SOME TRACE INEQUALITIES FOR OPERATORS

XINMIN YANG
(Received 23 September 1992)
Communicated by B. Mond

Abstract

In this paper, we obtain some trace inequalities for arbitrary finite positive definite operators. Finally an open question is presented.

1991 Mathematics subject classification (Amer. Math. Soc.): 47A63.
Keywords and phrases: trace inequality, positive definite operators.

In 1978, after giving some trace inequalities for positive definite matrices, R. Bellman brought attention to two open questions [1]. One of the questions asks: Is there a matrix analogy of the arithmetic mean - geometric mean inequality (for positive definite matrices)? Y. Yang [4] proved that the answer to the above question is affirmative for two positive definite matrices. Recently Dinesh Singh [3] generalized the result of Yang to infinite-dimensional spaces.

In this paper, we generalize the trace inequality in [3] from two positive definite operators to an arbitrary finite number of positive definite operators.

Throughout, $C_{p}(1 \leq p<\infty)$ stands for the class of all bounded operators A on an infinite-dimensional separable Hilbert space H, such that $\sum_{n=1}^{\infty}\left|\left\langle A e_{n}, e_{n}\right\rangle\right|^{p}<\infty$ for each orthonormal basis $\left\{e_{n}\right\}_{1}^{\infty}$ in H. Let $\left\{e_{n}\right\}$ be any orthonormal basis in H. Let $\mathrm{Tr}: C_{1} \rightarrow \mathbb{C}$ (complex numbers) be defined by

$$
\operatorname{Tr}(A)=\sum_{n=1}^{\infty}\left\langle A e_{n}, e_{n}\right\rangle
$$

It is easy to see that Tr is independent of $\left\{e_{n}\right\}$ [2, Lemma 2.2.1], and since C_{1} consists of compact operators [2, Theorem 2.1.6], $\operatorname{Tr}(A)$ is the sum of the eigenvalues of A.
(C) 1995 Australian Mathematical Society 0263-6115/95 $\$$ A $2.00+0.00$

Furthermore, Tr defines an inner product on C_{2} given by

$$
\langle A, B\rangle=\operatorname{Tr}\left(B^{*} A\right)
$$

where B is the adjoint of B. This inner product makes C_{2} into a Hilbert space [2, Theorem 2.4.2]. Clearly C_{1} is contained in C_{2}.

We now state and prove our results as following.
Lemma 1. Let A be a positive definite operator in C_{1} and B be a operator in C_{1}. Then

$$
\begin{equation*}
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) \tag{1}
\end{equation*}
$$

Proof. Choose an orthonormal basis $\left\{e_{n}\right\}_{1}^{\infty}$ of H such that each e_{n} is an eigenvector for A with corresponding eigenvalue α_{n}. Since $A>0$, each $\alpha_{n}>0$. Let $\beta_{n}=$ $\left\langle B e_{n}, e_{n}\right\rangle$. Then

$$
\begin{aligned}
\operatorname{Tr}(A B) & =\sum_{n=1}^{\infty}\left\langle A B e_{n}, e_{n}\right\rangle=\sum_{n=1}^{\infty}\left\langle B e_{n}, A e_{n}\right\rangle \\
& =\sum_{n=1}^{\infty} \alpha_{n}\left\langle B e_{n}, e_{n}\right\rangle=\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}, \\
\operatorname{Tr}(B A) & =\sum_{n=1}^{\infty}\left\langle B A e_{n}, e_{n}\right\rangle=\sum_{n=1}^{\infty}\left\langle A e_{n}, B^{*} e_{n}\right\rangle \\
& =\sum_{n=1}^{\infty} \alpha_{n}\left\langle e_{n}, B^{*} e_{n}\right\rangle=\sum_{n=1}^{\infty} \alpha_{n}\left\langle B e_{n}, e_{n}\right\rangle \\
& =\sum_{n=1}^{\infty} \alpha_{n} \beta_{n} .
\end{aligned}
$$

Hence (1) is proved.
By the Cauchy-Schwartz inequality, we have
Lemma 2. Let A, B be two operators in C_{1}; then

$$
\operatorname{Tr}(A B) \leq|\operatorname{Tr}(A B)| \leq \sqrt{\operatorname{Tr}\left(A A^{*}\right)} \cdot \sqrt{\operatorname{Tr}\left(B B^{*}\right)} .
$$

Lemma 3. ([3]). Let A, B be two positive definite operators in C_{1}; then

$$
\operatorname{Tr}(A B)<\operatorname{Tr}(A) \cdot \operatorname{Tr}(B)
$$

Lemma 4. Let $A_{i}(1 \leq i \leq m)$ be positive definite operators in C_{1}; then

$$
\operatorname{Tr}\left\{\left(A_{1} A_{2} \cdots A_{m}\right)\left(A_{1} A_{2} \cdots A_{m}\right)^{*}\right\}<\prod_{i=1}^{m} \operatorname{Tr}\left(A_{i}^{2}\right)<\prod_{i=1}^{m}\left(\operatorname{Tr}\left(A_{i}\right)\right)^{2} .
$$

Proof.

$$
\begin{array}{lr}
\operatorname{Tr}\left\{\left(A_{1} A_{2} \cdots A_{m}\right)\left(A_{1} A_{2} \cdots A_{m}\right)^{*}\right\}=\operatorname{Tr}\left\{A_{1}\left(A_{2} \cdots A_{m}\right)\left(A_{2} \cdots A_{m}\right)^{*} A_{1}^{*}\right\} \\
\quad=\operatorname{Tr}\left\{\left(A_{1}^{*} A_{1}\right)\left(A_{2} \cdots A_{m}\right)\left(A_{2} \cdots A_{m}\right)^{*}\right\} & \text { (by Lemma 1) } \\
\quad<\operatorname{Tr}\left(A_{1}^{*} A_{1}\right) \operatorname{Tr}\left\{\left(A_{2} \cdots A_{m}\right)\left(A_{2} \cdots A_{m}\right)^{*}\right\} & \\
& \\
& <\operatorname{Tr}\left(A_{1}^{2}\right) \operatorname{Tr}\left(A_{2}^{2}\right) \cdots \operatorname{Tr}\left(A_{m}^{2}\right)<\prod_{i=1}^{m}\left[\operatorname{Tr}\left(A_{i}\right)\right]^{2} .
\end{array} \text { (by Lemma 3) } \text { 3) }
$$

The proof is complete.

THEOREM 5. Let $A_{i}(1 \leq i \leq m)$ be positive definite operators in C_{1}; then

$$
\left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{m}\right)\right|<\prod_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right), \quad m \geq 2
$$

Proof. By Lemma 2 and Lemma 4, we get

$$
\begin{aligned}
& \left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{m}\right)\right|=\left|\operatorname{Tr}\left[A_{1}\left(A_{2} \cdots A_{m}\right)\right]\right| \\
& \quad \leq \sqrt{\operatorname{Tr}\left(A_{1} A_{1}^{*}\right)} \cdot \sqrt{\operatorname{Tr}\left[\left(A_{2} \cdots A_{m}\right)\left(A_{2} \cdots A_{m}\right)^{*}\right]}<\prod_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)
\end{aligned}
$$

The proof is complete.

THEOREM 6. Let $A_{i}(1 \leq i \leq m)$ be positive definite operators in C_{1}; then

$$
\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right]>\left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{m}\right)\right|^{\frac{1}{m}}
$$

PROOF. By the arithmetic mean - geometric mean inequality for m positive real numbers, we have

$$
\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right] \geq\left(\prod_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right)^{\frac{1}{m}}
$$

From Theorem 5, we get

$$
\frac{1}{m}\left[\sum_{i=1}^{m} \operatorname{Tr}\left(A_{i}\right)\right]>\left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{m}\right)\right|^{\frac{1}{m}}
$$

The proof is complete.

The above Theorem 6 generalizes the theorem in [3].
THEOREM 7. Let $A_{i}\left(1 \leq i \leq 2^{m}\right)$ be positive definite operators in C_{1}; then

$$
\begin{equation*}
\left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{2^{m}}\right)\right|^{2^{m}} \leq \prod_{i=1}^{2^{m}}\left[\operatorname{Tr}\left(A_{i}^{2^{m}}\right)\right] \tag{2}
\end{equation*}
$$

Proof. We will prove the above inequality by induction on m. If $m=1$, inequality (2) is obvious by Lemma 2. Now suppose that, for $m<p$, inequality (2) is true. If $m=p$, let

$$
\begin{aligned}
B_{i} & =A_{2^{p-i}} A_{2^{p-i}-1} \cdots A_{2} A_{1} A_{1} A_{2} \cdots A_{2^{p-i}-1} A_{2^{p-i}} \\
\text { and } \quad C_{i} & =A_{2^{p-i}+1} A_{2^{p-i}} \cdots A_{2^{p-(i-1)}} A_{2^{p-(i-1)}} \cdots A_{2^{p-i}} A_{2^{p-i}+1} \\
u_{i} & =\left|\operatorname{Tr}\left(B_{i}^{2^{i-1}}\right)\right|^{2^{p-i}}, \quad v_{i}=\left|\operatorname{Tr}\left(C_{i}^{2 i-1}\right)\right|^{2^{p-i}}, \quad 1 \leq i \leq p .
\end{aligned}
$$

We have

$$
\begin{aligned}
& u_{i}=\left|\operatorname{Tr}\left(B_{i}^{2^{i-1}}\right)\right|^{2 p-i} \\
& =\mid \operatorname{Tr}\left[\left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}}\right)\left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}}\right) \cdots\right. \\
& \left.\left(A_{2^{p-i}} \cdots A_{1}^{2} \cdots A_{2^{p-i}}\right)\right]\left.\right|^{2^{p-i}} \quad \text { (with } 2^{i-1} \text { bracketed factors) } \\
& =\mid \operatorname{Tr}\left[\left(A_{2^{p-i-1}} \cdots A_{1}^{2} \cdots A_{2^{p-i-1}}\right)\left(A_{2^{p-i-1}+1} \cdots A_{2^{p-i}}^{2} \cdots A_{2^{p-i-1}+1}\right) \cdots\right. \\
& \left.\left(A_{2^{p-i-1}} \cdots A_{1}^{2} \cdots A_{2^{p-i-1}}\right)\left(A_{2^{p-i-1}+1} \cdots A_{2^{p-i}}^{2} \cdots A_{2^{p-i-1}+1}\right)\right]\left.\right|^{2^{p-i}} \\
& \text { (by Lemma 1) (2 factors) } \\
& =\left|\operatorname{Tr}\left(B_{i+1} C_{i+1} \cdots B_{i+1} C_{i+1}\right)\right|^{2^{p-i}}, \quad(i \leq p-1) \quad\left(2^{i-1} \text { factors } B_{i+1} C_{i+1}\right) \\
& \leq\left|\left[\prod_{j=1}^{2^{i-1}}\left\{\operatorname{Tr}\left(B_{i+1}^{2^{i}}\right) \operatorname{Tr}\left(C_{i+1}^{2^{i}}\right)\right\}^{\frac{1}{2^{i}}}\right]\right|^{2^{p-i}} \quad \text { (by inductive hypothesis) } \\
& =\left|\operatorname{Tr}\left(B_{i+1}^{2^{i}}\right)\right|^{2^{p-i-1}} \cdot\left|\operatorname{Tr}\left(C_{i+1}^{2^{i}}\right)\right|^{2^{p-i-1}} \\
& \leq u_{i+1} \cdot v_{i+1} \quad(1 \leq i<p)
\end{aligned}
$$

that is, $u_{i} \leq u_{i+1} \cdot v_{i+1}, 1 \leq i<p$.
Since

$$
u_{p-1}=\left|\operatorname{Tr}\left(B_{p-1}^{2^{p-2}}\right)\right|^{2}=\left|\operatorname{Tr}\left\{\left(A_{2} A_{1}^{2} A_{2}\right)^{2^{p-2}}\right\}\right|^{2}
$$

$$
\begin{aligned}
& =\left|\operatorname{Tr}\left(A_{1}^{2} A_{2}^{2} A_{1}^{2} A_{2}^{2} \cdots A_{1}^{2} A_{2}^{2}\right)\right|^{2} \quad \text { (by Lemma 1) } \quad\left(2^{p-2} \text { factors } A_{1}^{2} A_{2}^{2}\right) \\
& \leq\left|\prod_{i=1}^{2^{p-2}}\left[\operatorname{Tr}\left\{\left(A_{1}^{2}\right)^{2^{p-1}}\right\} \cdot \operatorname{Tr}\left\{\left(A_{2}^{2}\right)^{2^{p-1}}\right\}\right]^{\frac{1}{2 p-1}}\right|^{2} \quad \text { (by inductive hypothesis) } \\
& =\operatorname{Tr}\left(A_{1}^{2^{p}}\right) \operatorname{Tr}\left(A_{2}^{2^{p}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
v_{p-1} & =\left|\operatorname{Tr}\left(C_{p-1}^{2^{p-2}}\right)\right|^{2}=\left|\operatorname{Tr}\left(A_{3} A_{4}^{2} A_{3}^{2} A_{4}^{2} \cdots A_{4}^{2} A_{3}\right)\right|^{2} \\
& =\left|\operatorname{Tr}\left(A_{3}^{2} A_{4}^{2} \cdots A_{3}^{2} A_{4}^{2}\right)\right|^{2} \quad(\text { by Lemma 1) } \\
& \leq\left|\prod_{i=1}^{2^{p-2}}\left[\operatorname{Tr}\left\{\left(A_{3}^{2}\right)^{2^{p-1}}\right\} \cdot \operatorname{Tr}\left\{\left(A_{4}^{2}\right)^{2^{p-1}}\right\}\right]^{\frac{1}{2^{p-1}}}\right|^{2} \\
& =\operatorname{Tr}\left(A_{3}^{2^{p}}\right) \operatorname{Tr}\left(A_{4}^{2^{p}}\right),
\end{aligned}
$$

$$
\leq\left|\prod_{i=1}^{2^{p-2}}\left[\operatorname{Tr}\left\{\left(A_{3}^{2}\right)^{2^{p-1}}\right\} \cdot \operatorname{Tr}\left\{\left(A_{4}^{2}\right)^{2^{p-1}}\right]\right]^{\frac{1}{2^{p-1}}}\right|^{2} \quad \text { (by inductive hypothesis) }
$$

we have

$$
u_{p-2} \leq u_{p-1} \cdot v_{p-1} \leq \operatorname{Tr}\left(A_{1}^{2^{p}}\right) \operatorname{Tr}\left(A_{2}^{2^{p}}\right) \operatorname{Tr}\left(A_{3}^{2^{p}}\right) \operatorname{Tr}\left(A_{4}^{2^{p}}\right)
$$

In exactly the same way, we can establish the following inequality.

$$
\begin{aligned}
& v_{p-2} \leq \prod_{i=5}^{8} \operatorname{Tr}\left(A_{i}^{2^{p}}\right) \\
& u_{p-3} \leq u_{p-2} v_{p-2} \leq \prod_{i=1}^{8} \operatorname{Tr}\left(A_{i}^{2^{p}}\right) \\
& \ldots \\
& u_{1} \leq \prod_{i=1}^{2^{p-1}} \operatorname{Tr}\left(A_{i}^{2^{p}}\right) \\
& v_{1} \leq \prod_{i=2^{p-1}+1}^{2^{p}} \operatorname{Tr}\left(A_{i}^{2^{p}}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
& \left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{2^{p}}\right)\right|^{2^{p}}=\left|\operatorname{Tr}\left[\left(A_{1} A_{2} \cdots A_{2^{p-1}}\right)\left(A_{2^{p-1}+1} \cdots A_{2^{p}}\right)\right]\right|^{2^{p}} \\
& \quad \leq\left|\operatorname{Tr}\left(A_{2^{p-1}} \cdots A_{1}^{2} \cdots A_{2^{p-1}}\right) \cdot \operatorname{Tr}\left(A_{2^{p-1}+1} \cdots A_{2^{p}}^{2} \cdots A_{2^{p-1}+1}\right)\right|^{2^{p-1}} \quad \text { (by Lemma 2) } \\
& \quad=u_{1} \cdot v_{1} \leq \prod_{i=1}^{2^{p}} \operatorname{Tr}\left(A_{i}^{2^{p}}\right)
\end{aligned}
$$

Finally, we present an open question:
Let $A_{i}(1 \leq i \leq m)$ be positive definite operators in C_{1}. Does the following inequality hold:

$$
\left|\operatorname{Tr}\left(A_{1} A_{2} \cdots A_{m}\right)\right|^{m} \leq \prod_{i=1}^{m}\left[\operatorname{Tr}\left(A_{i}^{m}\right)\right] ?
$$

References

[1] R. Bellman, 'Some inequalities for positive matrices', in: General inequalities 2. Proceedings, 2nd International Conference on General Inequalities (ed. E. F. Backenbach), (Birkhauser, Basel, 1980) pp. 89-90.
[2] J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand, New York, 1971).
[3] D. Singh, 'A trace inequality for operators', J. Math. Anal. Appl. 150 (1990), 159-160.
[4] Y. Yang, 'A matrix trace inequality', J. Math. Anal.Appl. 133 (1988), 573-574.
Department of Mathematics
Chongqing Normal University
Chongqing, 630047
CHINA

