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Abstract

In this paper, we obtain some trace inequalities for arbitrary finite positive definite operators. Finally an
open question is presented.

1991 Mathematics subject classification (Amer. Math. Soc): 47A63.
Keywords and phrases: trace inequality, positive definite operators.

In 1978, after giving some trace inequalities for positive definite matrices, R. Bellman
brought attention to two open questions [1]. One of the questions asks: Is there
a matrix analogy of the arithmetic mean - geometric mean inequality (for positive
definite matrices)? Y. Yang [4] proved that the answer to the above question is
affirmative for two positive definite matrices. Recently Dinesh Singh [3] generalized
the result of Yang to infinite-dimensional spaces.

In this paper, we generalize the trace inequality in [3] from two positive definite
operators to an arbitrary finite number of positive definite operators.

Throughout, Cp (1 < p < oo) stands for the class of all bounded operators A on
an infinite-dimensional separable Hilbert space H, such that YlT=i \(Aen>

 e»)\P < ° °
for each orthonormal basis {en}f in H. Let {en} be any orthonormal basis in H. Let
Tr : C\ —• C (complex numbers) be defined by

n = l

It is easy to see that Tr is independent of {en} [2, Lemma 2.2.1], and since Cx consists
of compact operators [2, Theorem 2.1.6], Tr (A) is the sum of the eigenvalues of A.
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Furthermore, Tr defines an inner product on C2 given by

(A,B) =Tr(BM)

where B is the adjoint of B. This inner product makes C2 into a Hilbert space [2,
Theorem 2.4.2]. Clearly Cx is contained in C2.

We now state and prove our results as following.

LEMMA 1. Let Abe a positive definite operator in C\ and B be a operator in C\.
Then
(1) Tr(Afl) = lr(BA)

PROOF. Choose an orthonormal basis {en }f of H such that each en is an eigenvector
for A with corresponding eigenvalue an. Since A > 0, each an > 0. Let y3n =
(Ben,en). Then

Tr(AB) = f:(ABen,en) = Z(Ben, Aen)
n=\ n=l

n=\ n=\

OO OO

Tr{BA) = YKBAe»>en) = T,(Aen,B*en)
n=\ n=\

OO OO

n=l

Hence (1) is proved.

By the Cauchy-Schwartz inequality, we have

LEMMA 2. Let A, B be two operators in C\; then

Tr(Afl) < |Tr(AB)| < y/lv{AA*) • y/Tr (BB*).

LEMMA 3. ([3]). Let A, B be two positive definite operators in Cu then

TT(AB) <Tr(A)Tr(fi).

LEMMA 4. Let A, {\ < i < m) be positive definite operators in Cu' then
m m

Tr {(A, A2 •••Am) (A1A2 • • • Am)*} < f ] T r (Aj) < f ] (Tr (A,))2 .
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PROOF.

Tr {(A, A2 • • • Am) (A, A2 • • • Amf} = Tr {A, (A2 • • • Am) (A2 • • • Am)* A?}
= Tr {(A*A{) (A2 • • • Am) (A2 • • • Am)*} (by Lemma 1)
< T r ( A J A 1 ) T r { ( A 2 - - - A m ) ( A 2 - - - A m r } (by Lemma 3)

m

< Tr (A2) Tr (A2
2) • • • Tr (A2

m) < ]~[ [Tr (A,)]2. (by Lemma 3)

The proof is complete.

THEOREM 5. Let A, (1 < / < m) be positive definite operators in C\; then
m

|Tr(A1A2---Am)| < n T r ( A ' ) ' m^2-1=1

PROOF. By Lemma 2 and Lemma 4, we get

|Tr(A,A2---Am)| = |Tr[A1(A2---Am)]|

•{AXA*}) • v /Tr[(A2--Am) (A2 • • • Am)*] < f { T r ( ^ )

The proof is complete.

THEOREM 6. Let A, (1 < / < m) be positive definite operators in Ct; then

- f]Tr(A,) > |Tr(A1A2-.-Am)|".m lh J
PROOF. By the arithmetic mean - geometric mean inequality for m positive real

numbers, we have

From Theorem 5, we get

- VTr (A , ) > |Tr(A,A2.-.Am)|-.

The proof is complete.
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The above Theorem 6 generalizes the theorem in [3].

THEOREM 7. Let A, (1 < / < 2m) be positive definite operators in Cx; then

(2)

PROOF. We will prove the above inequality by induction on m. If m = 1, inequal-
ity (2) is obvious by Lemma 2. Now suppose that, for m < p, inequality (2) is true.
Ifm — p, let

Bt = A2P-iA2P->-\ • • • A2Ai AiA2 • • • A2P-/_I AV-I

a n d Cj = A2p-i+iA2P-i • • • A2p-«-n A2P-v-n • • • A2 P-. A2p-i+i

Ui = "" '""" u m '"'" u

We have

M, =
2'"

Tr [(A2,-, • • • A\ • • • A2P-,) (A2P-> • • • A? • • • A2P-,) • • •

.2p->

(A2P-i • • • A] • • • A 2 P - . ) ] (with 2'"1 bracketed factors)

T r [(A2 P- .- i • • • A] • • • A2p-i-<) (A 2 ? - i - i + i • • • A\p-, • • • A 2 P - , - i + 1 ) • • •

( A 2 P - / - I • • • A] • • • A ^ - i - i ) ( A 2 P - . - - I + I • • • A\p-, • • • A2p-,--i+i)]

(by Lemma 1) (2' factors)

, ( i < p - l ) (2-1 factors Bi+1Ci+l)

(by inductive hypothesis)

that is, ut < ui+l • vi+i, 1 < i < p.
Since

Up-l = Tr
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Tr (A\A\A\A\ • • • A2Al) I (by Lemma 1) (2p-2 factors A2A2)

(by inductive hypothesis)

and

Tr (A2
3Al • • • A2

3A
2
4) I (by L e m m a 1)

(by inductive hypothesis)

we have

Up-2 < «p-i • Vp-i < Tr (A2") Tr (Af) Tr (Af) Tr (Af) .

In exactly the same way, we can establish the following inequality.

8

i = 5

1=1

n
Therefore we obtain

12'

Tr(A,A2---A2,) = Tr[(A,A2

,2"-'
Tr (A2,-. • • • A2 • • • A2,-.) • Tr (A2 P-.+ 1 • • • A\p • • • A2,- ,+ 1) | (by Lemma 2)

2"

= ui.vi<Y\Tr(A2P).
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Finally, we present an open question:
Let A, (1 < / < m) be positive definite operators in C\. Does the following

inequality hold:
m

lr{AxA2---Am) <
i=\
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