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Turbulent superstructures, i.e. large-scale flow structures in turbulent flows, play a
crucial role in many geo- and astrophysical settings. In turbulent Rayleigh–Bénard
convection, for example, horizontally extended coherent large-scale convection rolls
emerge. Currently, a detailed understanding of the interplay of small-scale turbulent
fluctuations and large-scale coherent structures is missing. Here, we investigate the
resolved kinetic energy and temperature variance budgets by applying a filtering
approach to direct numerical simulations of Rayleigh–Bénard convection at high
aspect ratio. In particular, we focus on the energy transfer rate between large-scale
flow structures and small-scale fluctuations. We show that the small scales primarily
act as a dissipation for the superstructures. However, we find that the height-dependent
energy transfer rate has a complex structure with distinct bulk and boundary layer
features. Additionally, we observe that the heat transfer between scales mainly occurs
close to the thermal boundary layer. Our results clarify the interplay of superstructures
and turbulent fluctuations and may help to guide the development of an effective
description of large-scale flow features in terms of reduced-order models.

Key words: turbulent convection

1. Introduction
Many turbulent flows in nature, for example in the atmosphere or in the interior

of stars and planets, are driven by thermal gradients, which lead to convection.
A characteristic feature of these flows is the coexistence of large-scale order and
smaller-scale fluctuations. Prominent examples are cloud streets in the atmosphere
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(Atkinson & Zhang 1996) or solar granulation (Nordlund, Stein & Asplund 2009).
Currently, little is known about the interplay of small-scale fluctuations and large-scale
order, but a detailed understanding is important for the development of reduced-order
models, e.g. in climate science, as well as in geo- and astrophysical settings. Better
understanding the coexistence of this large-scale order and turbulence in convective
flows is one motivation for the current work.

Rayleigh–Bénard convection (RBC), a confined flow between a heated bottom
plate and a cooled top plate, is an idealized system to study convection and has
been successfully employed to understand various phenomena such as pattern
formation, spatio-temporal chaos (Getling 1998; Bodenschatz, Pesch & Ahlers 2000)
and turbulence (Lohse & Xia 2010; Chillà & Schumacher 2012). Rayleigh–Bénard
convection is governed by three non-dimensional parameters, the Rayleigh number
Ra, characterizing the strength of the thermal driving, the Prandtl number Pr, which
is the ratio between kinematic viscosity and thermal diffusivity, and the aspect ratio
Γ of the system’s width to its height. Above the onset of convection, at which
the heat transfer changes from conduction to convection, a rich dynamics can be
observed (see, e.g. Bodenschatz et al. (2000)). Close to onset, the flow organizes
into regular convection rolls. As the Rayleigh number is increased, the flow becomes
increasingly complex. At moderate Rayleigh numbers in high aspect ratio RBC, the
dynamics of the convection rolls becomes chaotic, exhibiting spiral defect chaos
(SDC) (see, e.g. Morris et al. (1993) for an early study, or Bodenschatz et al. (2000)
and references therein for an overview). At much higher Rayleigh numbers, the
flow becomes turbulent and features prominent smaller-scale flow structures such
as thermal plumes (Siggia 1994; Grossmann & Lohse 2004; Lohse & Xia 2010;
Schumacher et al. 2018).

As visualized in figure 1, even in the turbulent regime, horizontally extended large-
scale convection rolls, so-called turbulent superstructures, have been observed in direct
numerical simulations of large aspect ratio systems (Hartlep, Tilgner & Busse 2003;
Parodi et al. 2004; Shishkina & Wagner 2006; von Hardenberg et al. 2008; Emran
& Schumacher 2015; Pandey, Scheel & Schumacher 2018; Stevens et al. 2018; Krug,
Lohse & Stevens 2019). Their large-scale structure and dynamics can be revealed, for
example, by time averaging (Emran & Schumacher 2015; Pandey et al. 2018), and
they are composed of clustered plumes (Parodi et al. 2004). The presence of the large-
scale flow has important consequences for the temperature statistics in RBC, see Lülff,
Wilczek & Friedrich (2011), Lülff et al. (2015), Stevens et al. (2018) as well as the
heat transport (Stevens et al. 2018; Fonda et al. 2019). Turbulent superstructures vary
on time scales much larger than the characteristic free-fall time (Pandey et al. 2018),
and their length scale increases with Ra (Hartlep et al. 2003; Hartlep, Tilgner & Busse
2005; Shishkina & Wagner 2006; Pandey et al. 2018; Krug et al. 2019), which is
visualized in figure 1. Additionally, they appear to have a close connection to the
boundary layer dynamics (Pandey et al. 2018; Stevens et al. 2018), e.g. the local
maxima and minima of the temperature in the midplane coincide with the position
of hot and cold plume ridges in the boundary layer.

For moderate Rayleigh numbers, the superstructure dynamics is reminiscent of
SDC in the weakly nonlinear regime (Emran & Schumacher 2015). This points to
the possibility of establishing connections to flows at much lower Rayleigh number,
which are theoretically tractable by methods such as linear stability analysis and
order parameter equations (Manneville 1990; Bodenschatz et al. 2000). This is
of considerable interest because, so far, only a few attempts exist to theoretically
understand these turbulent large-scale patterns. Elperin et al. (2002, 2006a,b) found
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FIGURE 1. Temperature fields in the midplane for two different Rayleigh numbers with
Pr= 1 and aspect ratio 24. Red indicates hot rising fluid, and blue cold descending fluid.
(a) Close to onset in the weakly nonlinear regime, regular patterns with wavelength λs
emerge. (b) Connected large-scale structures are present in the turbulent regime as well,
and their length scale λs is increased compared to onset. The small-scale fluctuations can
be removed with a filter of width ls, which preserves the large-scale rolls. For similar
visualizations of turbulent superstructures, see also Hartlep et al. (2005), Stevens et al.
(2018) and Pandey et al. (2018).

large-scale instabilities based on a mean field theory combined with a turbulence
closure. Ibbeken, Green & Wilczek (2019) studied the effect of small-scale fluctuations
on large-scale patterns in a generalized Swift–Hohenberg model and showed that the
fluctuations lead to an increased wavelength of the large-scale patterns. Still, the
precise mechanism of the formation of the large-scale pattern and the selection of
their length scale is not fully understood in turbulent RBC, and the emergence of
large-scale rolls in the turbulent regime leaves many open questions. In particular,
the interplay between superstructures and small-scale turbulence is currently largely
unexplored. Thus, the main aim of this article is to clarify the impact of small-scale
fluctuations and to characterize the energy budget of the large-scale convection
rolls. With a focus on superstructures, this complements previous studies on the
scale-resolved energy and temperature variance budgets of convective flows: Togni,
Cimarelli & De Angelis (2015) focused on the impact of thermal plumes and the scale
dependence at different heights, Kimmel & Domaradzki (2000) and Togni, Cimarelli
& De Angelis (2017, 2019) aimed at improving large eddy simulations, Valori et al.
(2020) focused on small scales and Faranda et al. (2018) studied atmospheric flows.

Here, we investigate RBC by means of direct numerical simulations (DNS) in
large aspect ratio systems from the weakly nonlinear regime close to onset up to the
turbulent regime covering a Rayleigh number range from Ra = 104 to Ra = 108 at
Pr = 1. To separate the scales, we apply a filtering approach (Germano 1992) and
isolate the superstructure dynamics. We then determine the energy and temperature
variance budgets of the superstructures and the corresponding transfer rates between
large-scale flow structures and small-scale fluctuations.

The remainder of the article is structured as follows. We first present the relevant
theoretical and numerical background in § 2. In § 3, the results are presented. Here,
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we find that at the scale of the superstructures the time- and volume-averaged
resolved energy input into the large scales is primarily balanced by the energy
transfer rate to small scales instead of the direct dissipation. To understand the role
of the boundary layers, we supplement the volume-averaged analysis with a study
of the height profiles of the different contributions to the resolved energy budget
obtained from horizontal and time averages. We find that these profiles exhibit a
complex near-wall structure and interpret the form of the profiles in terms of the
plume dynamics. We complement the analysis of the resolved energy budget with
that of the resolved temperature variance budget. This reveals that the averaged heat
transfer rate is exceeded by the averaged direct thermal dissipation for all Rayleigh
numbers, a qualitatively different behaviour than that of the energy transfer rate. Also,
a substantial part of the heat transfer rate is limited to the boundary layers. Finally,
we conclude in § 4.

2. Theoretical and numerical background
To begin with, we introduce the underlying equations and methods. We present the

filtering approach as well as the resolved energy and temperature variance budgets
used to study the transfer rates between scales. We then describe the numerical data
used for our analysis.

2.1. Governing equations
The RBC is governed by the Oberbeck–Boussinesq equations (OBEs), which describe
the evolution of the velocity u and the temperature fluctuation θ , i.e. the deviation
from the mean temperature. In this set-up, it is assumed that the density varies linearly
with temperature with only small variations, such that the fluid can still be considered
as incompressible (Chillà & Schumacher 2012). Explicitly, the non-dimensionalized,
three-dimensional equations are

∇ · u= 0, (2.1a)

∂tu+ u · ∇u=−∇p∗ +

√
Pr
Ra
∇

2u+ θ ẑ, (2.1b)

∂tθ + u · ∇θ =
1

√
RaPr

∇
2θ (2.1c)

in which p∗ is the kinematic pressure including gravity, which points in the negative
z-direction. Here, ẑ is the unit vector in the vertical direction. The equations are
non-dimensionalized with the temperature difference between top and bottom ∆, the
free-fall time tf =

√
H/(αg∆) and the velocity uf = H/tf , where H is the height of

the system. The system is subject to two control parameters, the Prandtl number
Pr = ν/κ , which is the ratio of kinematic viscosity to thermal diffusivity, and the
Rayleigh number Ra = gα1H3/(νκ), the ratio between the strength of the thermal
driving and damping by dissipation. Here, g is the acceleration due to gravity and α
the thermal expansion coefficient. These equations are supplemented with Dirichlet
boundary conditions for the temperature as well as no-slip boundary conditions for
the velocity at the top and bottom wall, and periodic boundary conditions at the side
walls. Strong thermal driving leads to a turbulent convective flow at sufficiently high
Ra far above the onset of convection.

In a statistically stationary state, exact relations between forcing and dissipation can
be derived from the kinetic energy and temperature variance budgets (Shraiman &
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Siggia 1990)

〈ε〉 = 〈uzθ〉 =
1

√
RaPr

(Nu− 1) , where ε=
1
2

√
Pr
Ra

(∇u+ (∇u)ᵀ)2 , (2.2)

and

〈χ〉 =
1

√
RaPr

Nu, where χ =
1

√
RaPr

(∇θ)2, (2.3)

i.e. the averaged energy input 〈uzθ〉 is balanced by the averaged dissipation 〈ε〉, and
the dimensionless heat transport Nu =

√
RaPr 〈uzθ〉 + 1 is balanced by the thermal

dissipation 〈χ〉. Here, 〈·〉 denotes an average over time and volume, which we
simply refer to as volume averaged and ᵀ stands for transpose. For more details,
see also Siggia (1994), Chillà & Schumacher (2012) and Ching (2014). These
statements for the averaged relation between forcing and dissipation are generalized
to scale-dependent budgets in the following section.

2.2. Filtering
In order to separate small-scale fluctuations and large-scale structures, we use
low-pass filtering. In this study, we only filter horizontally to extract the horizontally
extended superstructures. Compared to three-dimensional filtering, this approach
avoids complications in the interpretation of results introduced by the inhomogeneity
in the vertical direction, especially near the boundaries (Sagaut 2006). Note also that,
besides a few exceptions, e.g. Fodor, Mellado & Wilczek (2019), this approach
is widely used in the study of wall-bounded flows, see, e.g. Cimarelli & De
Angelis (2011), Togni et al. (2017, 2019), Bauer, von Kameke & Wagner (2019)
and Valori et al. (2020). The filtering operator is a locally weighted average given
by a convolution with a filter kernel Gl,

ul(x)=Gl ∗ u=
1
l2

∫ x+l/2

x−l/2

∫ y+l/2

y−l/2
u(x′, y′, z) dx′ dy′. (2.4)

For our study, we choose a standard two-dimensional box filter. The large-scale
velocity ul encodes the velocity on scales larger than the scale l in the horizontal
directions. The large-scale temperature θ l is defined analogously. In the following, we
refer to scales below the filter width as unresolved and scales above it as resolved or
large scale. The evolution of the resolved scales is given by filtering (2.1):

∇ · ul = 0, (2.5a)

∂tul + ul · ∇ul =−∇p∗l +

√
Pr
Ra
∇

2ul + θ lẑ−∇ · τl, (2.5b)

∂tθ l + ul · ∇θ l =
1

√
RaPr

∇
2θ l −∇ · γl, (2.5c)

in which
τl = (uu)l − ulul (2.6)

and
γl = (uθ)l − ulθ l. (2.7)
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887 A21-6 G. Green, D. G. Vlaykov, J. P. Mellado and M. Wilczek

Here additional terms involving τl and γl appear due to the nonlinearity of the OBEs.
The turbulent stress tensor τl and turbulent heat flux γl effectively describe the impact
of the unresolved scales on the resolved ones.

A few words on the limiting cases l→ 0 and l→∞ are in order. For any field q:

lim
l→0

Gl ∗ q= q, (2.8)

see, e.g. Sagaut (2006). On the other hand, for l→∞ the filtering is essentially a
horizontal average, which we shall denote by 〈·〉A, i.e.

lim
l→∞

Gl ∗ q= 〈q〉A . (2.9)

This means that the filtering procedure applied in this work smoothly interpolates
between the fully resolved and the height-dependent, horizontally averaged fields.
Using the above definitions, we derive the resolved energy budget in the next
section. In particular, we focus on the resolved budgets at the scale of the turbulent
superstructures.

2.3. Resolved energy budget
To derive the resolved energy budget, (2.5b) is multiplied with ul, cf. Sagaut (2006),
Eyink (1995, 2007), Eyink & Aluie (2009), Aluie & Eyink (2009) and Togni et al.
(2019). We obtain

∂tel +∇ · Jl =−εl +Ql −Πl, (2.10)
and the individual terms are explicitly given by

εl =
1
2

√
Pr
Ra

(∇ul + (∇ul)
ᵀ)

2
, (2.11)

Ql = θ lul · ẑ, (2.12)
Πl =− (∇ul) : τl (2.13)

and

Jl =
(
el + p∗l

)
ul −

√
Pr
Ra
∇el + τl · ul −

√
Pr
Ra

ul · ∇ul. (2.14)

Here, el = u2
l /2 is the resolved kinetic energy, εl denotes the direct large-scale

dissipation and Ql is the energy input rate into the resolved scales by thermal driving.
Compared to the unfiltered energy budget, an additional contribution Πl appears.
It originates from the nonlinear term in the momentum equation and captures the
transfer rate of kinetic energy between scales. It can act, depending on its sign, as a
sink or source for the resolved scales. In the following, we refer to Πl as the energy
transfer. The evolution equation also contains a large-scale spatial flux term Jl, which
redistributes energy in space. As we focus on the energy transfer between scales in
this study, we refrain from characterizing the individual contributions to the spatial
flux. For a detailed study of the corresponding unfiltered spatial flux terms, we refer
to Petschel et al. (2015).

In a nutshell, equation (2.10) describes the change of the resolved energy el by
spatial redistribution, direct dissipation, large-scale thermal driving and energy transfer
between scales. Complementary to spectral analysis techniques (see, e.g. Domaradzki
et al. (1994), Lohse & Xia (2010), Verma, Kumar & Pandey (2017) and Verma
(2018)), this approach allows the spatially resolved study of the energy transfer
between superstructures and small-scale fluctuations. In the following, spatial and
temporal averages of the resolved energy balance are considered.
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Energy budget of superstructures in RBC 887 A21-7

2.3.1. Averaged resolved energy budget
To derive a scale-resolved generalization of (2.2), we average (2.10) over space

and time. In a statistically stationary state, 〈∂tel〉 vanishes. The averaged flux 〈∇ · Jl〉

vanishes as well because of the no-slip boundary conditions for the velocity. The
resulting balance

〈Ql〉 = 〈εl〉 + 〈Πl〉 (2.15)
shows that, at each scale, the energy input is balanced by the direct dissipation and
the energy transfer between scales. Note that the latter is not present in the unfiltered
energy balance (2.2). As presented in appendix A, (2.15) can also be related to the
Nusselt number.

Because the energy dissipation primarily occurs at the smallest scales in three-
dimensional turbulence (Pope 2000), the introduced energy has to be transferred
to the dissipative scales for a statistically stationary state to exist. Since RBC is
forced on all scales by buoyancy, including the largest scales, the volume-averaged
energy transfer above the dissipative range is a priori expected to be down-scale.
Accordingly, the volume-averaged energy transfer has to act as a sink in the resolved
energy budget.

To understand the scale dependence of the different contributions, we first determine
the two limits l→ 0 and l→∞, for which we make use of (2.8) and (2.9). For l→ 0,
Πl vanishes and

lim
l→0
〈Ql〉 − 〈εl〉 − 〈Πl〉 = 〈Q〉 − 〈ε〉 = 0, (2.16)

i.e. the unfiltered balance is recovered with Q= uzθ . In the limit l→∞, the filtering
is equivalent to a horizontal average. In an infinitely extended domain, 〈u〉A = 0, and
therefore all terms in the budget vanish individually

lim
l→∞
〈Ql〉 = lim

l→∞
〈εl〉 = lim

l→∞
〈Πl〉 = 0. (2.17)

The detailed scale dependence and the balance between the different terms at
the length scale corresponding to superstructures are investigated numerically and
presented in subsequent sections.

To complete this section, we present the horizontally and time-averaged resolved
kinetic energy budget

〈∇ · Jl〉A =− 〈εl〉A − 〈Πl〉A + 〈Ql〉A , (2.18)

in which 〈·〉A from now on describes a horizontal and time average. This will be used
to determine the role of the boundary layers and to refine the picture based on the
volume average. Compared to the volume-averaged resolved energy budget, the spatial
flux term 〈∇ · Jl〉A does not vanish. The limiting behaviour is very similar to that of
the volume-averaged balance. As l→0, the energy transfer vanishes, whereas the other
terms recover the unfiltered balance

〈∇ · J〉A =− 〈ε〉A + 〈Q〉A , (2.19)

where

J= (e+ p∗) u−
√

Pr
Ra
∇e−

√
Pr
Ra

u · ∇u. (2.20)

As l→∞, all terms vanish individually for the same reason as above.
In the work of Petschel et al. (2015), the unfiltered budget (2.19) has been studied.

It was shown that most of the energy is typically dissipated near the wall and energy
input occurs in the bulk, from where it is transported to the wall. The generalization
to a resolved energy budget allows us to investigate these processes as a function of
scale, and in particular at the scale of the turbulent superstructures.
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887 A21-8 G. Green, D. G. Vlaykov, J. P. Mellado and M. Wilczek

2.4. Resolved temperature variance budget
To complete the theoretical background, we consider the budget of the resolved
temperature variance eθl = θ

2
l /2:

∂teθl +∇ · J
θ
l =−χl −Π

θ
l , (2.21)

where the individual terms are given by

χl =
1

√
RaPr

(
∇θ l
)2
, (2.22)

Jθl = uleθl −
1

√
RaPr

∇eθl + γlθ l (2.23)

and
Π θ

l =−γl · ∇θ l. (2.24)

Equation (2.22) describes the direct thermal dissipation of the resolved scales, (2.23)
the spatial redistribution of temperature variance and (2.24) the transfer rate between
resolved and unresolved scales. We will refer to the latter as the heat transfer in the
following.

2.4.1. Averaged resolved temperature variance budget
As before, we consider the time- and volume-averaged budget

〈χl〉 +
〈
Π θ

l

〉
=

1
√

RaPr
Nu= 〈χ〉 , (2.25)

see appendix B for the derivation. This budget shows that the total heat transport is
balanced by the direct thermal dissipation and the heat transfer between scales.
Because 〈χl〉 6 〈χ〉, the averaged heat transfer between scales is down-scale,
i.e.

〈
Π θ

l

〉
> 0. This is consistent with classical theories, in which a direct temperature

variance cascade is proposed (Lohse & Xia 2010). The horizontally averaged budget
is given by 〈

∇ · Jθl
〉

A =−
〈χl〉A −

〈
Π θ

l

〉
A , (2.26)

which shows that the spatial redistribution of the resolved temperature variance is
balanced by the direct thermal dissipation and the heat transfer between scales.

2.5. Numerical simulations
The OBEs (2.1) are solved numerically, using a compact sixth-order finite-difference
scheme in space and a fourth-order Runge–Kutta scheme for time stepping (Lomax,
Pulliam & Zingg 2001). The grid is non-uniform in the vertical direction for Ra >
5 × 104, with monotonically decreasing grid spacing towards the wall. The pressure
equation is solved with a factorization of the Fourier-transformed Poisson equation to
satisfy the solenoidal constraint (Mellado & Ansorge 2012). The filter used in our
analysis is implemented using a trapezoidal rule. The code is also freely available at
https://github.com/turbulencia/tlab.

We study the Rayleigh number regime from Ra ≈ 104 up to Ra ≈ 108 in a large
aspect ratio domain with Γ ≈ 24 for Pr= 1. The full simulation details are provided
in table 1. The Nusselt numbers shown are calculated based on the thermal driving
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Energy budget of superstructures in RBC 887 A21-9

Input Output Time scales
Ra NxNyNz Nu Nuε Nuχ Re λs ls Tt τ ts

1.03× 104 4482
× 64 2.26 2.26 2.26 17.8 4.8 2.4 1954 1303 91

5.01× 104 7682
× 96 3.55 3.55 3.55 47.3 4.8 2.4 1092 728 76

1.02× 105 12802
× 140 4.36 4.37 4.36 69.2 4.8 2.4 701 467 74

1.03× 106 25602
× 208 8.37 8.38 8.37 222.6 4.8 2.4 752 451 73

1.07× 107 32002
× 256 16.04 16.06 16.04 685.9 6.0 3.0 1151 765 90

1.04× 108 72002
× 416 30.95 30.99 30.94 2004.2 6.0 3.0 362 196 96

TABLE 1. Input and reference output parameters of the simulations with Pr = 1. The
number of grid points in the vertical direction is Nz and in the horizontal directions Nx and
Ny. Nu,Nuχ and Nuε are Nusselt numbers calculated based on the thermal driving, thermal

and viscous dissipation, respectively. Here, the Reynolds number Re =
√〈

u2
〉

Ra/Pr is
based on the root-mean-square velocity. Additionally, λs characterizes the wavelength of
the turbulent superstructures, which is determined from the cross-spectrum of uz and θ ,
and ls represents the filter width to separate the superstructures from turbulent fluctuations.
Lastly, Tt is the total runtime, τ the time window over which the averages are taken
after the initial transient and ts the characteristic time scale of the evolution of the
superstructures. We adopt the definition of ts from Pandey et al. (2018) but base it on λs.

Nu=
√

RaPr 〈uzθ〉 + 1, the viscous dissipation Nuε =
√

RaPr 〈ε〉 + 1 and the thermal
dissipation Nuχ =

√
RaPr 〈χ〉. Their mutual consistency serves as a resolution check

of the simulations (Verzicco & Camussi 2003). For our simulations, the different
Nusselt numbers agree to 99 % or better. Furthermore, the resolution requirements
have been estimated a priori as proposed in Shishkina et al. (2010), and the relevant
scale, i.e. the Kolmogorov scale η for Pr = 1, has been compared to the grid
resolution a posteriori. In all cases we find that the maximum grid step h is smaller
than the Kolmogorov scale η, and that the vertical grid spacing 1z is smaller than
the height-dependent Kolmogorov scale based on 〈ε〉A at the corresponding height.
Together with the consistency of the Nusselt number, this shows that our simulations
are sufficiently resolved. Further resolution studies can be found in Mellado (2012).
As a test for stationarity, we computed all terms in (2.15) and (2.25) individually. We
find from our simulations that the left-hand sides agree with the right-hand sides to
99 % for all considered filter widths.

3. Results

In the following, we present numerical results to examine the scale dependence of
the resolved energy budget as well as the resolved temperature variance budget. We
focus on the scale of the superstructures, for which we first have to characterize their
scale.

3.1. Determining the superstructure scale
In order to extract the length scale of the superstructures, we compute azimuthally
and time-averaged spectra in horizontal planes (cf. Hartlep et al. (2003), Pandey et al.
(2018) and Stevens et al. (2018)). Specifically, we choose the azimuthally averaged
cross-spectrum Eθuz(k) of the vertical velocity and the temperature in the midplane
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FIGURE 2. Cross-spectrum of the temperature and the vertical velocity in the midplane
for Ra = 1.07 × 107. The maximum wavenumber, which characterizes the large-scale
rolls, is highlighted by the dashed line. The filter width (dash-dotted line) to separate
superstructures and small-scale fluctuations is given by kls ≈ 2kλs . This choice removes
the small-scale fluctuations and preserves the large-scale hot updrafts and cold downdrafts,
which form the superstructures. The corresponding wavelengths are indicated in the
snapshot of the temperature field in the midplane in figure 1(b).

for the definition of the superstructure scale (Hartlep et al. 2003). Here, Eθuz(k) is
normalized in such a way that it integrates to 〈Q〉A (z= 0.5). A representative example
is shown in figure 2. The peak of the spectrum characterizes the wavelength of the
superstructures λs = 2π/kλs . The corresponding length scale λs is listed in table 1 for
all simulations. The wavelength increases compared to the theoretical expectation for
onset λ0= 2.016 (Getling 1998) and is largest for the highest Rayleigh numbers. The
observed length scales are comparable with the ones obtained in previous studies of
superstructures (Hartlep et al. 2003; von Hardenberg et al. 2008; Stevens et al. 2018;
Pandey et al. 2018; Fodor et al. 2019). Since a superstructure consists of a pair of a
warm updraft and a cold downdraft, we choose the filter width ls≈ λs/2 to investigate
the energy and temperature variance budgets at the scale of the superstructure. The
values are given in table 1. We tested that small variations do not affect the outcome
significantly. With this choice the individual large-scale up- and downdrafts are
retained and the small-scale fluctuations are removed. We can then use (2.10) and
(2.21) to characterize the energetics of the large-scale convection rolls and the
associated superstructures and filter out the smaller-scale fluctuations.

Previous studies indicated that the length scales for the temperature and velocity
field differ at high Rayleigh numbers (Pandey et al. 2018; Stevens et al. 2018) when
they are determined from the peak in the corresponding spectrum. However, recently
Krug et al. (2019) studied linear coherence spectra of the vertical velocity and
temperature field to argue that superstructures of the same size exist in both fields
for Pr = 1 also at high Ra. They found that the resulting scale essentially coincides
with the peak of the cross-spectrum, which justifies the use of a single length scale
for both fields. Note also that we use a single filter scale for all heights. This can
be justified from the fact that the size of the superstructures does not noticeably vary
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Energy budget of superstructures in RBC 887 A21-11

with height and is closely connected to characteristic large scales close to the wall
(Parodi et al. 2004; von Hardenberg et al. 2008; Pandey et al. 2018; Stevens et al.
2018; Krug et al. 2019). The spectra of the temperature and the heat flux have
a second maximum at larger wavenumbers close to the wall, which characterize
smaller-scale fluctuations (Kaimal et al. 1976; Mellado, van Heerwaarden & Garcia
2016; Krug et al. 2019). For completeness, we discuss the choice of the superstructure
scale in more detail in appendix C.

3.2. Volume-averaged resolved energy budget
In this section, we study the volume-averaged resolved energy budget. We first
consider a wide range of filter widths before focusing on the specific scale of the
superstructures. We begin our discussion with the scale dependence of the stationary
resolved energy budget (2.15). The different contributions are shown in figure 3(a)
as a function of the filter width for Ra= 1.07× 107. The average energy input into
the resolved scales 〈Ql〉 and the direct dissipation 〈εl〉 decrease monotonically with
increasing l. In contrast to that, the average energy transfer 〈Πl〉 has a maximum
at intermediate scales. For all shown filter widths 〈Πl〉 > 0, i.e. the energy transfer
acts on average as an energy sink as expected for three-dimensional turbulence
(see discussion in § 2.3.1). In other words, there is a net energy transfer from the
large to the small scales.

How can we understand the functional form of 〈Πl〉? At large scales, dissipation is
comparably small and the energy transfer primarily balances the resolved thermal
driving. With decreasing filter scale the energy input through thermal driving
accumulates, which is why it increases with decreasing filter width. It is mostly
balanced by the energy transfer, which increases accordingly. When the filter scale
reaches the dissipative regime, the direct dissipation 〈εl〉 begins to dominate, and
the energy transfer starts to decay and finally vanishes at l = 0, as expected from
the analytical limits derived above. The functional form of the energy transfer at
small filter width is comparable to three-dimensional turbulence, see, e.g. Ballouz
& Ouellette (2018), Buzzicotti et al. (2018). Notably, at the superstructure scale ls,
only a small fraction, roughly 8 %, of the total energy input 〈Q〉 is injected into the
resolved scales. Out of that approximately 76 % are transferred to unresolved scales,
and only approximately 24 % are directly dissipated.

In figure 3(b), we compare
〈
Πls

〉
,
〈
Qls

〉
and

〈
εls

〉
, respectively, at the scale of

the superstructure ls for different Rayleigh numbers. The energy transfer becomes
increasingly important compared to the direct dissipation at larger Rayleigh numbers.
For Ra> 1.07× 107 it is of the same order as the energy input, hence being crucially
important for the energy budget of the turbulent superstructures. We associate the
relative increase of the energy transfer to an increase in turbulence for higher Ra.

Figures 3(c), 3(d) and 3(e) show 〈Πl〉, 〈Ql〉 and 〈εl〉 as a function of filter width.
In general, the energy transfer between scales acts as a sink and increases with Ra,
see figure 3(c). In contrast, the direct dissipation decreases, see figure 3(d), for all
considered scales. For the resolved energy input we do not observe simple trends, see
figure 3(e). It is more constrained to small scales, yet there is still a non-vanishing
energy input into the largest scales.

The scale lΠ at which 〈Πl〉 is maximal decreases with Ra, as shown in figure 3( f ).
We expect this to be related to the shift of the dissipative range to smaller scales
with increasing Ra, since the energy transfer decays when the filter scale reaches the
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FIGURE 3. (a) Contributions to the volume-averaged resolved energy budget for a range
of filter scales l for Ra= 1.07× 107. (b) Different contributions to the budget (2.15) at the
superstructure scale ls as a function of Ra. (c,d,e) Comparison of 〈Πl〉, 〈εl〉 and 〈Ql〉 for
different Ra. ( f ) Scale lΠ of the maximum of 〈Πl〉 compared to the Kolmogorov scale η
as a function of Ra.

dissipative regime. The Kolmogorov scale η characterizes the dissipative scale. As
shown in figure 3( f ), lΠ follows a similar trend as η.

3.3. Horizontally averaged resolved energy budget
In RBC the flow in the boundary layers and the bulk region is qualitatively different,
as long as the boundary layers are not fully turbulent (Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010; Chillà & Schumacher 2012). To analyse the difference
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FIGURE 4. (a) Different contributions to the horizontally averaged resolved energy budget
at the superstructure scale ls and (b) unfiltered energy budget for Ra = 1.07 × 107

normalized by the total dissipation. (c) Energy transfer term at ls for different Ra
normalized by the corresponding total dissipation. (d) Comparison of the distance from
the wall to the first minimum zm and zero crossing z0 of

〈
Πls

〉
A with the boundary layer

thicknesses of the temperature and the velocity fields as a function of Ra.

between these distinct regions in the resolved energy budget, we present results for
the horizontally averaged energy budget (2.18). This helps to understand the role
of the boundary layers for the different contributions of the resolved energy budget
in more detail. Compared to the volume-averaged budget, there is an additional
spatial flux term 〈∇ · Jl〉A, which redistributes energy vertically. The profiles of all the
height-dependent contributions of (2.18) at the superstructure scale ls are presented in
figure 4(a) for a simulation with Ra = 1.07 × 107 as an example from the turbulent
regime. They are compared to the unfiltered profiles in figure 4(b). The shown flux
terms are calculated from the right-hand sides of (2.18) and (2.19), respectively. The
energy input into the resolved scales takes place mainly in the bulk and decays
towards the wall. In contrast, the direct dissipation primarily occurs near the wall
and decays towards the bulk. The energy transfer is positive in a layer in the bulk,
i.e. it acts as a sink. Therefore, it effectively increases the dissipation, as it does for
the volume-averaged balance. However, we also find an inverse energy transfer from
the unresolved to the resolved scales near the wall in agreement with previous results
for RBC (Togni et al. 2015, 2019) and other wall-bounded flows (Domaradzki et al.
1994; Marati, Casciola & Piva 2004; Cimarelli & De Angelis 2011, 2012; Cimarelli
et al. 2015; Bauer et al. 2019).

A comparison of the energy transfer profiles for different Rayleigh numbers
(see figure 4c) shows that their form depends strongly on Ra. The energy transfer
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peaks always in the bulk and is exclusively a sink in this region, i.e. it acts as an
additional dissipation. Thus the bulk determines the behaviour of the volume-averaged
energy transfer. With increasing Ra the width of the plateau of

〈
Πls

〉
A in the bulk

increases. For Ra < 107 the energy transfer close to the wall is characterized by
a negative minimum, which means that there is a near-wall layer contributing to
the driving of the resolved scales. With increasing Ra the near-wall structure of〈
Πls

〉
A changes and the inverse layer vanishes at the largest Rayleigh number. Here,

it turns into a positive minimum. However, locally there are still regions of upscale
transfer present. This illustrates that the boundary layers play a different role for the
dynamics of the superstructures than the bulk. We present an interpretation of this
layer structure in terms of the plume dynamics in § 3.5. Note that the profiles are
scale dependent, particularly at high Ra. Therefore, the energy transfer close to the
wall depends on the considered filter scale as well as the Rayleigh number and has
to be interpreted carefully for this reason. We present a description of the dependence
on the filter scale l in appendix D.

We shall make the first attempt to link the scale-resolved layer structure revealed in
figure 4(c) with the boundary layer structure of RBC. Figure 4(d) shows the thickness
of the thermal dissipation layer λθ and viscous dissipation layer λu as a function of Ra.
The layers are defined as the distance to the wall at which the horizontally averaged
thermal, respectively viscous, dissipation equals its volume average. Petschel et al.
(2013) originally introduced these layers to study and compare boundary layers for
different boundary conditions in RBC. They also compared their scaling as a function
of Pr with classical boundary layer definitions. For an investigation of the Rayleigh
number dependence of the different boundary layers we refer to Scheel & Schumacher
(2014), who showed that the scaling of the dissipation-based boundary layers differ
from the classical ones. The boundary layers are indicated in figure 4(a,b) to present
their relative position compared to the profiles. In figure 4(d), the distance of the
first local minimum of

〈
Πls

〉
A to the lower wall zm and that of the subsequent zero

crossing to the lower wall z0, where the transfer changes from inverse to direct, are
presented as a function of Ra. (They are also highlighted for clarity in figure 4(c)
for Ra = 1.02 × 105.) All scales decrease with increasing Ra and follow a similar
trend. Interestingly, zm appears to be bounded by the thermal layer. This means that
the inverse energy transfer mostly happens inside the thermal boundary layer, i.e. close
to the wall. We associate the decrease of its extent with the well-known shrinking of
the boundary layers (Ahlers et al. 2009; Scheel & Schumacher 2014). For the highest
Ra, the inverse transfer layer vanishes, which we will discuss in § 3.5. The minimum
at zm now describes a direct transfer in contrast to the smaller Ra but is still inside the
thermal boundary layer. Overall, this shows that the differences in the flow between
the bulk and close to the wall are also represented in the structure of the transfer term.

3.4. Effective resolved dissipation and implications for reduced models
Emran & Schumacher (2015) and Pandey et al. (2018) have pointed out similarities
between the turbulent superstructures and patterns close to the onset of convection. In
this regime, analytical techniques are feasible (Bodenschatz et al. 2000). Combined
with the filtering approach, this could enable future developments of effective
large-scale equations for RBC at high Ra. To discuss these similarities and their
implications, we draw comparisons between the resolved profiles at large Ra to the
unfiltered profiles for a small Ra from the weakly nonlinear regime. As we have
seen in the previous section, the energy transfer primarily contributes to the resolved
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FIGURE 5. Comparison of the direct dissipation εls , the energy transfer Πls , and the
effective dissipation ε̃ls = εls +Πls in the midplane normalized by the resolved energy input
in the midplane as a function of Ra. The energy transfer is significantly larger than the
direct dissipation at high Rayleigh numbers.

energy budget as a sink term, resulting in an additional dissipation. We therefore
consider the effective resolved dissipation ε̃l = εl +Πl at the superstructure scale. In
figure 5, the averaged effective dissipation in the midplane is shown as a function
of Ra normalized by the resolved energy input in the midplane. We observe that
the effective dissipation slightly increases until Ra = 107. It removes roughly half
of the energy input in the midplane. The comparison with the energy transfer and
the direct dissipation reveals that at high Rayleigh number, the transfer of energy to
small scales is primarily responsible for the effective dissipation of the energy. The
direct dissipation, in comparison, is negligible at high Ra.

Figure 6 shows the resolved profiles at the scale of the superstructures compared
to the unfiltered profiles from the weakly nonlinear regime. Close to the wall, the
effective resolved dissipation and the redistribution differ from the corresponding
profiles close to onset. Close to the midplane, the height-dependent profiles from
the resolved budget and the original budget compare quite well, although some
quantitative differences are visible. This indicates that an effective dissipation may
capture the effect of the energy transfer on the superstructures in the bulk. The more
complex near-wall behaviour of the superstructures at high Ra requires more elaborate
approaches.

3.5. Energy transfer rate and plume dynamics
In RBC plumes play a crucial role in the dynamics and are essential parts of the
superstructures. Using the filtering approach we can connect flow structures and
their contribution to the energy budget. To gain insight into their role in the energy
transfer, we discuss the local energy budget. Figure 7 shows vertical cuts through
the system for the energy transfer field and the temperature field for different Ra.
Especially in the weakly nonlinear regime, we observe a spatial correlation between
plume impinging and detaching and the direction of the energy transfer. Regions of
plume detachment correspond to regions of energy transfer to the unresolved scales,
whereas regions of plume impinging correspond to regions of energy transfer from
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FIGURE 6. (a) Resolved energy budget at the superstructure scale ls in terms of the
effective dissipation ε̃ls normalized with the total effective dissipation

〈
ε̃ls

〉
for Ra= 1.07×

107. (b) Unfiltered energy budget normalized with the total dissipation for Ra= 1.03× 104,
close to onset in the weakly nonlinear regime of convection.

the small to the large scales. Similar observations have been made by Togni et al.
(2015), who also found an inverse transfer from small to large scales connected to
plume impinging. Due to the increasingly complex and three-dimensional motions at
larger Ra, see figure 7(b,c), this spatial correlation is weakening. This is due to the
fact that fewer plumes extend throughout the entire cell and are more likely to be
deflected on their way from the top to the bottom plate or vice versa. Hence they do
not experience the sharp temperature gradient at the boundary layers. Instead, they
release their temperature in the bulk and do not impinge on the boundary layers.
This prevents the strong enlargement of individual plumes and the corresponding
energy transfer to the large scales. However, clustered plumes, which effectively form
large-scale plumes, still impinge on the walls and cause an inverse energy transfer.
From the horizontally averaged energy transfer, see figure 4(c), we conclude that the
inverse transfer caused by plume impinging exceeds the direct transfer caused by
plume detaching, at least in the weakly nonlinear regime. However, at the largest
Rayleigh number, the layer of inverse transfer vanishes. Here, the direct transfer
caused by plume detaching exceeds the inverse transfer.

How can the above considerations be related to the findings for the volume-averaged
energy budget? At small Rayleigh numbers the direct transfer in the bulk and the
inverse transfer close to the wall almost balance, resulting on average in a small direct
transfer. At larger Ra the inverse transfer caused by impinging is reduced because only
a fraction of the released plumes reaches the opposite boundary layer. Here, the width
of the inverse transfer layer is reduced. At the same time, the direct transfer increases
and the corresponding layer becomes larger. The direct transfer consequently grows
on average with Ra. For a discussion of the scale dependence of plume dynamics
connected to the direction of the energy transfer, see appendix D. There, we discuss
Πl and the profiles 〈Πl〉A for varying filter scales l.

3.6. Volume-averaged resolved temperature variance budget
For completeness, we here complement the previous section with the consideration
of the budget of the resolved temperature variance. The balance (2.25) shows that
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FIGURE 7. Comparison of an instantaneous snapshot of the temperature field and
the energy transfer (normalized to unit maximum amplitude) between scales for
(a) Ra = 1.03 × 104, (b) Ra = 1.02 × 105 and (c) Ra = 1.07 × 107 at the superstructure
scale ls. Close to onset in the weakly nonlinear regime, a direct connection between the
plume dynamics, i.e. impinging and detachment, and the direction of the energy transfer
is present. On impinging the plume heads enlarge, which is accompanied by an inverse
energy transfer. During detachment the plumes shrink and there is a direct energy transfer.

the total thermal dissipation is split into two contributions: the resolved dissipation
〈χl〉 and the heat transfer

〈
Π θ

l

〉
. As illustrated in figure 8(a), the resolved thermal

dissipation exceeds the heat transfer at all scales, including the scale of the
superstructure for the considered Rayleigh number. This is qualitatively different from
the behaviour observed for the contributions to the kinetic energy balance. The heat
transfer and direct dissipation both approach a constant value after an initial increase
for small filter width. At these scales, they are approximately scale independent
and the transfer of temperature variance is down-scale. This is important for the
phenomenology of RBC. In fact, both the Obukhov–Corrsin theory as well as the
Bolgiano–Obukhov theory rest on a direct cascade picture for the temperature variance,
consistent with our observations. A more detailed treatment of these considerations is
beyond the scope of our work, and we refer the reader to Lohse & Xia (2010), Ching
(2014), Verma et al. (2017) and Verma (2018) and references therein. Similarly to
the energy transfer, the heat transfer increases with increasing Ra and the resolved
thermal dissipation decreases, see figure 8(b–d). The heat transfer is always positive
and, therefore, acts as a thermal dissipation for the resolved scales.

3.7. Horizontally averaged resolved temperature variance budget
The profiles of all the contributions to the horizontally averaged resolved temperature
variance budget are shown in figure 9(a) for Ra = 1.07 × 107 and compared to the
unfiltered profiles in figure 9(b) as an example from the turbulent regime. Here, the
unfiltered flux is given by Jθ = ueθ −∇eθ/

√
RaPr, which can be obtained from (2.23)
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FIGURE 8. (a) Volume-averaged temperature variance budget for Ra=1.07×107. (b) Heat
transfer

〈
Π θ

l

〉
; (c) thermal dissipation 〈χl〉 for different Ra as a function of filter scale;

and (d)
〈
Π θ

ls

〉
and

〈
χls

〉
at the scale of the superstructures as a function of Ra.

in the limit of a vanishing filter width l. The resolved thermal dissipation follows a
very similar form as the original thermal dissipation. It almost vanishes in the bulk
and strongly increases towards the walls in the boundary layers. The heat transfer is
positive for almost all heights and also vanishes in the bulk. It has a strong peak
close to the walls and acts exclusively as a thermal dissipation. This is similar for
different Ra as shown in figure 9(c). A notable exception is at small Ra, where it is
slightly negative, i.e. up-scale, close to the midplane. The peak of

〈
Π θ

ls

〉
A

increases
in magnitude with increasing Ra and its distance to the wall zθm decreases. The peak
almost coincides with the height of the thermal boundary layer λNu, see figure 9(d).
In this region, the temperature variance deposited by the resolved heat flux is partly
transferred to smaller scales and mainly dissipated.

Comparing the resolved energy with the resolved temperature variance budget, there
are qualitatively similar scale dependencies. The transfers between scales increase with
increasing Ra and act on average as a dissipation. However, the volume-averaged heat
transfer is roughly constant after an initial increase at small scales, whereas the energy
transfer decays after a maximum at small scales. At the scale of the superstructures,
the volume-averaged heat transfer is smaller than the corresponding direct thermal
dissipation for all Ra. In contrast, the volume-averaged energy transfer exceeds the
direct dissipation at large Ra. Additionally, the profiles at the superstructure scale show
qualitative differences, i.e. the heat transfer is almost exclusively down-scale for all
heights while the energy transfer shows a layer of up-scale energy transfer as well.
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FIGURE 9. (a) Different contributions to the horizontally averaged resolved temperature
variance budget at the superstructure scale ls and (b) unfiltered temperature variance budget
for Ra = 1.07 × 107, normalized by the total thermal dissipation. (c) Profile of the heat
transfer

〈
Π θ

ls

〉
A

at the superstructure scale for different Ra. (d) Distance zθm from the wall to
the maximum of

〈
Π θ

ls

〉
A

compared to the thermal boundary layer thickness λNu as function
of Ra. zθm is also highlighted in (c) for Ra= 1.02× 105.

4. Summary
We investigated the scale-resolved kinetic energy and temperature variance budgets

of RBC at Rayleigh numbers in the range 1.03× 104 6 Ra 6 1.04× 108 for a fixed
Pr = 1 and a high aspect ratio (Γ ≈ 24) with a focus on the interplay of turbulent
superstructures and turbulent fluctuations. As a starting point, we generalized the
volume-averaged kinetic energy and temperature variance budgets to scale-dependent
budgets of the resolved fields. For the kinetic energy budget, this results in a balance
between the resolved energy input, the direct large-scale dissipation and an energy
transfer to the unresolved scales. It shows that the small-scale fluctuations play an
important role for the energy balance of the large scales. For our simulations at the
highest Rayleigh numbers under consideration, we find that the energy transfer to
the smaller scales is of comparable magnitude to the resolved energy input at the
superstructure scale. This means that the generation of small-scale turbulence acts
as a dissipation channel for the large scales, which qualitatively confirms the classic
picture that small-scale turbulence introduces an effective dissipation.

When resolving the energy transfer with respect to height, a more complex
picture emerges which, in particular, reveals the role of the boundary layers. The
height-dependent balance of the distinct terms is summarized in figure 10 at the
superstructure scale. Panel (a) shows that most of the energy input due to thermal
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FIGURE 10. Sketch of the resolved energy balance at the scale of the superstructure,
highlighting the distinct structure of the bulk and boundary layer. The profiles are obtained
from a simulation at Ra = 1.02 × 105 as an illustrative example for the moderately
turbulent regime. The dissipation layer λu and the thermal dissipation layer λθ are
indicated by the dashed and dotted lines, respectively. Energy input regions are highlighted
in green, direct dissipation and down-scale energy transfer in red, and spatial redistribution
in orange.

driving takes place in the bulk. From there, energy is transferred to smaller scales, see
panel (b), and transported towards the wall, see panel (c). While the direct large-scale
dissipation is comparably small in the bulk, its main contribution stems from regions
close to the wall, see panel (d). There, the situation is more complex. We find an
additional inverse energy transfer from the small to the large scales for Ra < 108

and a minimum for the largest considered Rayleigh number. This illustrates that the
boundary layers play a distinct role for the energy budget of the superstructures.

Consistent with previous studies (Emran & Schumacher 2015; Pandey et al. 2018),
we find qualitative similarities between the energy budget of turbulent superstructures
and that of patterns in the weakly nonlinear regime. The resolved energy budget of
the superstructures and the standard energy budget at the onset of convection show
qualitative similarities in the midplane when the energy transfer to smaller scales is
interpreted as an effective dissipation. This may open possibilities for modelling the
large-scale structure of turbulent convection at high Rayleigh numbers.

In order to gain insight into the origin of the inverse energy transfer, we studied
the spatially resolved energy transfer. At small Ra, there is a direct correspondence
between plume impinging and plume detaching and the direction of the energy
transfer. The enlargement of the plume head during impinging is accompanied by an
energy transfer to the large scales. Conversely, the small scales are fed during plume
detachment. A stronger inverse transfer caused by plume impinging can therefore
result in the layer of inverse transfer observed close to the wall. However, in the
turbulent regime, the lateral motion of the plumes is increased, which prevents the
impinging on the boundary layers and the corresponding inverse energy transfer.
Finally, at the largest Rayleigh number, the inverse layer vanishes.

We complemented the investigations of the resolved energy budget with the study
of the resolved temperature variance budget. We find that the heat transfer between
scales is roughly scale independent at large scales in the turbulent regime. Here, at
the scale of the superstructures, the averaged direct thermal dissipation exceeds the
averaged heat transfer for all considered Ra. This is different from the behaviour of
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the energy transfer, and the direct thermal dissipation is more relevant for the balance
of the temperature variance of the superstructures. Furthermore, the study of the
height-dependent profiles showed that the heat transfer acts as a thermal dissipation
at all heights for large Rayleigh numbers and is strongly peaked close to the boundary
layers.

In summary, our investigations reveal the impact of turbulent fluctuations on
the large-scale convection rolls in turbulent Rayleigh–Bénard convection. In future
investigations, it will be interesting to see whether the turbulent effects reach an
asymptotic state at sufficiently high Reynolds numbers. This could open the possibility
for universal effective large-scale models for Rayleigh–Bénard convection at high
Rayleigh numbers.
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Appendix A. Connection between volume-averaged resolved energy budget and
original budget

Under the assumptions that the filtered fields obey the same boundary conditions
as the unfiltered ones, and that the filter preserves volume averages, the statistically
stationary energy and temperature variance budgets can be related to the Nusselt
number. First, we can reformulate the resolved energy input〈

uzlθ l
〉
=
〈
(uzθ)l

〉
−
〈
γl · ẑ

〉
= 〈uzθ〉 −

〈
γl · ẑ

〉
, (A 1)

where we have used (2.7) and that the filter preserves the volume average. Then we
find with Nu=

√
RaPr 〈uzθ〉 + 1 that〈

uzlθ l
〉
= 〈Ql〉 =

1
√

RaPr
(Nu− 1)−

〈
γl · ẑ

〉
. (A 2)

This is inserted into (2.15), and combined with (2.2) we obtain

〈εl〉 + 〈Πl〉 +
〈
γl · ẑ

〉
=

1
√

RaPr
(Nu− 1)= 〈ε〉 . (A 3)

This shows that the total kinetic energy dissipation 〈ε〉 is split into energy transfer
between scales 〈Πl〉, direct dissipation of the resolved scales 〈εl〉 and the thermal
driving of the unresolved scales

〈
γl · ẑ

〉
. With (2.15) and (2.2), we can also write

equation (A 3) as

〈Ql〉 +
〈
γl · ẑ

〉
=

1
√

RaPr
(Nu− 1)= 〈Q〉 , (A 4)
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in which the total energy input is split into the resolved energy input and the turbulent
heat flux. If we introduce the resolved Nusselt number Nul =

√
RaPr 〈Ql〉 + 1, this

relation can be written as

Nul +
√

RaPr
〈
γl · ẑ

〉
=Nu, (A 5)

which shows that Nu is split into Nul and the heat flux into the unresolved scales
√

RaPr
〈
γl · ẑ

〉
.

Appendix B. Volume-averaged resolved temperature variance budget

Here we derive the volume-averaged resolved temperature variance budget (2.25).
We take the volume average of (2.21),〈

∇ · Jθl
〉
=− 〈χl〉 −

〈
Π θ

l

〉
, (B 1)

in which the temporal derivative vanishes in the statistically stationary state. In
contrast to the kinetic energy budget, the flux term does not vanish for the temperature
variance. We obtain

〈
∇ · Jθl

〉
=

〈
∇ ·

(
uleθl −

1
√

RaPr
∇eθl + γlθ l

)〉
=−

1
√

RaPr

〈
∇

2eθl
〉
, (B 2)

since the contributions containing ul vanish because of the boundary conditions. To
relate the flux term to the Nusselt number, we write the volume integral in the form∫

V
∇

2eθl dV =
∫

V
∇ ·
(
θ l∇θ l

)
dV =

∫
∂V

(
θ l∇θ l

)
· n̂ dA. (B 3)

In the last integral the contributions from the sidewalls vanish because of the periodic
boundary conditions. Therefore only the integration over the top and bottom wall
remains, at which the temperature is constant, i.e. θ l(z = 0, 1) = ±1/2. This gives∫

∂V

(
θ l∇θ l

)
· n̂ dA=−

1
2

(
∂z

∫
z=0
θ dA+ ∂z

∫
z=1
θ dA

)
, (B 4)

where we used the fact that θ is constant at the top and bottom wall, and therefore
θ l(z= 0, 1)= θ(z= 0, 1). The Nusselt number is defined as

Nu=
√

RaPr 〈uzθ〉A − ∂z 〈θ〉A , (B 5)

which is independent of z (see, e.g. Scheel & Schumacher (2014)). At the top and
bottom wall u= 0 and Nu(z= 0, 1)=−∂z 〈θ〉A (z= 0, 1), and we find〈

∇
2eθl
〉
=−

1
2

[
∂z 〈θ〉A (z= 0)+ ∂z 〈θ〉A (z= 1)

]
=Nu. (B 6)

Substituting this back into (B 1) results in the volume-averaged balance (2.25).
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FIGURE 11. Comparison of the temperature in (a) the midplane and (b) close to the wall
for Ra= 1.07× 107. A footprint of the large-scale pattern in the midplane is visible close
to the bottom wall.
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FIGURE 12. Pre-multiplied spectra, kEθuz(k, z), for (a) Ra = 1.02 × 105 and (b) Ra =
1.07× 107, and different heights z. The height-averaged spectrum is shown in dark grey.
The thermal boundary layer thickness λNu is given for reference. A peak at the same
position k is present at all heights, also in the boundary layer, characterizing the size
of the superstructure. However, close to the boundary layer a second maximum emerges.
This is related to small-scale fluctuations. The maximum at small scales is highlighted
through the presentation in pre-multiplied form.

Appendix C. Height-dependent spectra

Here, we discuss the height dependence of the spectrum Eθuz(k, z) first introduced
in § 3.1. Because of the lack of statistical homogeneity in the vertical direction, it
is not a priori clear that there is a single characteristic large scale at all heights.
However, it was already shown by Parodi et al. (2004), von Hardenberg et al. (2008),
Pandey et al. (2018), Stevens et al. (2018) and Krug et al. (2019) that the turbulent
superstructures leave an imprint in the boundary layers. Figure 11 shows a comparison
of the temperature field in the midplane and at boundary layer height close to the wall,
which visually confirms the connection between the bulk flow and the boundary layer
(see also Stevens et al. (2018)).
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FIGURE 13. Profile of the energy transfer 〈Πl〉A for three different Ra and different filter
width l. The largest filter scale corresponds to the scale of the superstructures ls. The
bottom row shows a zoom into the region close to the wall. (a) Ra= 1.02× 105, (b) Ra=
1.03× 106, (c) Ra= 1.07× 107.

To verify this quantitatively, we consider the height-dependent azimuthally averaged
cross-spectrum Eθuz(k, z) of the vertical velocity and temperature. The spectrum is
shown in figure 12 in pre-multiplied form for two different Ra and different heights
as well as height averaged. In the midplane a single maximum is present, which
characterizes the size of the superstructures. However, closer to the wall a second
maximum forms (Kaimal et al. 1976; Mellado et al. 2016; Krug et al. 2019), which
is related to the small-scale turbulent fluctuations. As expected, this maximum is more
pronounced at the higher Rayleigh number. Still, we observe a local maximum at
the scale of the superstructure, corresponding to the wavenumber of the maximum in
the midplane. This shows that the size of the superstructure is indeed independent of
height, and can also be inferred from the single peak of the height-averaged spectrum.

Appendix D. Horizontally averaged Πl for varying filter scale
Here we discuss the scale dependence of Πl and the corresponding profiles 〈Πl〉A.

The profiles of the energy transfer term Πl are strongly scale dependent, as can
be expected. Figure 13 shows the horizontally averaged energy transfer profiles for
different filter widths and different Ra. For Ra= 1.02× 105 and Ra= 1.03× 106, the
inverse transfer layer grows in size and magnitude with increasing filter width. For
Ra = 1.07 × 107, the inverse energy transfer close to the wall only occurs for large
filter widths. For small filter widths, the profiles are consistent with the ones for
Ra = 107 reported by Togni et al. (2017, 2019), who obtained the height-dependent
budgets for small filter width (l < 0.25) and smaller aspect ratio (Γ = 8) with a
spectral cutoff filter in the horizontal directions. They found that the energy transfer
acts as a dissipation for all heights throughout the layer, consistent with our findings
at small filter width. The inverse transfer at large scales reported here indicates the
need for different modelling approaches for the large-scale dynamics compared to the
one at smaller scales.
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FIGURE 14. Comparison of vertical cuts through the temperature fields θ and the energy
transfer field Πl (normalized to unit maximum amplitude) for different filter widths and
two Ra. (a) Ra= 1.02× 105, (b) Ra= 1.07× 107.

In § 3.5, we related the direction of the energy transfer to the plume dynamics.
Here, we discuss the inverse transfer layer at different filter widths. In figure 14(a),
a vertical cut through Πl is shown for different filter widths and compared to the
corresponding temperature field for Ra= 1.02× 105. Differently sized plumes extend
through the whole cell and impinge on the wall. This causes an inverse transfer at
small and large filter width. In contrast, for Ra = 1.07 × 107 in figure 14(b), it can
be seen that only few isolated small-scale plumes extend throughout the whole cell
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and impinge on the wall. They only cause little inverse energy transfer at small filter
widths, which is why on average the direct transfer dominates and there is no inverse
transfer layer. However, clustered plumes form larger-scale structures, which contribute
to the inverse transfer at larger scales when they impinge on the wall. This results in
an inverse transfer layer in the profiles at large filter widths.
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