom row against θRes to test (5.6b) and (5.7b),
respectively.

First, we find that all clouds have a large spread around the fit. The linear fit in the
left two columns (panels a–f ) captures a trend, especially the shape of the yellow cloud
(|z| � 1 points at the edges of the shear layer), but a uniform Reb remains a poor model.
Although there is no reason to expect a uniform Reb in general, single ‘representative’
values of Reb based on averaged quantities are known to work well to characterise the flow
regime in ocean mixing (Brethouwer et al. 2007; Gregg et al. 2018). The linear fit in the
right two columns (panels h–m), however, even fails to capture the trend, arguing against a
uniform Fr model. These criticisms should be nuanced by the observation that the clouds
in panels (h–m) are very compact and span a very limited range (less than a decade in the
horizontal and vertical axes). This limited range reveals an asymptotic tendency to uniform
linear stratification (denominator), and to uniform dissipation frequency (numerator). The
corresponding turbulent kinetic energy dissipation time scale (Ē/K′)−1 → 10 A.T.U. (see
the vertical coordinate of the diamonds), with some scatter in I6–T1 (≈3–30 A.T.U.),
but much less scatter in T2–T3 (≈5–12 A.T.U.), suggesting some form of turbulent
self-organisation.

Second, this observation allows us to deduce the asymptotic turbulent scaling 〈K′〉 →
10〈E〉 → 0.35θ (using the scaling for 〈E〉 in (3.4)). As a result, the parameterisation of
eddy diffusivities νT , κT ∝ Res〈K′〉/〈 ¯̄S〉 proposed by van Reeuwijk, Holzner & Caulfield
(2019) in DNSs of inclined gravity currents yields νT , κT ∝ θRes (using 〈 ¯̄S〉 ≈ 1, and
our non-dimensionalisation of νT , κT by the molecular value ν). This scaling appears
compatible with our data in figure 10(u,v), although prefactors do not match.

Third, returning to figure 12, we find that, despite the spread of the clouds, the linear
fits (blue lines) must (by construction) approximately go through the centre of mass of
each cloud (blue diamonds), giving indistinguishable values of Fr in panel (n). These
data confirm our estimate (5.7b) of an approximately constant Fr ≈ 0.3. The values of
Reb obtained from the fit and from the diamonds are, however, slightly distinguishable,
and shown using empty and full symbols respectively in panel (g). These data suggest
an approximate scaling Reb ≈ 0.1θRes (dotted line), with volume-averaged values (full
symbols) being consistently higher. This scaling is consistent with our estimate Reb ≈
0.2θRes in (5.6b) (dashed line) if we again invoke the systematic underestimation of 〈E〉
by a factor of 2.

Finally, let us consider the ratio κT/Reb, using our κT data from figure 10(v) and our Reb
data from figure 12(g), to test the parameterisation of κT using Reb. Although not plotted
here for conciseness, we verified that this ratio is very close to our Γ data in figure 11(t)

937 A35-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.21


Experimental properties of stratified turbulence

(b) (h) (i)(a)

(e)

(g)

(l ) (m)

(c) (d) ( j) (k)

(n)

θResθRes

N
–

E‾/K̄′

10–1

10–2 10–1

100

10–1

10–1

10–2 10–1 10–1 100

10–1

10–1 100

100

I6 I6T1

T2

T3

T1
I6 I8

I7

T1

Res E‾

= Reb = Fr

Fr

E‾/K̄′

10–1

10–2 10–1

( f )

100

10–1

10–1

10–2 10–1 10–1 100

10–1

10–1 100

10–2 10–1

50 100

0.1

0.2
T2

T3
T1

I6

I8I7

10–2 10–1 10–1 100 10–1 100

100

I7 I7T2 T2

Res E‾

E‾/K̄′

10–1

20

10

0 50 1000

0.2

0.4

100

10–1

10–1 10–1

100

I8 I8T3 T3

Res E‾

Reb

N
–

2
–

N
–

2
– –

N
––

Res E‾ vs N
–

2
–

E‾/K̄′ vs N
––

Figure 12. Buoyancy Reynolds number and turbulent Froude number in data sets I6–T3. Left two columns

(a–f ) numerator ResĒ vs denominator ¯̄N2. Right two columns (h–m) numerator Ē/K′ vs denominator ¯̄N.
Log–log axes, symbol styles and diamonds are as in figures 10 and 11. Bottom row: (g) Reb vs θRes to test
(5.6b) (dashed line), showing with empty symbols the values obtained from the fit, and with full symbols the
values obtained from the diamonds; (n) Fr vs θRes to test (5.7b) (fit and diamonds values are indistinguishable).

(as expected from the definition (5.2)), with values tightly grouped between 0.093 and
0.12 (except for I8 which has a ratio of 0.043). This suggests that the parameterisation
κT ≈ Γ Reb is a good model for our data, even for 3 � Reb � 12, qualitatively supporting
Osborn’s model (although our Γ values are a factor of 2 or 3 below the upper bound 0.2
commonly used). However, it disagrees with the parameterisation of Bouffard & Boegman
(2013) (see their tables 1 and 2), who argue that Osborn’s model should only be expected
in the ‘transitional’ and ‘energetic’ regimes at Reb � (3 ln

√
Pr)2 ≈ 100 in salt-stratified

flows, whereas κT ≈ 0.1 Pr−1/4Re3/2
b should be expected in the ‘buoyancy-controlled’

regime below this threshold (a scaling that we do not observe in our data).
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6. Conclusions

In this Part 2 we presented some ‘advanced’ properties of continuously forced,
shear-driven, stratified turbulence generated by exchange flow in a SID using the same
16 data sets and methodology as in Part 1. In § 2 we introduced the evolution equations for
the mean and turbulent kinetic energies and scalar variances which form the backbone of
the remainder of the paper. We discussed approximate steady-state balances and compared
them with the existing literature, and emphasised the SID-specific body forcing and
boundary fluxes. Below we summarise the progress made on the three sets of questions
raised in the end of § 1.

In § 3 we carried out the bulk of our turbulent energetics analysis. In § 3.1 we first
discussed the magnitude of time- and volume-averaged energy reservoirs, focusing on
the variations in turbulent/mean and kinetic/scalar energy partitions in the Holmboe (H),
intermittent (I) and turbulent (T) regimes. We then discussed the magnitude of the key
energy fluxes: the gravity forcing F , the mean dissipation ε̄, the production of kinetic
energy P and scalar variance Pρ , the buoyancy flux B, the turbulent dissipation of
kinetic energy E and scalar variance χ and the net advective flux of scalar variance ΦK̄ρ .
We focused on critically assessing the validity of the simplified steady-state balances,
carefully weighing our relative trust in theoretical expectations (based on the conservation
of energy) and in the accuracy of our measurements (limited at small scales, especially
for E and χ ). We obtained empirical values for the flux ratios Γ ≡ B/E , Rf ≡ B/P and
B/Pρ and used these, together with higher-trust proxies (such as F ), with our physical
understanding of hydraulic control (E � ε̄ in T flows), and with results from Part 1
(Risb ≈ 0.15 in T flows) to propose asymptotic (strongly turbulent) scaling laws for the rates
and length scales of dissipation based on input parameters only (essentially E, χ ∝ θ ). We
also highlighted the relevance of the product of parameters θRes to measure the turbulence
strength, measured by the square Frobenius norm of the turbulent strain rate tensor
||s′||2F ≡ s′

ijs
′
ij ≈ 0.02 θRes, (where θ ≈ tan θ is the small tilt angle of the duct expressed

in radians, and Res is the shear layer, or ‘effective’ Reynolds number). This importance of
θRes emerged in previous studies of the SID, and in the scaling of turbulent fractions in
Part 1. It is consistent with the fact that an increasing large s′ directly causes more extreme
enstrophy through vortex stretching, noting that ||s′||2F =∑3

i=1 σ
2
i =∑3

i=1 |λi|2 (where
σi, λi are, respectively, the three singular values and eigenvalues of s′).

In § 3.2 we investigated the spatio-temporal profiles of energy reservoirs and fluxes
to articulate the specificity of SID turbulence. We discussed the characteristic vertical
structure of the various turbulent sources and sinks across the shear layer, the spanwise
effects, the temporal intermittency and the potential importance of terms that we
previously neglected for convenience (boundary fluxes) or by necessity (pressure terms)
to accurately ‘close’ the energy budgets.

In § 3.3 we examined the spectra of the turbulent kinetic and scalar energy, first
commenting on the decay exponent with the streamwise wavenumber, before breaking
down all velocity components in all directions of space and time. We also compared two
different methods to compute spectra from non-periodic, gridded experimental data (the
direct Fourier transform and Welch’s method).

In § 3.4 we built on this spectral analysis to articulate six key limitations in the
accuracy of our turbulent data in order to guide future technological developments (see
Appendix B). Some limitations are generic to experimental measurements (non-periodicity
and finite-length, PIV/LIF filtering, resolution of turbulent length scales, finite
differentiation), while some are specific to our scanning system (volume reconstruction
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from successive planes and temporal aliasing). We also discussed the possible alternative
computation of the (challenging) dissipation terms E, χ from model (ansatz) spectra
and surrogate gradients, which raised the question of the anisotropy of our velocity
data.

In § 4 we quantified this anisotropy. We first focused on the large-scale anisotropy of the
Reynolds stress tensor with a ‘Lumley triangle’ mapping of all our data sets, explaining
the generic tendency for strong prolate anisotropy (dominance of the streamwise velocity
perturbation), pockets of oblate anisotropy in H flows, followed by a more detailed analysis
of the spatial structure of the individual tensor components underpinning P . We then
focused on the small-scale anisotropy of the 12 individual velocity gradients underpinning
E (three longitudinal, six transverse and three asymmetric terms). Assessing the relative
accuracy of using each of them as a surrogate for E based on the assumption of isotropy
(as is commonly done in field observations) suggested a tendency towards more isotropy
with stronger turbulence, quantified by the key product θRes.

In § 5 we tackled the parameterisation of turbulent energetics in our six most turbulent
data sets. In § 5.1 we first sketched the hierarchy of simplified representations of the effects
of mixing in terms of ‘direct’ measures (eddy diffusivities), ‘indirect’ measures (flux
coefficients Γ,Rf , mixing lengths) and key dynamical parameters (buoyancy Reynolds
number Reb, turbulent Froude number Fr). We then used our previous volume-averaged
asymptotic (strongly turbulent) scaling laws to link these measures back to the only two
‘basic’ flow parameters θ and Res that vary appreciably in this asymptotic regime, and
we found that Reb → 0.2 θRes ≈ 10–20 and Fr → 0.3. This suggested that SID flows,
as a result of hydraulic control, can be ‘vigorously’ turbulent (predicting Reb � 30,
typically viewed as the threshold, for θRes � 150), while remaining strongly stratified
(Fr � 1), at least provided θ remains small enough for the flow to remain largely
horizontal (such that the mixing layer does not extend up to the vertical duct walls
creating a mean streamwise stratification as in vertical exchange flows). These estimates
allowed us to finally represent the expected relative order and separation of all the key
length scales in SID turbulence (from the smallest to the largest: Batchelor, Kolmogorov,
Corrsin, Ozmidov, Ellison/Thorpe, shear-layer height and duct size), highlighting in
passing the current state and the desirable improvement of the PIV/LIF spatial
resolution.

In §§ 5.2–5.4 we assessed a posteriori the relevance of defining and using uniform
values for these direct, indirect and parametric measures of mixing, as is sometimes
(at least implicitly) done in the literature. Our data in y–z revealed that most of these
quantities were in fact non-uniform across the shear layer (to various degrees), including
the eddy diffusivities κT , νT (linear flux-gradient model), the mixing lengths Lm, Lρ
(quadratic flux-gradient model), the flux parameters Γ,Rf (linear relations between
P,B, E), and the dynamic parameters Reb,Fr (uniform ratios of length scale and time
scales). These significant reservations aside, we found that κT ≈ Γ Reb was a reasonable
parameterisation, that the earlier volume-averaged estimates Γ ≈ 0.1 and Rf ≈ 0.05 were
representative fits of the underlying clouds of data, although we argued in § 3.1.3 that our
current underestimation of E makes Γ ≈ Rf ≈ 0.05–0.07 a more plausible range, i.e. a
5 % to 7 % ‘tax’, confidently below the 20 % ‘tax’ found in most of the literature. We
confirmed that Reb → 0.2θRes (invoking the same underestimation of E), that Fr → 0.3,
and that the turbulent Prandtl number (ratio of eddy diffusivities) PrT ≈ 0.15/Rf → 3
(where 0.15 is the ‘equilibrium Richardson number’ found in Part 1), which is confidently
above 1 and representative of strongly stratified turbulence. We also confirmed that
asymptotically B/Pρ → 1 as expected under approximately linear stratification, i.e. that
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B,Pρ, χ,ΦK̄ρ tend to a balance (or ‘lock step’). Under such a conceptually attractive lock
step, χ becomes approximately equivalent to the rate of irreversible mixing (destruction
of available potential energy), and Γ becomes equivalent to χ/E , the ‘real taxation rate’
of stratification.
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Appendix A. Computation of energy spectra

In this appendix we define and explain how we computed the energy spectral densities
introduced in (3.10) and plotted in figures 4–5 (which are not standard in the literature).

A.1. Continuous definitions
We define the spectral density Ex

ψ ′ along x of any perturbation variable ψ ′ in a continuous
sense (using integrals) as follows:

〈ψ ′2〉 ≡ 1
8LxLyLzLt

∫ Lt

0

∫ 1

−1

∫ Ly

−Ly

(∫ 2Lx

0
ψ ′2 dx

)
dy dz dt (definition) (A1a)

= 1
8LxLyLzLt

∫ Lt

0

∫ 1

−1

∫ Ly

−Ly

(
1

2π

∫ kx,max

0
|ψ̂ ′|2 dkx

)
dy dz dt (Parseval) (A1b)

=
∫ kx,max

0

1
4πLx

(
1

4LyLzLt

∫ Lt

0

∫ 1

−1

∫ Ly

−Ly

|ψ̂ ′|2 dy dz dt

)
dkx (re-arranging)

(A1c)

≡
∫ kx,max

0
Ex
ψ ′ dkx (definition 3.10a,b) =⇒ Ex

ψ ′(kx) ≡ 1
4πLx

〈|ψ̂ ′|2〉y,z,t.

(A1d)

We used the definitions for averages and fluctuations in Part 1, (3.10) and Parseval’s
theorem stating that the total energy of ψ ′ along x is conserved in its Fourier transform
ψ̂ ′(kx, y, z, t).
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Applying the above definition (A1d) to ψ ′ = u′, v′,w′, ρ′, we find (note the 1/2 factor
for energies (u′2)/2, etc)

Ex
u′ ≡ 1

8πLx
〈|û′|2〉y,z,t, Ex

v′ ≡ 1
8πLx

〈|v̂′|2〉y,z,t, Ex
w′ ≡ 1

8πLx
〈|ŵ′|2〉y,z,t,

Ex
K′ ≡ Ex

u′ + Ex
v′ + Ex

w′, Ex
K′
ρ

≡ Risb
8πLx

〈|ρ̂′|2〉y,z,t.

⎫⎪⎪⎬⎪⎪⎭ (A2)

All of the above can be extended naturally from x to y, z, t.

A.2. Discrete definitions
Here, we provide the exact expressions for the discrete analogue of the above definitions
used in numerical computations on our gridded data.

Consider a perturbation signal ψ ′
qrst with discrete grid values are indexed by q =

1, 2, . . . , nx, (and similarly with ny, nz, nt grid points in r, s, t respectively). The discrete
analogue of (A1a) for the time- and volume-averaged energy is

〈ψ ′2〉 = 1
nxnynznt

nt∑
t=1

nz∑
s=1

ny∑
r=1

nx∑
q=1

(ψ ′
qrst)

2. (A3a)

Note that �x/(2Lx) = 1/nx, �y/(2Ly) = 1/ny, etc. We used simple sums (rectangular
integration) here and in all computations of energy spectra involving DFTs in order to
satisfy Parseval’s conservation of energy. However, in the remainder of the paper, we used
trapezoidal integration to compute averages for better accuracy.

The discrete energy spectral densities of ψ ′ along x, y, z, t are defined respectively as
Ex

m,Ey
n,Ez

o,Et
p (the subscript ψ ′ is implicit and omitted for clarity), with discrete grid

values indexed by m, n, o, p in the wavenumber/frequency space kx, ky, kz, ω, where

〈ψ ′2〉 =
nm∑

m=1

Ex
m�kx =

nm∑
m=1

(
1

nynznt

nt∑
t=1

nz∑
s=1

ny∑
r=1

Ex
mrst

)
︸ ︷︷ ︸

≡Ex
m

�kx, (A4a)

=
nn∑

n=1

Ey
n�ky =

nn∑
n=1

⎛⎝ 1
nxnznt

nt∑
t=1

nz∑
s=1

nx∑
q=1

Ey
qnst

⎞⎠
︸ ︷︷ ︸

≡Ey
n

�ky, (A4b)

=
no∑

o=1

Ez
o�kz =

no∑
o=1

⎛⎝ 1
nxnynt

nt∑
t=1

ny∑
r=1

nx∑
q=1

Ez
qrot

⎞⎠
︸ ︷︷ ︸

≡Ez
o

�kz, (A4c)

=
np∑

p=1

Et
p�ω =

np∑
p=1

⎛⎝ 1
nxnynz

nz∑
s=1

ny∑
r=1

nx∑
q=1

Et
qrsp

⎞⎠
︸ ︷︷ ︸

≡Et
p

�ω. (A4d)

In each line, the first equality is our definition of spectral energy density (as in the
first equality of (A1d)), the second equality comes from Parseval’s theorem (as in
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(A1b)–(A1c)), and

Ex
mrst ≡ �x

πnx(1 + δm,1 + δm,nm)
|ψ̂ ′

mrst|2, m = 1, . . . , nm ≡ nx

2
+ 1, (A5a)

Ey
qnst ≡ �y

πny(1 + δn,1 + δn,nn)
|ψ̂ ′

qnst|2, n = 1, . . . , nn ≡ ny

2
+ 1, (A5b)

Ez
qrot ≡ �z

πnz(1 + δo,1 + δo,no)
|ψ̂ ′

qrot|2, o = 1, . . . , no ≡ nz

2
+ 1, (A5c)

Et
qrsp ≡ �t

πnt(1 + δt,1 + δt,nt)
|ψ̂ ′

qrsp|2, p = 1, . . . , np ≡ nt

2
+ 1, (A5d)

where the |ψ̂ ′
mrst|2 are the square moduli of the one-dimensional DFTs of ψ ′

qrst along x

ψ̂ ′
mrst ≡

nx∑
q=1

ψ ′
qrst exp

(
−2iπ

nx
(q − 1)(m − 1)

)
, kx,m ≡ (m − 1)�kx ≡ (m − 1)

π

Lx
,

(A6a,b)

and similarly along y, z, t. In (A5), the Kronecker δ (e.g. δm,1 = 1 if m = 1, and 0
otherwise) is used because we consider the positive (one-sided) spectrum of a real signal,
resulting in energy being counted twice at the 0 and maximum (Nyquist) frequencies.
The normalisation constant in �x/(πnx) = 2Lx/(πn2

x) is consistent with Matlab’s ‘fft’
function convention to attach the 1/nx normalisation factor to the inverse transform (rather
than to the forward transform). The density of u′2/2 is given by replacing |ψ̂ ′|2 by |û′|2/2
in (A5), etc.

For more details about computing energy spectra from gridded data with correct
normalisation, see Durran, Weyn & Menchaca (2017) (§ 2).

A.3. Energy at zero wavenumber/frequency
Reverting back to continuous variables for simplicity, the energy spectral density of ψ ′ at
zero wavenumber/frequency (kx, ky, kz, ω) = (0, 0, 0, 0) is

Ex
ψ ′(kx = 0) = 2Lx

π
〈〈ψ ′〉2

x〉y,z,t /= 0, (A7a)

Ey
ψ ′(ky = 0) = 2Ly

π
〈〈ψ ′〉2

y〉x,z,t /= 0, (A7b)

Ez
ψ ′(kz = 0) = 2Lz

π
〈〈ψ ′〉2

z 〉x,y,t /= 0, (A7c)

Et
ψ ′(ω = 0) = Lt

π
〈〈ψ ′〉2

t 〉x,y,z /= 0. (A7d)

We used (A1d) and the fact that by definition of the Fourier transform along x

|ψ̂ ′(kx = 0, y, z, t)|2 ≡
(∫ 2Lx

0
ψ ′(x, y, z, t) dx

)2

= (2Lx〈ψ ′〉x)
2, (A8)

and similarly along y, z, t.
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The values in (A7) are essentially mean variances along x, y, z, t, respectively, that are
generally non-zero because our data are four-dimensional, and our definition of ψ ′ ≡ ψ −
〈ψ〉x,t does not guarantee that 〈ψ ′〉2

ξ averages to zero for any single coordinate ξ . This is
in contrast to typical practice with one-dimensional data, where perturbations are defined
as ψ ′(ξ) ≡ ψ − 〈ψ〉ξ (such that 〈ψ ′〉ξ = 0), resulting in Eξ

ψ ′(kξ = 0) = 0.

A.4. Welch’s method
Welch’s method (Welch 1967) is a non-parametric estimator of the energy spectral
density of a signal that minimises both spectral leakage (Gibbs phenomenon) caused by
non-periodicity of the data (edge discontinuities) and measurement noise.

To render the data periodic, a ‘Hamming’ window function is applied (tapering to zero at
the edges). Windowing reduces spectral leakage at the expense of resolution in frequency
space, because it effectively shortens the usable length of the original signal. Windowing
alone results in a loss of information by giving more importance to the central portion of
the signal.

To mitigate this loss and give more equal importance to the whole signal, the signal is
instead divided into a series of overlapping segments of equal length, windowing is applied
to each individual segment, and Welch’s spectral density is computed by averaging the
square modulus of each individual DFTs (we used Matlab ‘pwelch’ function with eight
segments and 50 % overlap between segments). Since segmentation reduces resolution
in frequency space, it remains attractive only if the signal is long enough for frequency
resolution to be a lesser concern (this is the case for us in x, t because typically nx, nt �
100, but not in y, z, explaining why we do not plot Welch’s method in figure 5d–i).

Welch’s segmentation and averaging also have the key benefit of reducing experimental
measurement noise (the variance of the noise in Welch’s estimated spectrum reduces in
proportion to the number of segments). For more details, see Smith (2003, Chap. 9).

A.5. Note on three-dimensional Fourier transforms
Here, we explain why we defined energy spectral densities using one-dimensional rather
than three-dimensional Fourier transforms in x, y, z.

Theoretical and numerical studies on homogeneous isotropic turbulence usually
consider the one-dimensional energy spectrum 〈K′〉 ≡ ∫∞0 E(k) dk, where k ≡ |k| =
(k2

x + k2
y + k2

z )
1/2 (e.g. Batchelor 1953, eq. (3.1.6)), obtained by averaging the

three-dimensional Fourier transforms |û′(k)|2, |v̂′(k)|2, |ŵ′(k)|2 on spherical shells of
equal k. Although formally attractive (e.g. dissipation is obtained simply as 〈E〉 =∫∞

0 k2 E(k) dk), this formulation is of limited use and impractical for our data.
First, our flows are inhomogeneous and anisotropic, at least at the scales that can be

resolved (see § 4). We can neither treat all directions equally nor use the attractive formula
for the dissipation

∫
k2 E(k).

Second, our data are far from being triply periodic, and are given on a discrete grid
with different spacings �x,�y,�z and domain lengths Lx, Ly, Lz. To our knowledge, it
is impossible to compute a sensible and energy-preserving one-dimensional shell average
of a three-dimensional Fourier transform performed on a wavenumber grid having vastly
different�kx,�ky,�kz and kx,max, ky,max, kz,max. Even with a more ideal domain and grid,
the shell averaging of gridded data creates inherent noise. This noise can be reduced
by some ad hoc techniques, but these techniques do not conserve energy (Durran et al.
2017, § 3).
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Appendix B. Limitations of our energetics data

In this appendix we complement the discussion in § 3.4 by providing further information
regarding the five key current limitations in our computation of energetics, based on
insights derived from spectral data in § 3.3.

B.1. Non-periodic and finite-length data
As mentioned in § 3.3 and in Appendix A.4 non-periodic and finite-length data cause
the high-wavenumber content of our spectra to be polluted by spectral leakage. This is
particularly true in y and z due to the limited number of data points (domain length and
resolution), where Welch’s method is inapplicable.

B.2. PIV and LIF filtering
First, the cross-correlation of PIV across interrogation windows (IWs) effectively
convolves the underlying ‘real’ velocity field with a square filtering kernel of size
IW in x and z. This filtering can – in principle – be corrected for, by multiplying
the energy densities Ex

K′ , Ez
K′ by the inverse energy density of the filtering kernel

∝ (IWkx/2)2/ sin2(IWkx/2) (and similarly in z), as proposed in Xu & Chen (2013)
in their § 4.2. However, this sinc−2(IWkx/2) rescaling function is singular at the IW
wavenumber 2π/IW , and thus requires a Nyquist wavenumber kx,max ≡ π/dx � 2π/IW ,
i.e. a grid spacing dx � IW/2, corresponding to a requirement of � 50 % overlap between
IWs. Unfortunately, >50 % overlaps (oversampling) are common and practical in PIV
processing to maximise the spatial resolution of the output (in fact, our data use 62 %
overlap, corresponding to a kx,max ≈ 2.4π/IW ). This slight oversampling prevents us from
correcting the energy densities of Ex

K′ , Ez
K′ , which would, after correction, have shallower

slopes at high wavenumbers.
Second, LIF also effectively averages the density field to pixel resolution, and we further

low-pass filtered these data to remove various sources of noise (e.g. due to spurious rays
caused by dust in the optical path of the laser sheet), before sub-sampling them to the
lower-resolution PIV grid dx, dz for convenience. Such steps could be avoided or improved
(and our spectra of EK′

ρ
could have indeed been given up to higher Nyquist wavenumbers

kx,max, kz,max in figures 4–5). However, we verified that this would yield very limited
practical benefits given the daunting separation between the Batchelor and Kolmogorov
scales (B ≈ K/25).

Third, both our PIV and our LIF data are inherently averaged in y across the thickness
of the laser sheet (the filtering kernel depends on the poorly known laser sheet intensity
y profile). We performed the experiments with a spacing dy approximately equal to the
mean laser sheet thickness to avoid >50 % overlap in y (oversampling), but uncertainties
remain.

Fourth, we recall that the spanwise component v′ seems partially contaminated with
medium- to small-scale noise along x, presumably as a result of slight and poorly
understood errors in the delicate stereo-PIV computation of this out-of-plane velocity
component.

B.3. Resolution of the Kolmogorov and Batchelor length scales
The rescaling mentioned above to correct for PIV and LIF filtering is only expected to
significantly improve measures of energy and dissipation on properly sampled data if the
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Nyquist wavenumbers kx,max, ky,max, kz,max are comparable to kK = 2π/K (for PIV) and
kB = 2π/B (for LIF), where K, B are defined and estimated in (3.8)–(3.9). Although
the Kolmogorov wavenumber is within reach in x, z (see § 3.1.4), and potentially in y with
improvements in the apparatus, the Batchelor wavenumber will likely always remain out of
reach at Pr = 700. Note that measurements in temperature-stratified flows at Pr = 7 are
unfortunately impractical, because of the inability to achieve a uniform refractive index
required for PIV and LIF.

B.4. Volume reconstruction and spanwise distortion
Our three-dimensional volumetric data are reconstructed in y by aggregating successive
x–z planes obtained at slightly different times (it takes a time �t to scan from one duct
wall to another −1 � yh � 1). The resulting spanwise distortion of turbulent structures
could (and probably does) affect energy estimates. It appears tempting to correct for this
distortion using G.I. Taylor’s hypothesis that turbulent fluctuations u′, ρ′ are ‘frozen’ and
advected by the mean flow ū( y, z). This would require a non-trivial x-coordinate map
X(x, y, z, t) ≡ x − ū( yi, z)(ti − t), where ti − t is the time difference between the exact
time at which plane yi was captured and the mean time at which each reconstructed
volume is given. However, this does not appear viable since it would cause further spurious
distortions (because Taylor’s hypothesis is questionable in inhomogeneous flows ū( y, z)),
and it would further reduce the spanwise resolution of our data (because of the lack of
x periodicity, data within a distance maxy,z |ū|�tLy/2 ≈ �t of each end would be lost,
which can be considerable).

B.5. Temporal resolution and aliasing
Our scanning time step �t between volumes is decades higher than the smallest
dynamically relevant turbulent time scale, i.e. turbulent energy is contained well above
our Nyquist frequency ωmax. This causes aliasing of temporal spectra, whereby unresolved
high-frequency energy is incorrectly mirrored into resolved low-frequency energy (Smith
2003, pp. 39–45; Tropea, Yarin & Foss 2007, § 22.1). Note that this effect is only expected
in temporal spectra (which may or may not be of interest) due to sampling in t being
achieved by very short laser pulse duration (for LIF) and laser pulse separation (for PIV),
whereas in x, y, z the filtering/averaging effects of PIV/LIF dominate.

B.6. Finite differentiation
Direct estimations of E, χ by finite differentiation in physical space are prone to further
errors, because standard finite-difference operators effectively convolve the data by a set
of offset rectangular window functions whose spectra have high-amplitude side lobes.
Although more advanced finite-difference schemes with improved (smoother) properties
exist, they nevertheless inevitably amplify the high-wavenumber inaccuracies of the
original signal.
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