THE NON-BIPLANAR CHARACTER OF
 THE COMPLETE 9-GRAPH

W. T. Tutte
(received October 22, 1962)

1. Introduction. Let us define a planar partition of a graph G as a pair $\left\{H_{1}, H_{2}\right\}$ of subgraphs of G with the following properties
(i) Each of H_{1} and H_{2} includes all the vertices of G.
(ii) Each edge of G belongs to just one of H_{1} and H_{2}.
(iii) H_{1} and H_{2} are planar graphs.

It is not required that H_{1} and H_{2} are connected. Moreover either of these graphs may have isolated vertices, incident with none of its edges.

We describe a graph having a planar partition as biplanar.
The problem of characterizing biplanar graphs has been found of interest in connection with the design of computing machinery. The simplest graph for which the problem has proved difficult is the complete 9 -graph. This graph has 9 vertices and 36 edges, each pair of vertices being joined by a single edge.

The complete 9-graph has been proved non-biplanar in [2]. The object of this note is to present another proof which, so Professor Harary assures me, has its own points of interest.

[^0]Canad. Math. Bull. vol. 6, no. 3, September 19ł²
2. Triangulations of the sphere. Assume that the complete 9 -graph G has a planar partition $\left\{H_{1}, H_{2}\right\}$. Then H_{1} can be realized as a topological graph K_{1} in the 2-sphere. If two vertices of the realization lie in the boundary of the same residual region, and are not joined by an edge of K_{1}, they can be joined by an arc L in the residual region. Then we can transfer an edge from H_{2} to H_{1} so that the new edge of H_{1} is represented by L. Both H_{1} and H_{2} remain planar in this operation. Repeating the process sufficiently often we can arrange that K_{1} defines a map on the sphere whose faces are all triangular. We call such a map a triangulation (of the sphera).

The complementary graph G^{1} of a graph G is defined as a graph with the same vertices as G, and in which two distinct vertices are joined by an edge if and only if they are not so joined in G. The graph G' has no "loops", that is edges with coincident ends. We deduce from the foregoing considerations the following theorem
(2.1) The assertion that the complete 9-graph is not biplanar is equivalent to the assertion that if the graph of a triangulation has 9 vertices then its complementary graph is not planar.

Let M be a triangulation of the sphere, defined by a graph K. A separatingtriangle of M is a triangle, made up of three edges of K, which does not bound a face of M. That is, the triangle has vertices of K in both its residual dornains. A triangulation with no separating triangles will be called simple.

A triangulation having a separating triangle T can be derived from a triangulation of fewer vertices, in which T bounds a face F, by subdividing F into smaller triangular regions. By repeated application of this observation we obtain
$(2,2)$ If a triangulation is not simple it can be derived from some simple triangulation of 4 or more vertices by subdividing one or more faces into smaller triangular regions.

A subdivision of a face will be said to be of order n if it introduces just n new vertices.

We shall use (2.2) to reduce our problem to a study of simple triangulations of from 4 to 9 vertices. Fortunately there are so few of the se triangulations that they can be studied individually. Figures I, II, III, IV, and V show those of 4, 6, 7,8 and 9 vertices respectively. There is no simple triangulation of 5 vertices.

Figure I

Figure III

Figure IV

Figure V

In Figure II the four outer edges are supposed to radiate to a sixth vertex a_{1} at infinity (in a sterographic projection of the sphere). The point at infinity is also a vertex in Figure III, in the first diagram of Figure IV and in the first and second diagrams of Figure V.

Before going any further we must show that our list of simple triangulations of from 4 to 9 vertices is complete.

Let M be a simple triangulation defined by a graph K. Let it have n vertices, where $4 \leq n \leq 9$.

We observe that no two faces of M have the same three vertices. Otherwise they would have the same boundary, their union with it would be the whole sphere, and n would be 3 . Hence no two faces have two sides in common, and therefore the valency of each vertex is at least 3.

Let v be a vertex of valency k. Its k incident faces, with their incident edges and vertices, constitute a closed simply connected region R_{V} bounded by a polygon P_{v} made up of k vertices and k edges of K. If we count v as being "inside" P_{v} the other $n-k-1$ vertices of M not on P_{v} will be outside P_{V}. We note that P_{V} has no diagonal in K, that is no edge of K joins two non-consecutive vertices of P_{v}. For such a diagonal, together with the edges of K joining its two ends to v , would constitute a separating triangle.

Let a be a vertex of M of maximum valency m. Suppose first that there is no vertex outside P_{a}. Then $m=3$ and $n=4$ for otherwise the outside of P_{a} would be subdivided into two or more faces and P_{a} would have a diagonal in K. This is the case illustrated in Figure I.

In the remaining case $m \geq 4$ and $n \geq 6$, since otherwise P_{a} would be a separating triangle.

Suppose there is just one vertex, b say, outside P_{a}. Each edge of P_{a} is incident with a face not having \quad a 0
vertex. Since P_{a} has no diagonal in K this face must be incident with b. Hence each vertex of P_{a} is joined to b by an edge of M. This is the case illustrated by Figures II and III and the first diagrams of Figures IV and V.

In the remaining case there are at least two vertices outside P_{a}. If b is any one of the se it is joined by an edge of K to another. For suppose not. Let c be any vertex, other than b, outside P_{a}. The edges incident with b join it only to vertices of P_{a}, and any two consecutive ones are sides of a face having b as a vertex. Since P_{a} has no diagonal in K it follows that b is joined to each vertex of P_{a}. The edges incident with b thus subdivide the exterior of $P a$ into faces. One of these has c in its interior and a in its exterior, contrary to the hypothesis that M is simple.

We have shown that K has edges with both ends outside P_{a}. At least one such edge must be incident with a face whose third vertex, x say, is on P_{a}. But then x is at least pentavalent. So in the case still outstanding $m \geq 5$ and $n \geq 8$.

Suppose two vertices b and c outside P_{a} are joined by an edge $b c$ of K, and that the two faces incident with $b c$ have their third vertices, x and y say, on P_{a}. The points x and y partition P_{a} into two arcs L and L^{\prime}. We may suppose that the arcs xby and xcy subdivide the exterior of P_{a} into three regions, S_{1} bounded by L and $x b y, S_{2}$ bounded by xby and xcy, and S_{3} bounded by $x c y$ and L^{\prime}.
We observe that L must have at least one internal vertex, that is a vertex distinct from x and y, for otherwise L and xcy would define a separating triangle. Similarly L^{\prime} has at least one internal vertex.

If $m=5$ we may suppose L to have one internal vertex u and L^{\prime} to have two, v and w say, w being adjacent to

Figure VI

Now x is already joined to a, b, c, u and v. Since its valency is at most 5 we have to complete the triangles $x b u$ and xcv. Similarly, replacing x by y, we must complete the triangle cwy. We cannot insert a third vertex outside P_{a} without introducing a separating triangle. We have now constructed the second diagram of Figure IV.

If $\mathrm{m}=6$ there are two possibilities. Either L has one internal vertex and L^{\prime} has three, or L and L^{\prime} have two each. In each case we can complete the triangulation only by joining b to all the internal vertices of L and c to all those of $L^{\text {: }}$. The two resulting triangulations correspond to the second and third diagrams of Figure V.

In the remaining case $m=5$, there are just three vertices b, c and d outside P_{a}, and the se are the vertices of a face of M. The second faces incident with $b c, d b$ and $c d$ have vertices x, y and z respectively on P_{a}. The vertices x, y and z must be distinct. If for example $x=y$ then the edges $d b, d x$ and $b x$ define a separating triangle. The vertices x, y and z separate P_{a} into three arcs $L_{x y}, L_{y z}$ and $L_{x z}$, where the suffices indicate the ends of the corresponding arc
(Figure VII).

Figure VII

We can only complete the triangulation by joining b to the internal vertices of $L_{x y}, c$ to those of $L_{x z}$ and d to those of $L_{y y z_{e}}$. Hence, since $m=5$, we may suppose $L_{x y}$ and $L_{y z}$ to have one internal vertex each, while $L_{x z}$ has none. We are then forced to construct the fourth diagram of Figure IV.

Another way to establish the completeness of our list of simple triangulations would be to make use of the enumerative results of [4].
3. Tests for non-planarity. The theorem of Kuratowski on non-planar graphs is well known [1, 3]. It states that a graph is non-planar if and only if one of its subgraphs is a subdivision of the Thomsen graph or the complete 5-graph. The Thomsen graph has 6 vertices $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, and 9 edges, each a_{i} being joined to each b_{j} by a single edge. The complete 5 -graph has 5 vertices $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, and 10 edges, each pair of vertices being joined by a single edge. Subdivision is effected by breaking some edges into arcs of two or more new edges by inserting internal vertices.

From this theorem we may derive the following corollary.
(3.1) A graph G is non-planar if one of the following propositions is true
(i) G has six disjoint connected subgraphs A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3} such that for each A_{i} and each B_{j} we can find an $\underline{\text { edge with one end in }} A_{i}$ and the other in B_{j}.
(ii) G has five disjoirt connected subgraphs A_{1}, A_{2}, A_{3},
A_{4} and A_{5} such that whenever $1 \leq i<j \leq 5$ we can find an edge with one end in A_{i} and the other in A_{j}.

The proof is straightforward and may legitimately be left to the reader.

We shall use (3.1) to test the complementary graphs of triangulations for non-planarity. It will be convenient to have the following auxiliary theorems.
(3.2) Let N, defined by a graph J, be a triangulation of the sphere. Let it have a separating triangle T with three vertices a_{1}, a_{2} and a_{3} on one side and three vertices b_{1}, b_{2} and b_{3} on the other. Then the complementary graph $J^{\prime \prime}$ of J is nonplanar.

Proof. J' contains a Thomsen graph with vertices a_{1}, $a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$.
(3.3) Let N, defined by a graph J, be a triangulation of the sphere. Let $Q=a b c d$ be a quadrilateral in J with two vertices u and v in one residual domain and three vertices x, y and z in the other. Suppose further that no edge of Jjoins a and c, or b and d. Then either J^{\prime} is non-planar or one of the vertices x, y and z is joined to all four of a, b, c and d by edges of J.

Proof. Suppose neither x, y nor z is joined to both a and c in J. Let B_{1} be the connected subgraph of J^{\prime} defined by the vertices a and c and the edge joining them. Let A_{1},
A_{2}, A_{3}, B_{2} and B_{3} be subgraphs of J. consisting of the single vertices x, y, z, u and v respectively. Then condition (i) of (3.1) holds for J^{2}, and therefore J^{\prime} is non-planar.

Similarly J^{\prime} is non-planar if neither x, y nor z is joined to both b and d in J.

In the remaining case we may suppose x joined to a and c in J, and some $w \varepsilon\{x, y, z\}$ joined to b and d in J. But the arcs axc and bwd, which lie in the same residual domain of Q, must cross. Hence $w=x$.
4. The triangulations of 9 vertices. Let N, defined by a graph J, be any triangulation of the sphere with 9 vertices. By (2.2) it is either simple or derived from a simple triang lation M , defined by a graph K with at least 4 vertices, by subdividing one or more of its faces. In case of ambiguity M is to be chosen to have as many vertices as possible.

Suppose first that N is one of the triangulations of Figure V. For the first three J^{\prime} is non-planar by (3.3). The required quadrilateral $Q=a b c d$ is marked in each diagram.

For the fourth diagram let $A_{i},(i=1,2,3)$, be the connected subgraph of Jt^{t} defined by a_{i} and c_{i}, with the edge joining them. Let B_{i} consist of the single vertex b_{i}. Then condition (i) of (3.1) holds for J^{\prime}, whence J^{t} is nonplanar.

Next suppose M is one of the triangulations of Figure IV. Then N is formed from M by subdividing one face, the order of the subdivision being 1 . J^{t} is non-planar by (3.3). The required quadrilateral abcd is again marked in each diagram.

Next suppose M is the triangulation shown in Figure III. Two new vertices are introduced by the subdivision. Suppose first that they are in two different faces of M not incident with the same edge of the pentagon abcde. Then they can be separated by a quadrilateral such as dxby, and $\mathrm{J}^{\text {l }}$ is nonplanar by (3.3).

In the remaining alternative with Figure III the two new vertices may be supposed to be in triangles $x a b$ and yab, possibly in the same one of these triangles. Let the new vertices be v and w. We may suppose the notation adjusted so that v and x are not joined in J. It is clear that w is not joined to both x and y in J. Let A_{1} be the connected subgraph of Jr^{\prime} defined by the edges ad and bd. Let A_{2} be the one defined by the edges $x y$ and $v x$. Let A_{3}, A_{4} and A_{5} consist of the single vertices c, e and w respectively. Then J^{\prime} satisfies condition (ii) of (3.1) and is thus non-planar.

Next we suppose that M is the triangulation shown in Figure II. Three new vertices b_{1}, b_{2} and b_{3} are introduced by the subdivision. Let $A_{i},(i=1,2,3)$, be the connected subgraph of J^{\prime} defined by the edge $a_{i} c_{i}$, and let B_{i} be the one consisting of the single vertex b_{i}. Then J^{3} satisfies condition (i) of (3.1) and is thus non-planar.

In the remaining case M is the triangulation of Figure I. Suppose the face $x y z$ has a subdivision of order s. Then the orders of the subdivisions of the other three faces sum to 5-s. Given a separating triangle T with all its vertices inside or on the boundary of the face $x y z$, and which is not $x y z$ itself, we can consider the operation of fusing all the faces, edges and vertices inside T so that they become a single face. Repeating this procedure sufficiently often we obtain a simple triangulation M_{1} with at least four vertices, one of its faces being the exterior of the face $x y z$ of M. Evidently N is a subdivision of M_{1} and the associated subdivision of the face $x y z$ of M_{1} is of order 6-s.

But by the choice of M the triangulation M_{1} still has only four vertices. It too can be represented by Figure 1.

If $s=5$ then $6-s=1$, and no face of M_{1} has a subdivision of order higher than 4.

If $s=4$ then $6-s=2$, and no face of M_{1} has a subdivision of order higher than 3.

We can therefore reduce to the case in which no face of M has more than three new vertices of N in its interior.

If now some face of M contains three new vertices of N the graph J^{t} is non-planar by (3.2).

In the remaining case let the 5 new vertices of N be a, b, c, d and e. If two belong to the same face of M distinguish one as the leading vertex of that face. If a is the leading vertex of a face F of M define A as the connected subgraph of J^{\prime} given by the edge $a x$, where x is the vertex of M not incident with F. Otherwise let A consist of the single vertex a. Define B, C, D and E similarly. Then J^{1} satisfies condition (ii) of (3.1) and is thus non-planar.

This completes the proof that every triangulation of 9 vertices has a non-planar complementary graph. It now follows from (2.1) that the complete 9 -graph is not biplanar.

REFERENCES

1. G. A. Dirac and S. Schuster, A theorem of Kuratowski, Proc. of the Nederl. Ak. W., 57 (1954), 343-348.
2. J. Battle, F. Harary and Y. Kodama, Every planar graph with nine points has a non-planar complement, Bull. Amer. Math. Soc., 68 (1962), 569-571.
3. C. Kuratowski, Sur le problème des courbes gauches en Topologie, Fundam. Math., 15 (1930), 271-283.
4. W.T. Tutte, A census of planar triangulations, Can. J. Math. 14 (1962), 21-38.

University of Waterloo

[^0]: This research was sponsored by the Institute for Defense Analyses of the U.S.A.

