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1. Introduction. Let 

z° = t P*x)(£)' 
be an ordinary differential operator of order h whose coefficients are (77, 77) 
matrices denned on the interval 0 < x < » , hrj = n = 2v. Let the operator 
Lo be formally self adjoint and let v boundary conditions be given at x = 0 
such that the eigenvalue problem 

(1.1) L0u = \u, [*oi,w](0)=0> j = l , . . . , * , 3(A) ^ 0 , 

has no non-trivial square integrable solution. This paper deals with the perturbed 
operator L€ = L0 + eq where e is a real parameter and q(x) is a bounded 
positive (77, 77) matrix operator with piecewise continuous elements 0 < x < 00 . 
Sufficient conditions involving L0, q are given such that Le determines a self-
adjoint operator He and such that the spectral measure Ee(Af) corresponding 
to H€ is an analytic function of e, where A' is a subset of a fixed bounded 
interval A = [a, /3]. The results include and improve results obtained for scalar 
differential operators in an earlier paper (3). 

The theory leads to a perturbation series for the spectral measure E€(A'), 
A' C A in terms of the Greens' function of the eigenvalue problem (1.1) and 
the operator q (cf. formula (5.1)). Knowledge of the series for the spectral 
measure is useful in obtaining approximate solutions of vibration problems 
involving the operator L€. As an application an approximate perturbation 
series solution of the inhomogeneous equation 

(1.2) (Lo + eq)u + utt = + P(x, /), u{x, 0) = /(#), ut(x, 0) = 0 

is constructed using the series for the spectral measure. The perturbation 
series is approximate because in general it does not represent the complete 
solution of (1.2) but only that part of the solution which consists of a super­
position of waves with frequencies v in the interval \/(X/2TT < v < \ZP/2TT. 

This is due to the fact that the series for the spectral measure is known only 
over the interval A = [a> £]. In the case that the functions P(x, t), f(x) have 
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a spectral decomposition involving only frequencies in the range y/a/2ir < v 
< V^/27r the perturbation series leads to an exact solution. Perturbed 
equations of the type (1.2) arise frequently in the approximate solution of 
vibration problems. A well-known scalar example is the equation for the 
deflection of a bar on an elastic foundation in which the factor (eq) represents 
the coefficient of rigidity of the foundation (cf. 9). 

Sufficient conditions for analyticity of the spectral measure are stated in 
detail in § 2. These conditions involve the resolvent @°(X) of the operator 
H° determined by L0, whose kernel is the Greens' function, and the operator 
q. Briefly summarized, the conditions placed on @°(X) and q are that the 
operators ^@°(X)^ and J\&°(\)q&°(\)dl are uniformly bounded for X in a 
neighbourhood of A, X = / + ià, l G A, 0 < <5 < <50. These boundedness con­
ditions are only possible in case that @°(X) has no pole in the interval A, 
which implies that the interval contains only the continuous spectrum of 
H°. Therefore the results of the paper deal only with perturbation of the 
continuous part of the spectrum. The above conditions may be weakened by 
employing limiting arguments and explicit properties of the Greens' function. 
Weakened assumptions are discussed in § 5. In particular, the assumption 
that the operator q is bounded can be removed under altered conditions 
stated in § 5. 

The convergence of the perturbation series for the spectral measure Ee(A) 
is proved in §§ 4 and 5. The results proved in § 4 are valid generally for 
operators with Carleman kernels while the results in § 5 deal specifically 
with ordinary differential operators. In § 6 the perturbation series solution 
of the vibration equation (1.2) is derived in terms of the series for the 
"spectral measure" 

The conditions for analyticity of the spectral measure given here reduce to 
ones of Moser if h = 2, rj = 1 (10). The conditions are not necessary as 
Brownell has demonstrated analyticity of the spectral measure for h = 2, 
r} = 1 under different conditions (2). 

2. Notation, assumptions, and preliminary facts. Repeated Latin 
indices should be summed from 1 to n and repeated Greek indices should be 
summed from 1 to rj unless the contrary is explicitly stated. 

Denote by ilw = £2,7?" the product space 

T = I l L*10, ») 
1=1 

of vector functions u = (ui(x), . . . , uv(x))} 0 < x < oo, whose components 
ua(x) are functions in L2[0, °°), a = 1, . . . , rj. Given two functions u, v in 7r, 
u-v will denote the scalar product of u and v and (u,v) the inner product 
of u and v, u-v = ua(x)va(x) and (u, v) = Jo^u-vdx. The norm of an element 
u of 7T is defined as ||w|| = \/{{u, u)). For u, v in TT the Schwarz inequality, 
\(u, v)\ < \\u\\ -\\v\\, holds. 
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If H is a linear operator on T to T then 35 (iT) denotes the domain of H. 
The norm of a bounded operator H is ||fl"||, 

|\H\| = sup \\Hu\\. 
I l w | | = l 

H* is the adjoint of H. If H is self-adjoint then Et will be the spectral reso­
lution of H and ®(X) the resolvent of iJ, ®(X) = (H - A)"1. An integral 
operator H on ir is said to have a Carleman kernel Ha$(x, £) if i7a/3 is a matrix 
such that, as a function of £, (LT«i, ^«2, . . . , i?a,) G x, « = 1, . . . , rj for 
almost all x and 

J»oo 

Hap(x, {)«*(*)#, « = 1, . . . , 17, u 6 3) (if). 
0 

The kernel i7a# is called a Hilbert-Schmidt kernel if it satisfies 

J»oo /»co »? 

0 ^ 0 a , 0 = 1 

A number of facts concerning the spectral resolution Ex and the resolvent 
®(X) will be stated for later reference. (These are proved in (11) and (12).) 
The operator H is^represented in terms of the spectral measure Ei by 

Joo 

IdEjU, 
-oo 

u Ç 35 (iî) . T)(H) consists of those functions u in ir such that 

r l2d\\Eiu\\2 < 

For any bounded continuous function g (I), — <» < I < o° the integral 

g(Z)dEiW r exists and defines a bounded operator g (if) and 

| | g ( # ) | | < sup |g(0|. 
—oo<C ï<!oo 

The spectral resolution Ei is self adjoint and Ei2 = £*. Given an interval 
A = [a, 13] the spectral measure E(A) is defined by E(A) = Ep — Ea. The 
spectral measure may be written as a contour integral in terms of the resolvent 
®(X) by the formula (cf. 12, p. 183): 

(2.3)* (E(A)u,v) = lim - j (3{®(X)}w, v) dl, u, v Ç La,, 

where 

3(®) = ^ ( ® - ® * ) , \ = l + iô. 

*This formula holds provided the endpoints of A are not in the point spectrum of H. 
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Next notation and facts concerning the spectral theory for the matrix 
differential operator L0 will be summarized (following Kodaira (7)). It is 
assumed that the elements of the coefficient matrices Pj(x) of 

L"tp^<S' 
have continuous derivatives up to j th order j = 0, . . . , &, 0 < x < <», and 
det. Pn(x) > 0, 0 < x < oo. Let [u, v](x) be the bilinear boundary form 
associated with the differential operator L0 such that 

Cx - — 
(2.4) I (LQU-V — u-Lov)dx = [u,v](x) — [u,v](0). 

Jo 
It will be assumed that there exist functions 0O;-, j = 1, . . . , v such that 
[</>oy, 0o*;](O) = 0, j , k = 1, . . . , v and such that the eigenvalue problem 
(2.5) Lou = \u, [0Oy, #](0) = 0, j = 1, . . . , v 

has no non-trivial square integrable solution u(x) in w for 3(X) ^ 0. 
Under these assumptions the operator L0 together with the boundary 

conditions [<j>oj, u](0) = 0, j = 1, . . . , v determines a self-adjoint operator 
H°. The domain of i7°, 3)(i7°), consists of the set of functions w in x such 
that u{j) are continuous j = 1, . . . , A — 1, 0 < x < oo, #(*-i) is absolutely 
continuous in every bounded subinterval of [0, °° )> L0w Ç 7r, and [$oy, w] (0) = 0 , 
j = 1, . . . , J>. The values of i?° are given by il0z£ = L0u, u £ &(H°). 

Let S)oo be that subset of 35(iJ°) whose elements are functions which vanish 
outside a compact set. 

If H° is the self-adjoint operator determined by the differential operator L0 

then the resolvent ®°(X) = (H° — X)-1 has a Carleman kernel C7ai3(x, £, X), 
called Greens' function, with the representation 

(2.6) Gat(x,i,\) = 
MjJc(\)sja(x,\)sk^\)1 x> £ 
Mj\\)ska(x, X)^(f, X), x < f 

where s;-(x, X) = (sji, . . . , s^), j = 1, . . . , n is a fundamental system of 
solutions of the eigenvalue problem (2.5) and Mjk(\) are analytic functions 
of X, 3(X) 9e 0. If (2.6) is inserted into (2.3) one obtains for differential 
operators 

(2.7) (E(A)u, v) = f (sj} v)(sk1 u)dpj\l) 

where the spectral density function pik(l) is defined as 

(2.8) pj\l) = lim - f 3{Mik(l + id)}dl 
5-^0+ 7T •/ 0+ 

(cf. 7, pp. 542-543). 
A number of assumptions regarding the operators H°, ©°(X), and q will 
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now be introduced relative to a fixed interval A = [a, 13] which are crucial 
for the later argument. It is assumed that H°, ©°(A), q satisfy: 

(i) H° is self-adjoint and q is positive, symmetric, and bounded. 
(ii) The operator q*®0(\)q* has a Hilbert-Schmidt kernel and 

Sm \\q2®\\)q~2\\ < K0, A = I + id, l £ A, 0 < Ô < d0. 

(iii) The operator q*®°(\) has a Carleman kernel $iap(x, £, X) which satisfies 
\$$ay(x, £, A)| < Cap(x)Dpy(Ç) where Cap, Dap are independent of A, A = / + id, 
I Ç A, 0 < ô < 80 and J0 £«/s| Ca/3(x) \ 2dx < oo. 

(iv) The operator J A® °(\)q®°(\) dl is bounded and 

Km" ( \ ®\\)q@\\)dlu, u) < Hm ] \\qh@°(\)u\\2dl < P0\\u\\\ 

Note that these assumptions make sense for operators with Carleman kernels 
which are not necessarily differential operators. In § 5 assumptions are made 
specifically concerning differential operators which are more explicit than these 
assumptions. The assumptions arise in a natural way in the construction of 
the spectral measure E*(A) corresponding to H€. (ii) is similar to assumptions 
introduced by Kuroda, Agudo, and Wolf in their work on perturbation of 
the essential spectrum. Kuroda assumed that for some Ao, 3(Ao) 9e 0, the 
operator g*®°(Ao) has a kernel of Hilbert-Schmidt type (8), while Agudo and 
Wolf assumed that g@°(Ao) has a kernel of Hilbert-Schmidt type (1) for some 
Ao, 3(Ao) T^ 0. Because we wish to derive results relative to the interval A 
we have imposed assumptions, relative to this interval, which are of a stronger 
character than those of the above authors. In particular, note that as a con­
sequence of (iii) the resolvent ®°(A) does not have a pole along A, so that it 
is this assumption which implies that A does not contain any element of the 
point spectrum of H°. 

3. Preliminary Theorems. Two theorems will be required regarding 
existence of limits of integrals of the form (2.3). First a theorem from classical 
analysis : 

THEOREM 1. Let\f/(\) be a regular function of\>X = l + id,l^ A, 0 < 5 < <50. 
Let 

(3.1) f \3{W + i*)}\dl <M0, 0 <<5 < 5o 
%)a 

and 

|^(a + iv)\dv < oo |^(0 + iv)\dv < oo. 
o «Jo 

Then 

(3.3) lim f ${t(\)}dl 
Ô_>0+ * / A ' 
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exists for all intervals A', A ' Ç A . The function 

p(l)= lim | W W ) * 
3->0 

has bounded variation on A, p(l) = \(p{l + ) + £(Z — )), awd £/ze set function 
(3.3) is countably additive. 

A proof of Theorem 1 is given in (13, p. 346). Note that the discontinuities 
of p(l) form a countable set and we may renormalize p(l) so as to be right 
continuous at points of discontinuity. 

Theorem 1 leads directly to a theorem concerning bilinear forms: 

THEOREM 2. Let B(\) be a bounded operator regular in X, \ = 1 + iô, / Ç A , 
0 < Ô < ôo. Let B*(X) = 5(X), 

3(B) = ~ (B - S*), 

awd ZeJ 5(X) satisfy 

!(£(/ +^)w,i;)|<fo < oo, / Ç A , */,*/ Ç £ 0 0 
0 

— I c I 
(3.5) lim (3{£(X)}w,i;)<M < M0\\u\ \\\v\ |, w, «; É & 

8 v 04- l « / A I 

Then 

(3.6) lim f (3{B(X)}w,i;)d/ 
3_>0+ t / A ' 

exists for ail intervais A ' Ç A and is a bounded bilinear form on T. There exists 

a bounded operator C(A') such that for A ' Ç A 

(3.7) (C(A')u,v) = lim j ($(B)u,v)dl, uyv t TT 

and ||C(A')|| < Afo. 

Proo/. Given u £ S 0 0 define ^(X) = (B(\)u,u). Since 5*(X) = B(\) it 
follows that 3{xl/(\)} = (3{B(\)}u,u). The integrals J*0*°|iKa + iv)\dv, 
JV°I^(^ + ^ ) l ^ exist by (3.4). By (3.5), given any number k > 0 for some 
Ô(jfe), 0 < ô(k) < Ôo 

(3.8) f \S{Ml + ir)}\dl< (Mo + *) | |« | |2 , 0 <v <8(k). 
• /A 

This shows the function ^(X) satisfies the hypothesis of Theorem 1 so, by 
Theorem 1, we conclude that 

lim I (S(B)u,u)dl 
fi_*0+ ^ A ' 

exists for A' Q A. 
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Since k is arbitrary (3.8) implies 

(3.9) lim I ($(B)u,u)dl < Mo w , u, G 3)oo. 

The bilinear form (^s{B}u} v) may be decomposed by the polarization 
identity into 

(3.10) (3{B}u, v) = (3{B]ulf tti) + m{B}u2, u2) - i{${B}uz, uz) 
— (${B}uh Ui) 

where 

+ v u + iv u — iv 
Ml = —2~ • M2 = -2T" ' Ui = "~2T" ' "4 = ~~T~ • 

By what was shown above the quadratic forms 

lim I (3(B)uuUi)dl 

i = 1, . . . , 4 exist and satisfy (3.9). Using (3.10) it follows that 

lim I ($(B)u,v)dl 
5^0+ «/A' 

exists. The integral 

(S(B)u,v)dl 1 r A ' 

is a bounded bilinear form so the limit 

lim f (3(5)«,»)d/) 
5^o+*^ A' / \&^o+ ** A' 

is also a bilinear form. Since in general a bilinear form has the same bound 
as the associated quadratic form, (3.9) implies 

(3.11) lim I (S(B)u,v)dl < ikfolMIIIHI, u> v £ 3)oo-
0^0+ I *J A' 

The set 35oo is dense in w. Therefore the bilinear form 

lim I (S(B)u,v)dl 
5^0+ « 'A ' 

determines a bounded operator C(A') by a theorem of Frechet (cf. 12, p. 63). 
The bound of the operator C(A') is less than Mo by (3.11). 

4. The perturbation series for the spectral measure. If H°, q are 
operators on 7r satisfying the assumptions (i), . . . , (iv) given in § 2 then 
q is bounded He = H° + tq is a self-adjoint operator, 35(iifc) = 35(i7°), and 
consequently there exists a spectral measure E€(A'), Ar C A. In this section 
it will be shown that the spectral measure Ee(A') may be expanded into a 
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convergent series in powers of e. The results are valid for general operators 
with Carleman kernels. Section 5 contains more explicit results for differential 
operators. 

Let ©€(X) be the resolvent of H*. The resolvents ©°(X), ®e(X) satisfy the 
resolvent equation 

(4.1) @€(X) = ®°(X) - e®°(X)<Z®e(X). 

If (4.1) is solved formally by iteration one obtains the Neumann series for 
the resolvent: 

(4.2) @'(X) = J (-«)'®0(<z®°)\ 

The substitution of (4.2) into (2.3) results in a formal series for the spectral 
measure 

oo 

(4.3) E'(A') = £ (e)'El'\A') 

where the operators E(v) are defined by 

(4.4) E{v) = - lim ( - 1 ) " f ,S{®\q®°y\dl. 

The series (4.2), (4.3) are not in general convergent and (4.4) does not in 
general define a bounded operator. However, under the special assumptions 
(i), . . . , (iv) this is the case. This is shown in the next three theorems. 

THEOREM 3. If H° is a self-adjoint operator and q is a positive bounded sym­
metric operator and if H°, q satisfy assumption (ii) then for \e\ < KQ~1 the 
resolvent ®e(X) of the operator He = H° + eq is given by 

oo 

(4.5) @'(A) = £ (-iy&\x)(q@\x)y 

for X = / + id, I € A, 0 < 5 < 0(e), 0 < 8(e) < <50. 

Proof. Given e, |e| < i£o-1, by assumption (ii) choose h(e) such that 

h(e) < (~y - Ko) 

and choose ô(e) such that 

(4.6) |kè®°(X)^|| < (Ko + h), le A, 0 < 8 < 8(e). 

Then for v > 1, / G A, 0 < 8 < 8(e), 

(4.7) ||@0(X)(<z@°(X))1| < ®°g*(g*®°2i)'-i2*©°|| 

< Il®°ll2ll«*ll2ll2*®02ilh1 < ll®°ll2||^ll2(^o + Zi)*-1. 

Formula (4.7) implies that the series (4.5) is absolutely convergent in norm 
for X = / + iô, I e A, 0 < 8 < 8(e) since ||®°|| and ||g*|| are finite. 

To show that the series (4.5) represents the resolvent we note that the 
resolvent is the unique operator which satisfies the equations 
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@«(X)(iT0 + eq - \)u = u, u£ S)(ff°) 
( 4 . 8 ) \(H° + eq - X)®-(X)y = y y Ç TT, 

It is easily seen by substitution that the series (4.5) satisfies the equations 
(4.8). Therefore the series (4.5) is equal to the resolvent operator. 

THEOREM 4. If H° is a self-adjoint operator and q is a positive bounded sym­
metric operator and if H°, q satisfy assumptions (ii), (iii), (iv), then for A' < A 

(4.9) l im- f (3{®\q®°Y}u,v)dl 
5^0+ TT J A' 

exists and determines a bounded operator E(v) such that for u, v Ç w = L2,n 

(4.10) (E(v)(A')u, v) = - lim f ,(3{®°(<Z®0)>, v)dl. 

(4.ii) l l£ ("> l l<-1-p0xr1^>i. 
T 

Proof. Let B(\) = ©0(X)(g@0(A))". 5(X) is regular for X = / + id, I G A, 
0 < Ô < 8o because ®°(X) is regular. From (®°(A))* = ®°(X) it follows 
B*(\) = B(\). The operator B(X) may be written, v > 1, 

(4.12) 5(A) = (®0qh)(qh®0qhy-\qW). 

Next, using assumption (ii), for some ôi, h 

(4.13) \(B(\)u,v)\ < K ^ ® 0 ^ ) " - 1 ^ ® 0 ) ^ (qh®°fr))v)\ 

< Jl^VlMte*®0"!! ||g*®°HI 
< (K0 + h)v-l\\q^u\\ ||g*®°»||f 0 < 5 < «i. 

The quantity 

sup ||<f ® (I + ^V)w|| 
0<»/<5i 

is finite for I G A, u G 3)0o by assumption (iii). For w, z> G 3)oo, using (4.13), 

(4.14) f l\{B(\)u,v)\dv < (Xo + / i ) " _ 1 f *||ff*®° |̂11|ff*@°w| |rfv 
«/ o «Jo 

<5 1 ( ^o + /i)""1sup||g1®V||| |g1®%|| < » . 
0<v<Si 

By assumptions (ii), (iv), and (4.13), for some h, ô2 

(4.15) f \(S{B(\)}u,v)\dl<l \\{B{\)u,v)\dl + \ ( \(B(\)u,v)\dl 
« / A ^ */ A ^ • / A 

< (jfo + y - 1 f lk*®0«||||a*®°»||«« 
«J A 

< (iCo + /i)"_1{ J ||g*®°w||*<« j ||g4®°p||2dZ 

< (^o + /i)""1(i>o + ^)| |«| | |[z' | | 

for X = Z + i5, / G A, 0 < Ô < 32 < 5i. 

https://doi.org/10.4153/CJM-1962-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-028-7


368 JOHN B. BUTLER, JR. 

The inequalities (4.14), (4.15), show that B(\) satisfies the hypothesis of 
Theorem 2. Applying Theorem 2 we conclude that the bilinear form (4.9) 
exists and determines the operator E(v)(A'). Since the constants lh h are 
arbitrarily small the operator E(v)(A') satisfies (4.11). 

As a consequence of Theorem 4 the series 

E (e)'£
(,) 

is a convergent series of bounded operators |e| < KQ~1. It remains to verify 
(4.3). 

THEOREM 5. / / H° is a self-adjoint operator and q is a positive bounded sym­
metric operator and if H°, q satisfy (ii), (iii), (iv) then for |e| < K^~l the operator 
He = H° + eq is self adjoint and the spectral measure Ee(A'), A ' C A corre­
sponding to He, is analytic in e. For u, v £ w 

oo 

(4.16) (E(A')u,v) = 2 t'(Eir)(A')u,v). 
0 

Proof. IIe is self adjoint, T)(H€) = £)(i?°), since q is assumed bounded. By 
(2.3) the spectral measure is given by the integral 

(4.17)* (£ ((A')«,ii) = lim -- J (${®e(),)}u,v)dL 
8^0+ 7T • / A ' 

By Theorems 3 and 4, for u, v G 3)oo 

(4.18) (E\A')u,v) = lim - | (3{@e(X) }u, v)dl 

= lim - 2 ( - e ) ' f (3{®\q®°Y}u,v)dl 

= £ ( - O ' l i m - f (3{@ 0 (g©°) '}« ,^ / 
5_>0+ 7T • / A' 

The interchange of summation with integration and limit operations in (4.18) 
is permissible because of the uniform convergence of the series involved. 
Because the set 350o is dense in TT the equation (4.17) extends to all elements 
of T by a theorem of Frechet (12, p. 63). 

In § 6 the following extension of Theorem 5 is used: 

THEOREM 6. If H° is a self-adjoint operator and q is a positive bounded sym­
metric operator, if H°, q satisfy (ii), (iii), (iv), and if g (I) is a bounded function 
analytic on A then for \e\ < i£ 0

- 1 He = H° + eq is self adjoint with spectral 
measure Ee(A') and the integral 

*This formula is valid since the endpoints of the interval A' are not in the point spectrum 
of He . This is because the interval A does not contain any elements of the point spectrum 
since @6(X) does not have a pole in A. That @C(X) dees not have a pole in A follows from 
assumption (iii) and Theorem 3. 
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L g{l)d{E\u, v) 

is analytic in e, 

(4.19) f g{l)d{E\u, v) = £ / f g(l)d(E\\,v) 
• / A ' "A' 

(4.20) f g(l)d(E]u, v) 
J A' 

< - - s u p Ig^lPoKÎ-'ilttU | | H I , " > 1 -
7T A ' 

The proof is obtained by a modification of the proof of Theorem 5. Note 
that in case h = 2, rj = 1, the theorem was stated by Moser (10, p. 385). 

5. The perturbation series for the spectral measure of differential 
operators. The results derived in §4 are valid, in general, for operators with 
Carleman kernels. In this section more explicit results are obtained for 
differential operators using the representation formula (2.6) for the Green's 
function. It will be assumed that H° is a self-adjoint operator determined by 
a differential operator L0 satisfying the conditions given in § 2. g will be 
assumed to be a positive symmetric matrix multiplication operator such that 
the elements qa^{x) of the matrix q* are piecewise continuous on 0 < x < °°. 
The elements Mjk of the characteristic matrix (cf. (2.6)) will be assumed to 
have limiting values 

WmMjk(l + iô) = M? (I). 

When the formula (2.6) for the Greens' function and the matrix qaf{x) 
are substituted into (4.4) one obtains a series for the spectral measure corre­
sponding to the differential operator L€ = L0 + eg: 

oo 

(5.1) E\A')u = X y £ ( , , ) ( A > 
0 

where 

(5.2) £ W ( A > = ~ f E *t\x, l){tâ\ u) dpik(l) 
7T • / A ' H+X = P 

and the vectors \f/j(fi) are defined by 

(5.3) *?° = (®0(/ + »0)g)% (*,/). 

(Formula 5.2) is derived from (2.6) and (4.4) noting that 

3{@0(A)(<z©0(A)ri = D (®TM<zra®0(A)Kg©°(À))\ 

Explicitly written out the components of the vectors ^ / 0 ) , ^ ( 1 ) are by (2.6), 
(5.3) 

(5.4) ^ = sja(x, I). 
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(5.5) f$ = M?(l)(sra(x, I) J \ , ( f , l)qey(t)sjy& l)dl 

spa(x, I) J sr/S(£, l)qfr(Ç)sjy(Ç, l)d£j . 

T h e series for the spectral measure (5.1) involves the quant i t ies Mjk, sja, 
and qap(x). In our main theorem, which follows, we shall prove convergence 
of the series (5.1) under assumptions involving these quant i t ies : 

T H E O R E M 7. Let the matrix differential operator L0 and the matrix multiplica­
tion operator q be such that for a fixed finite interval A = [a/3] : 

J»oo nx 

|A f* (X) | 2 | ^ (x ,X) | 2 | g (x ) | \st(è,\)\t\q^)\didx<y,i\Mlt\<Ku 

7, k = 1, . . . , n 

J» /»œ I nx I 

\Mik(\)\2\Sj(x, X) | 2 |g(x) | (sfu)dZ\ 
„ , „_, A «/ 0 I «/ 0 I 

J» / »co I / * c o I 

|M'*(X)|2 |s*(*, X)|2 |g(x) | (5, • « ) # 

(vi) 

2 

dx d/ < P i I M 

dxdl < P i l b l l 2 

j , k = 1, . . . , n 
where 

\sj\2 = Sj . Sj , \q\ = m a x X ) |<ZIYCXO|2> A = / + i<5, / Ç A, 0 < <5 < <50. 
/3 7 

77&ew for |e| < (2n2rjy)~l the operator L€ = L 0 + eg determines a self-adjoint 
operator He and the corresponding spectral measure Ee(A') is analytic in e, 
A' Ç A. 

Proof. By definition the differential operator L 0 determines a self-adjoint 
operator i7°. Since q is bounded He = H° -{- eq is a self-adjoint operator and 
L*u = H*u, u e T)(H°). 

We shall first carry out the proof t h a t the spectral measure Ee(A') corre­
sponding to He is analyt ic in e under the addit ional assumptions t ha t the 
columns of the matr ix qap* are vectors in 2)0o and t h a t the endpoints of the 
interval A' are points of cont inui ty of the spectral measure .Ee(A'). 

By (2.6) and Minkowski 's inequali ty 

(5.6) I \qlp(x)Gpy(x, £, A)g^(£) |2d£ dx 
•/ 0 v 0 

poo r*x 
< \Mlk(\)s^(x, \)qUx)Sl:y(t, \)q\s(l;)\

2dtdx 
*J o «^ o 

J»oo f*co 

\M3'k(\)s^(x, \)qlfi(x)sjy(t X)qUa)\2d!t dx 
0 *J x 

+ (l) { JoV'TW2M Jj^l2l«|^ & }2)2. 
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Inequality (v) and (5.6) lead to 

I X \qlfifrQyi\2d£ dx < 2n4rj2y2. 
„_,„, 0 "0 a,8 

Since qa^G^qyè is the kernel of the operator <^@°(X)g^ it follows from (5.7) 
that assumption (ii) holds with KQ = 2n2r)y. The kernel qa^G^y° of the operator 
q*®°(\) is a Carleman kernel since G° is a Carleman kernel and q* is bounded. 
Again by (2.6) and Minkowski's inequality 

2 

dx dl 

2 

dx dl 

dx dl 

(5.8) f ||2*®°(X)«||*<K = f f " Z r<lUx)Gl(x,t,\)uy(m 
*/ A «^ A *^ 0 a I «^ 0 

= Z f f \Mi!cqUx)(sAx) f JftttKtt)^ 
a «/ A «^ 0 I \ «^ 0 

< z ( z {r f°°î Ti(ẑ i2 fw^r^^r 
V. «/ A v o I «/ x 

Inequality (vi) and (5.8) imply 

(5.9) i ta f | |g*®°(X)w||2dZ<8»Vi|kl |2 . 
«_> 0+ t / A 

Inequality (5.9) implies that assumption (iv) of § 2 holds with PQ = Sn^rjPi. 
By (v) the elements of the characteristic matrix \Mjlc(l + iS)\ are uniformly 
bounded j , k — 1, . . . , n, l £ A, 0 < ô < <50. Since \Mjk\ are uniformly bounded 
and since Sj(x, X) are entire functions of X and the columns of the matrix 
qap* are vectors in 3)0o, it follows that 

(5.10) \qU(x)Gpy(pc, £, X ) | < Cafi(x)Dpy(£) 

where 

J»co 

Z |C/3(x)|2^X < co 
0 a,p 

for some functions Cap(x), Da${£). This shows that assumption (hi) of § 2 
holds. Since the assumptions (ii), (iii), (iv) hold, the conclusion of the theorem 
follows from Theorem 5. 

The theorem is extended to the case where the columns of the matrix qap* 
are not in 350o by a limiting argument. Let (<?&*)a/3 be a sequence of matrices 
whose columns are vectors in 330o with the property that 

I kill < l^ll.iMiffî-s*!! = o. 
&Hco 

By what has been proved above the operator Lb
e = L0 + eqb determines a 
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self-adjoint operator Hb
l = H° + «2s with analytic spectral measure Eb'{A'). 

Also for |e| < K<rl, K0 = 2n2r,y, 

(5.11) (El(A')u,v) = Ê e\EÏP)(A')u,v) 
0 

where 

(5.12) (EiP)(Af)u,v) = lim -- f (3{@\g6®V}tt,»)<«. 

(5.13) | | £ i ' ) ( A ' ) | | < - P o K r 1 , i ' > l . 

Let @&'(X) be the resolvent of H s
e . The resolvents Ws

f(X), ©*(X) are repre­
sented by the series E 0 ° ° ( - «)"®°fe®0)% E 0

C ° ( - É ) ' ® ' 1 ^ ® 0 ) 1 for |e| < K<r\ 
X = / + id, I € A, 0 < S < «(e), by Theorem 3. 

Given e, |e| < ifo -1, by assumption (ii) for some h(t) v > 3, 

(5.14) ||(®°(ff,®0)' - ®°(g®°)')w|l 

<ll«t - 2e||(2)|l®0||3||<7e!|3(Xo + n)"-3[2(K0 + U) + (v- 2)| |g i | |2l!®°|!]| |«| | 

for X = / + id, I 6 A, 0 < ô < ôi(e) < 5(e). From (5.14) it follows that 

oo 

E (-e)'(®°(<Z»®V (5.15) lim ||(®Î(X) - ®*(X))«|| = lim 
ft-^oo 6—; co 

®0(<z@°)> = 0. 

This shows the resolvent @&€(X) converges strongly to the resolvent @€(X), 
b —» oo. Applying a theorem of Rellich strong convergence of ©^(X) to ©C(X) 
implies that the bilinear form (Et

f(Ar)u, v) converges to (Ee(A')u, v), b —> oo. 
On the other hand the right side of (5.12) converges to the bounded bilinear 
form 

(5.16) lim - ( ,(S{®\q®°Y}u,v)dL 
5^0+ TT J A 

The bilinear form (5.16) determines a bounded operator E(,)(A') and by 
(5.13) ||£<">(A')|| < 1/TP0K0'-\ Since 

lim (Et(A')u,v) = (E\A')u,v), 
c-ïœ 

formula (5.11) implies 
CO 

(5.17) (E\A')u,v) = Z e'(EM(A')u,v). 
0 

Therefore Ee{Ar) is analytic in e, |e| < i£0
_1. 

The restriction that the endpoints of the interval A' are points of continuity 
of the spectral measure Ee(A') is removed by observing that, by the definition 

https://doi.org/10.4153/CJM-1962-028-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-028-7


SYSTEMS OF ORDINARY DIFFERENTIAL OPERATORS 3 7 3 

of Eiv)(A') the series on the right side of (5.17) varies continuously with the 
endpoints of the interval A'. Therefore every point of the interval A is a 
point of continuity of the spectral measure Ee(Af). 

COROLLARY. / / the operators L0, q satisfy the inequalities (v), (vi) and if 
g(l) is analytic on the interval A then for |e| < (2rin2y)~l the integral J\>g(l)d 
(Ei€u,v) is analytic in e and satisfies the equations (4.19), (4.20). 

The corollary is a direct consequence of Theorem 6. 
The remainder of this section is devoted to noting some weaker assumptions 

under which the conclusions of Theorem 7 hold. Detailed proofs will be 
omitted. First the conclusion of Theorem 7 holds if inequalities (v), (vi) are 
replaced by the inequalities: 

(v)' ïïm r\Mik(l + iô)\2\sj(xJ)\2\q(x)\ fV*(U)H<Z (*)!#<& < y\ 
8^0+< 

\Mj\\)\ <KU j,k=l,...,n 

(vi)' lim f r | J 0 * ( / + tS)|s|ï,(*,Z)|2|g(x)| f\sk-u)dt 

J» / » co I / » co 

\Mik(l + iô)\2\sk(x,l)\2\q(x)\\ (sj-u)dH 

0^0+ 

Î 

dxdl < P i | M | 2 

2 

dx dl < Pillwl 

where Mjk, Sj are any functions with the property that Sj(x, X) are analytic 
in X, X = / + id, l G A, 0 < ô < ô0, and 

O * . £» x) = Msk(\)sja(x, X)^(£, X), x > £, 

GH$(X, f, X) = Mj\\)ska(x, \)sjfi(it X), £ > x. 

The method for proving this is to introduce an approximate Greens' function 
G° defined by 

(~ 1Q, *o , t . x _ / ^ ( X ^ x , /)3^(£, /), x > $ 

Since the functions Sj (x, X) are analytic in X, X = / + iô, l Ç A, 0 < (5 < <5o 
we have 

(5.19) |G^(x, f, X) - G^(x, & X ) | < Mo 

where ikT may depend on x, £ but is independent of 5. Let ®°(X) be the integral 
operator with kernel G«^°(x, £, X). The conclusion of Theorem 7 can now be 
obtained under the assumptions (v)', (vi)' by repeating the argument of 
Theorem 5 and Theorem 7 with ®°(X) replaced by ®°Q0. using (5.19) and 
the assumption that the limit M+ik(l) exists. 
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Theorem 7 may also be extended to the case where q is an unbounded 
matrix multiplication operator if the inequality (v) (or (v)') is replaced by 
the stronger inequalities 

\\Mjk(l + id)\<Kh / Ç A , 0 < 5 < do 

< v > " \ r 2 
I \SJ(X, l)\ \q(x)\ldx < Yi, i = 1, 2. 

I Jo 
where j , k = 1, . . . , n. The argument, which will be omitted here, consists 
in approximating q with a matrix operator qb with the property that the 
columns of the matrix qa^ are vectors in 3)oo. (The argument is essentially 
the same as that given for the scalar case in (3, p. 321).) 

6. Approximate weak solutions of the vibration equation. Let L0 

be a matrix differential operator and let g be a matrix multiplication operator 
satisfying the same conditions as in § 5, and let H° be the self-adjoint operator 
determined by LQ. The results of the earlier sections concerning analyticity 
of the spectral measure Ee(A') corresponding to the operator Lc = L0 + eq 
are directly applicable to the problem of finding weak series solutions of the 
vibration equation (1.2). In addition to the earlier assumptions it will be 
assumed that the differential operator L0 is positive.* Furthermore it will be 
assumed that the vectors fix), P(x, t) are in the domain of H°, 0 < t < T, 
and that | |P(x, t)\\ is an integrable function of t, 0 < / < T. 

The solution of the wave equation (1.2) may be written formally using 
the operator calculus as 

(6.D U{t) = coS( VH< t)f + J*«nL^M^û P{T)dT. 

The definition of the operators 

. /zje A sin( \/He t) 
cos( VH t), — ^ 

appearing in (6.1) is 

tao\ ( /TJ* A f°° n ̂ zre s m ( VHe t) fœsin( y/l t) e 

(6.2) cos( \/H t) = I cos x/ltdEh 777 = I -,- aEx. 
Jo \/ri Jo Vl 

Formula (6.1) is known to represent a weak solution of equation (1.2) under 
the above assumptions regarding/ and Pit). The proof is a direct consequence 
of (6.2) and the definition of weak solution. (For a definition of weak solution 
and discussion of when weak solutions are regular solutions cf. (5).) 

We shall consider approximate solutions of (1.2) in the form 

(6.3) «A(0 = (cos VI tdE\f+ ( (^^^-l~^-^-dE\Pir)dr 
J A Jo J A v / 

*Here it is meant that L0 has a positive spectrum. Criteria for ordinary scalar differential 
operators to be positive have been given by Heinz (6). 
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where A = [a, fi] is a finite interval 0 < a < f3 < oo. The function uA (t) will 
be called a finite wave packet. The finite wave packet uA(t) approximates 
the solution u(t) in the weak sense as the size of the interval A increases, 
a —> 0, 13 —-> oo, by the definition of uA(f) and u{t). (6.3) may also be written 

(6.4) uA(t) = cos(V^€ 0/A + SiSJ^^é^~P^r)dr 

where fA = jAdEf, PA = JAdEiP(r). It is apparent by (6.4) that the finite 
wave packet uA(t) represents an exact (weak) solution of the vibration equa­
tion (1.2) in the case/A = / and PA = P. That is, when the initial function 
/ and the forcing function P(f) have a spectral representation which is a 
superposition of "waves" with frequencies v in the interval -\Za/2w < v < 
V/V27T. (In the case that Lo = d2/dx2 and q = 0 formula (6.1) reduces to 
the classical formula for the wave packet for one-dimensional wave motion 
(4, p. 135).) 

The object of this section is to obtain the perturbation series for the finite 
wave packet uA(i) and prove its convergence. The series is obtained at once 
from (4.3), (6.3): 

(6.5) «A(0 = E *'ul'\t) 
0 

where 

(6.6) »w(0 = fco8V/A*E?>/+ f f — ^VKt-r)dErp{T)dT_ 
*/ A " 0 «/ A V ' 

Convergence of the series for the finite wave packet uA (t) is dealt with next : 

THEOREM 8. If the differential operator L0 and the matrix multiplication 
operator q satisfy the inequalities (v), (vi) (or (v)', (vi)') for some finite real 
positive interval A = [a, 0] 0 < a < fi < oo then for \e\ < (2n27}y)~1 the finite 
wave packet uA(t) may be expanded into a convergent perturbation series. 

Proof. By the corollary to Theorem 7 for all v £ T, 0 < r < t < T, 

(6.7) f cos VI td(E\f, v) = £ € f cos V* « ( S i 0 / , ») 
*/ A «'A 

(6.8) ff**lM=^d(E\P,v) = Z <'Ji2^£=^diE<?P,v) 

since the functions cos V^> (sin y/lt)/y/l are analytic for / Ç A. Also if 
i£o = 2n2yrj, then 

(6.9) fcos V/^CM0/,») 
I t/A 

(6.10) | J / 1 " Vl^ ~ ° rf(El"f(r),,) 

< ^ - ' P o l l / H i M I, * > 1 . 

<-2Xr 1 i>o| |P(T) | | | | i> | l , v>l. 
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The series (6.7), (6.8) are absolutely convergent for |e| < K0~
l by (6.9), 

(6.10). Also the series (6.8) may be integrated term wise with respect to r 
by (6.10) since | |P(r) | | is integrable in 0 < r < T, and 

(6.11) fJ^-^f^d{E\P{r),v)dr 

The conclusion of the theorem follows from (6.7), (6.11). 

7. An example. The theory leads to results concerning fourth order dif­
ferential operators which are analogous to results which are known to hold 
for second order differential operators. Here we consider the (2, 2) matrix 
differential operator 

(7.1) L = L0 + eq = [ ) —± + el * ; 1 
\0 1/ dx \q2i(x) qii{x)/ 

where the matrix q is the square of a symmetric matrix q* whose elements 
qa8*(x) are piecewise continuous 0 < x < °°. The boundary conditions which 
will be associated with Z,0 are u(0) = u(2)(0) = 0. (These correspond to 
[<l>j, M](0) = 0,7 = 1, 2 where 

0i = (x,x), 02 = \3T » 3 j / 

in the bracket notation.) 
The Greens' function G°(x, £, X) corresponding to the one-dimensional 

eigenvalue problem (d4/dx*)u — Xu = 0, w(0) = u(2) (0) = 0, is known to be 

(7.2) G°(*f {, X) = < 
-3 (e sin wç — e sinh ze/£), x > £ 

iwx ~ : ~ „„.>- „~~wx 

2w6 " - " • " " 

3 (? sin zwc — e sinh w ) , J > x 
^2wa 

where w = y/r eiel\ X = rel\ 0 < 0 < 2TT, (cf. 14, p. 279). The Greens' func­
tion Gap°(x, £, X) corresponding to the matrix eigenvalue problem L0u = \u, 
u(0) = uW(0) = 0, is seen to be GafP{x, £, X) = ÔapG°(x, J,X), a, /3 = 1, 2 
where G° is given by (7.2). Using this explicit Greens' function one may 
calculate the explicit terms of the perturbation series for the spectral measure 
and the finite wave packet corresponding to the operator (7.1). Concerning 
convergence of these perturbation series we have: 

THEOREM 9. Let Lo be the matrix differential operator 

(Lou)a = 8ap —4 % 

and let q be a positive matrix which is the square of the matrix q* whose elements 
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qap
2 (oc) are piecewise continuous functions of x, 0 < x < °o y and which satisfy 

the condition 

(7.3) J' 0 0 l 

£ \qlp(x)\2dx < oo. 
o a.a 

r0 a„ 

Let A = [a, /?], 0 < a < fi < oo Z>e a fixed finite interval. Then, for sufficiently 
small e, //^ operator 

A ^ 4-

determines a self-adjoint operator H€ and the corresponding spectral measure 
E€(A') is analytic in e. ^4/s0 the finite wave packet uA(t) corresponding to the 
interval A is analytic in e. 

Proof. Define functions Sj, and Mjk by 

(7.4) 

(7.5) 

[ ~ J IWX ~ ~ — iwx ~ s —WX ~ j WX 
I 5 l a = 0\ae , 52a — Ola^ , S%a — Gla^ , Sfa — Ola^ 
| ~ 5, iwx ~ «J — izcx ~ 5 — wx ~ j wx 
U 5 a — Ô2a£ , ^6a — Û2a£ , ^7a — Q<lo& , ^8a — 02a£ • 

/ - i + i 0 0 0 0 0 0 \ 
0 0 0 0 0 0 0 0 
0 0 + 1 - 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 -i +i 0 0 
0 0 0 0 0 0 0 0 

0 0 0 + 1 - 1 

M» 
4,w6 

0 
\ 0 

0 0 
0 0 0 0 0 0 0/ 

By (7.2), (7.4), (7.5) G*0(x, £, X) = M'ksJaskp, * > £, Gap0 = M^kskasjai £ > x. 
By direct calculation one verifies that inequalities (v)', (vi)' hold for the 
values of Mjk, Sj defined by (7.4), (7.5). Since inequalities (v), (vi)' hold, 
the conclusion of the theorem follows from Theorem 7, the remarks after 
Theorem 7, and Theorem 8. 

Note that for second order scalar operators, L0 = — (d2/dx2), the con­
dition given by Moser for convergence of the series for the spectral measure 
corresponding to the operator — (d2/dx2) + zq(x) is that q(x) is piecewise 
continuous and satisfy Jo°\q(x)\dx < 00. The condition Joco^2ap\qapHx)\2d^<co 

of Theorem 9 is a generalization of the latter condition (cf. 10, p. 391). 
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