SOME TRACE INEQUALITIES FOR OPERATORS

XINMIN YANG

(Received 23 September 1992)

Communicated by B. Mond

Abstract

In this paper, we obtain some trace inequalities for arbitrary finite positive definite operators. Finally an open question is presented.

1991 Mathematics subject classification (Amer. Math. Soc.): 47A63. Keywords and phrases: trace inequality, positive definite operators.

In 1978, after giving some trace inequalities for positive definite matrices, R. Bellman brought attention to two open questions [1]. One of the questions asks: Is there a matrix analogy of the arithmetic mean – geometric mean inequality (for positive definite matrices)? Y. Yang [4] proved that the answer to the above question is affirmative for two positive definite matrices. Recently Dinesh Singh [3] generalized the result of Yang to infinite-dimensional spaces.

In this paper, we generalize the trace inequality in [3] from two positive definite operators to an arbitrary finite number of positive definite operators.

Throughout, C_p $(1 \le p < \infty)$ stands for the class of all bounded operators A on an infinite-dimensional separable Hilbert space H, such that $\sum_{n=1}^{\infty} |\langle Ae_n, e_n \rangle|^p < \infty$ for each orthonormal basis $\{e_n\}_1^{\infty}$ in H. Let $\{e_n\}$ be any orthonormal basis in H. Let Tr : $C_1 \to \mathbb{C}$ (complex numbers) be defined by

$$\mathrm{Tr}(A) = \sum_{n=1}^{\infty} \langle Ae_n, e_n \rangle.$$

It is easy to see that Tr is independent of $\{e_n\}$ [2, Lemma 2.2.1], and since C_1 consists of compact operators [2, Theorem 2.1.6], Tr (A) is the sum of the eigenvalues of A.

^{© 1995} Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

Xinmin Yang

Furthermore, Tr defines an inner product on C_2 given by

$$\langle A, B \rangle = \operatorname{Tr} (B^* A)$$

where B is the adjoint of B. This inner product makes C_2 into a Hilbert space [2, Theorem 2.4.2]. Clearly C_1 is contained in C_2 .

We now state and prove our results as following.

LEMMA 1. Let A be a positive definite operator in C_1 and B be a operator in C_1 . Then

(1)
$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$

PROOF. Choose an orthonormal basis $\{e_n\}_1^\infty$ of H such that each e_n is an eigenvector for A with corresponding eigenvalue α_n . Since A > 0, each $\alpha_n > 0$. Let $\beta_n = \langle Be_n, e_n \rangle$. Then

$$\operatorname{Tr} (AB) = \sum_{n=1}^{\infty} \langle ABe_n, e_n \rangle = \sum_{n=1}^{\infty} \langle Be_n, Ae_n \rangle$$
$$= \sum_{n=1}^{\infty} \alpha_n \langle Be_n, e_n \rangle = \sum_{n=1}^{\infty} \alpha_n \beta_n,$$
$$\operatorname{Tr} (BA) = \sum_{n=1}^{\infty} \langle BAe_n, e_n \rangle = \sum_{n=1}^{\infty} \langle Ae_n, B^*e_n \rangle$$
$$= \sum_{n=1}^{\infty} \alpha_n \langle e_n, B^*e_n \rangle = \sum_{n=1}^{\infty} \alpha_n \langle Be_n, e_n \rangle$$
$$= \sum_{n=1}^{\infty} \alpha_n \beta_n.$$

Hence (1) is proved.

By the Cauchy-Schwartz inequality, we have

LEMMA 2. Let A, B be two operators in C_1 ; then

$$\operatorname{Tr}(AB) \leq |\operatorname{Tr}(AB)| \leq \sqrt{\operatorname{Tr}(AA^*)} \cdot \sqrt{\operatorname{Tr}(BB^*)}.$$

LEMMA 3. ([3]). Let A, B be two positive definite operators in C_1 ; then

$$\operatorname{Tr}(AB) < \operatorname{Tr}(A) \cdot \operatorname{Tr}(B)$$
.

LEMMA 4. Let A_i $(1 \le i \le m)$ be positive definite operators in C_1 ; then

$$\operatorname{Tr}\left\{\left(A_{1}A_{2}\cdots A_{m}\right)\left(A_{1}A_{2}\cdots A_{m}\right)^{*}\right\} < \prod_{i=1}^{m}\operatorname{Tr}\left(A_{i}^{2}\right) < \prod_{i=1}^{m}\left(\operatorname{Tr}\left(A_{i}\right)\right)^{2}$$

PROOF.

$$\operatorname{Tr}\left\{ (A_{1}A_{2}\cdots A_{m}) (A_{1}A_{2}\cdots A_{m})^{*} \right\} = \operatorname{Tr}\left\{ A_{1} (A_{2}\cdots A_{m}) (A_{2}\cdots A_{m})^{*} A_{1}^{*} \right\}$$

=
$$\operatorname{Tr}\left\{ (A_{1}^{*}A_{1}) (A_{2}\cdots A_{m}) (A_{2}\cdots A_{m})^{*} \right\} \qquad (by \text{ Lemma 1})$$

$$< \operatorname{Tr} (A_{1}^{*}A_{1}) \operatorname{Tr}\left\{ (A_{2}\cdots A_{m}) (A_{2}\cdots A_{m})^{*} \right\} \qquad (by \text{ Lemma 3})$$

...

$$< \operatorname{Tr}\left(A_{1}^{2}\right)\operatorname{Tr}\left(A_{2}^{2}\right)\cdots\operatorname{Tr}\left(A_{m}^{2}\right) < \prod_{i=1}^{m}\left[\operatorname{Tr}\left(A_{i}\right)\right]^{2}.$$
 (by Lemma 3)

The proof is complete.

THEOREM 5. Let A_i $(1 \le i \le m)$ be positive definite operators in C_1 ; then

$$\left|\operatorname{Tr}(A_1A_2\cdots A_m)\right| < \prod_{i=1}^m \operatorname{Tr}(A_i), \qquad m \geq 2.$$

PROOF. By Lemma 2 and Lemma 4, we get

$$\begin{aligned} \left| \operatorname{Tr} \left(A_1 A_2 \cdots A_m \right) \right| &= \left| \operatorname{Tr} \left[A_1 \left(A_2 \cdots A_m \right) \right] \right| \\ &\leq \sqrt{\operatorname{Tr} \left(A_1 A_1^* \right)} \cdot \sqrt{\operatorname{Tr} \left[\left(A_2 \cdots A_m \right) \left(A_2 \cdots A_m \right)^* \right]} < \prod_{i=1}^m \operatorname{Tr} \left(A_i \right) \end{aligned}$$

The proof is complete.

THEOREM 6. Let A_i $(1 \le i \le m)$ be positive definite operators in C_1 ; then

$$\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right] > \left|\operatorname{Tr}\left(A_{1}A_{2}\cdots A_{m}\right)\right|^{\frac{1}{m}}.$$

PROOF. By the arithmetic mean – geometric mean inequality for m positive real numbers, we have

$$\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right] \geq \left(\prod_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right)^{\frac{1}{m}}.$$

From Theorem 5, we get

$$\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right] > \left|\operatorname{Tr}\left(A_{1}A_{2}\cdots A_{m}\right)\right|^{\frac{1}{m}}.$$

The proof is complete.

The above Theorem 6 generalizes the theorem in [3].

THEOREM 7. Let A_i $(1 \le i \le 2^m)$ be positive definite operators in C_1 ; then

(2)
$$\left|\operatorname{Tr}\left(A_{1}A_{2}\cdots A_{2^{m}}\right)\right|^{2^{m}} \leq \prod_{i=1}^{2^{m}} \left[\operatorname{Tr}\left(A_{i}^{2^{m}}\right)\right]$$

PROOF. We will prove the above inequality by induction on m. If m = 1, inequality (2) is obvious by Lemma 2. Now suppose that, for m < p, inequality (2) is true. If m = p, let

$$B_{i} = A_{2^{p-i}}A_{2^{p-i-1}}\cdots A_{2}A_{1}A_{1}A_{2}\cdots A_{2^{p-i-1}}A_{2^{p-i}}$$

and $C_{i} = A_{2^{p-i+1}}A_{2^{p-i}}\cdots A_{2^{p-(i-1)}}A_{2^{p-(i-1)}}\cdots A_{2^{p-i}}A_{2^{p-i}+1}$
 $u_{i} = \left|\operatorname{Tr}\left(B_{i}^{2^{i-1}}\right)\right|^{2^{p-i}}, \quad v_{i} = \left|\operatorname{Tr}\left(C_{i}^{2^{i-1}}\right)\right|^{2^{p-i}}, \quad 1 \le i \le p.$

We have

$$\begin{split} u_{i} &= \left| \operatorname{Tr} \left(B_{i}^{2^{i-1}} \right) \right|^{2^{p-i}} \\ &= \left| \operatorname{Tr} \left[\left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}} \right) \left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}} \right) \cdots \right. \\ &\left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}} \right) \right] \right|^{2^{p-i}} \quad (\text{with } 2^{i-1} \text{ bracketed factors}) \\ &= \left| \operatorname{Tr} \left[\left(A_{2^{p-i-1}} \cdots A_{1}^{2} \cdots A_{2^{p-i-1}} \right) \left(A_{2^{p-i-1}+1} \cdots A_{2^{p-i}}^{2} \cdots A_{2^{p-i-1}+1} \right) \right] \right|^{2^{p-i}} \\ &\left(A_{2^{p-i-1}} \cdots A_{1}^{2} \cdots A_{2^{p-i-1}} \right) \left(A_{2^{p-i-1}+1} \cdots A_{2^{2p-i}}^{2} \cdots A_{2^{p-i-1}+1} \right) \right] \right|^{2^{p-i}} \\ &\left(by \text{ Lemma } 1 \right) \qquad (2^{i} \text{ factors}) \\ &= \left| \operatorname{Tr} \left(B_{i+1}C_{i+1} \cdots B_{i+1}C_{i+1} \right) \right|^{2^{p-i}}, \quad (i \leq p-1) \qquad (2^{i-1} \text{ factors } B_{i+1}C_{i+1}) \\ &\leq \left| \left[\prod_{j=1}^{2^{i-1}} \left\{ \operatorname{Tr} \left(B_{i+1}^{2^{j}} \right) \operatorname{Tr} \left(C_{i+1}^{2^{j}} \right) \right\}^{\frac{1}{2^{j}}} \right] \right|^{2^{p-i}} \\ &\leq u_{i+1} \cdot v_{i+1} \qquad (1 \leq i < p) \end{split}$$

that is, $u_i \leq u_{i+1} \cdot v_{i+1}$, $1 \leq i < p$. Since

$$u_{p-1} = \left| \operatorname{Tr} \left(B_{p-1}^{2^{p-2}} \right) \right|^2 = \left| \operatorname{Tr} \left\{ \left(A_2 A_1^2 A_2 \right)^{2^{p-2}} \right\} \right|^2$$

$$= \left| \operatorname{Tr} \left(A_{1}^{2} A_{2}^{2} A_{1}^{2} A_{2}^{2} \cdots A_{1}^{2} A_{2}^{2} \right) \right|^{2} \quad \text{(by Lemma 1)} \quad (2^{p-2} \text{ factors } A_{1}^{2} A_{2}^{2})$$

$$\leq \left| \prod_{i=1}^{2^{p-2}} \left[\operatorname{Tr} \left\{ \left(A_{1}^{2} \right)^{2^{p-1}} \right\} \cdot \operatorname{Tr} \left\{ \left(A_{2}^{2} \right)^{2^{p-1}} \right\} \right]^{\frac{1}{2^{p-1}}} \right|^{2} \quad \text{(by inductive hypothesis)}$$

$$= \operatorname{Tr} \left(A_{1}^{2^{p}} \right) \operatorname{Tr} \left(A_{2}^{2^{p}} \right),$$

and

$$\begin{aligned} v_{p-1} &= \left| \operatorname{Tr} \left(C_{p-1}^{2^{p-2}} \right) \right|^2 = \left| \operatorname{Tr} \left(A_3 A_4^2 A_3^2 A_4^2 \cdots A_4^2 A_3 \right) \right|^2 \\ &= \left| \operatorname{Tr} \left(A_3^2 A_4^2 \cdots A_3^2 A_4^2 \right) \right|^2 \quad \text{(by Lemma 1)} \\ &\leq \left| \prod_{i=1}^{2^{p-2}} \left[\operatorname{Tr} \left\{ \left(A_3^2 \right)^{2^{p-1}} \right\} \cdot \operatorname{Tr} \left\{ \left(A_4^2 \right)^{2^{p-1}} \right\} \right]^{\frac{1}{2^{p-1}}} \right|^2 \quad \text{(by inductive hypothesis)} \\ &= \operatorname{Tr} \left(A_3^{2^p} \right) \operatorname{Tr} \left(A_4^{2^p} \right), \end{aligned}$$

we have

$$u_{p-2} \leq u_{p-1} \cdot v_{p-1} \leq \operatorname{Tr}\left(A_{1}^{2^{p}}\right) \operatorname{Tr}\left(A_{2}^{2^{p}}\right) \operatorname{Tr}\left(A_{3}^{2^{p}}\right) \operatorname{Tr}\left(A_{4}^{2^{p}}\right).$$

In exactly the same way, we can establish the following inequality.

$$v_{p-2} \leq \prod_{i=5}^{8} \operatorname{Tr} (A_i^{2^p})$$

$$u_{p-3} \leq u_{p-2} v_{p-2} \leq \prod_{i=1}^{8} \operatorname{Tr} (A_i^{2^p})$$

...

$$u_1 \leq \prod_{i=1}^{2^{p-1}} \operatorname{Tr} (A_i^{2^p})$$

$$v_1 \leq \prod_{i=2^{p-1}+1}^{2^p} \operatorname{Tr} (A_i^{2^p}).$$

Therefore we obtain

$$\begin{aligned} \left| \operatorname{Tr} \left(A_{1} A_{2} \cdots A_{2^{p}} \right) \right|^{2^{p}} &= \left| \operatorname{Tr} \left[\left(A_{1} A_{2} \cdots A_{2^{p-1}} \right) \left(A_{2^{p-1}+1} \cdots A_{2^{p}} \right) \right] \right|^{2^{p}} \\ &\leq \left| \operatorname{Tr} \left(A_{2^{p-1}} \cdots A_{1}^{2} \cdots A_{2^{p-1}} \right) \cdot \operatorname{Tr} \left(A_{2^{p-1}+1} \cdots A_{2^{p}}^{2} \cdots A_{2^{p-1}+1} \right) \right|^{2^{p-1}} \quad \text{(by Lemma 2)} \\ &= u_{1} \cdot v_{1} \leq \prod_{i=1}^{2^{p}} \operatorname{Tr} \left(A_{i}^{2^{p}} \right). \end{aligned}$$

Finally, we present an open question:

Let A_i $(1 \le i \le m)$ be positive definite operators in C_1 . Does the following inequality hold:

$$\left|\operatorname{Tr}\left(A_{1}A_{2}\cdots A_{m}\right)\right|^{m}\leq\prod_{i=1}^{m}\left[\operatorname{Tr}\left(A_{i}^{m}\right)\right]$$
?

References

- R. Bellman, 'Some inequalities for positive matrices', in: General inequalities 2. Proceedings, 2nd International Conference on General Inequalities (ed. E. F. Backenbach), (Birkhauser, Basel, 1980) pp. 89–90.
- [2] J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand, New York, 1971).
- [3] D. Singh, 'A trace inequality for operators', J. Math. Anal. Appl. 150 (1990), 159-160.
- [4] Y. Yang, 'A matrix trace inequality', J. Math. Anal. Appl. 133 (1988), 573-574.

Department of Mathematics Chongqing Normal University Chongqing, 630047 CHINA