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ON THE ACTION OF THE SPORADIC SIMPLE BABY
MONSTER GROUP ON ITS CONJUGACY CLASS 2B

JÜRGEN MÜLLER

Abstract

We determine the character table of the endomorphism ring
of the permutation module associated with the multiplicity-
free action of the sporadic simple Baby Monster group B on
its conjugacy class 2B, where the centraliser of a 2B-element
is a maximal subgroup of shape 21+22.Co2. This is one of the
first applications of a new general computational technique to
enumerate big orbits.

1. Introduction

The aim of the present work is to determine the character table of the endomorphism
ring of the permutation module associated with the multiplicity-free action of the
Baby Monster group B, the second largest of the sporadic simple groups, on its
conjugacy class 2B, where the centraliser of a 2B-element is a maximal subgroup
of shape 21+22.Co2. The final result is given in Table 4.

In general, the endomorphism ring of a permutation module reflects aspects of
the representation theory of the underlying group. Its character table in particular
encodes information about the spectral properties of the orbital graphs associated
with the permutation action, such as distance-transitivity or distance-regularity, see
[14, 5], or the Ramanujan property, see [7]. Here multiplicity-free actions, that is
those whose associated endomorphism ring is commutative, have been of particular
interest; for example a distance-transitive graph necessarily is an orbital graph
associated with a multiplicity-free action.

The multiplicity-free permutation actions of the sporadic simple groups and the
related almost quasi-simple groups have been classified in [3, 16, 2], and the as-
sociated character tables including the one presented here have been collected in
[4, 20]. In particular, the Baby Monster group B has exactly four multiplicity-free
actions. In order of increasing degree these are the actions on the cosets of a max-
imal subgroup of shape 2.2E6(2).2, on the cosets of a subgroup of shape 2.2E6(2)
which is of index 2 in 2.2E6(2).2, on the cosets of a maximal subgroup of shape
21+22.Co2, and on the cosets of a maximal subgroup isomorphic to the sporadic
simple Fischer group Fi23.

The character tables associated with the first two B-actions have been determined
in [10], while the remaining ones have already been computed in [21]. For the B-
action on the cosets of 21+22.Co2, the sizes of the (21+22.Co2)-orbits are already
given in [14], up to a typo we are going to correct first. Moreover, the intersection
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Baby Monster action

matrix of the shortest non-trivial (21+22.Co2)-orbit, given in Table 3, has been de-
termined independently in [26, 27], using a ‘by hand’ strategy exploiting geometric
arguments which yield a wealth of combinatorial data about the associated orbital
graph.

Here we pursue a computational strategy aiming straightforwardly at determining
intersection matrices. Due to the sheer size of the permutation domains underlying
the larger two B-actions, a new general computational technique to handle these
has been devised in [21]. This technique has been elaborated and analysed fully in
[23], and has now been incorporated into the GAP [9] package ORB [22]. Moreover,
in [23] it is also reported on the computations concerned with the B-action on the
cosets of Fi23, and in particular on the relation of this action to the conjugation
action of the sporadic simple Monster group on its 6-transpositions. The aim of the
present paper is to report on the computations concerned with the B-action on the
cosets of 21+22.Co2, completing the picture for the multiplicity-free actions of B.

The present paper is organised as follows. In Section 2 we recall the necessary facts
about permutation modules, endomorphism rings and their character tables. In
Section 3 we give a rough outline of the orbit enumeration technique applied, in
particular explaining which input data has to be provided. In Section 4 we specify
the data needed for the action of B on the cosets of 21+22.Co2, and show how the
results of orbit enumerations are actually used to determine the character table
associated with this action.

2. Endomorphism rings and their character tables

We recall the necessary facts about permutation modules and their endomorphism
rings; as general references see [32, 1].

2.1.
Let G be a finite group, let H � G and let n := [G : H ]. Let X �= ∅ be a transitive

G-set such that StabG(x1) = H , for some x1 ∈ X , hence we have n = |X |. Let
X =

∐r
i=1 Xi be its decomposition into H-orbits, where r ∈ N is called the rank

of X . For all i ∈ {1, . . . , r} we choose xi ∈ Xi and gi ∈ G such that x1gi = xi,
where we assume g1 = 1 and X1 = {x1}, and we let Hi := StabH(xi) � H and
ki := |Xi| = |H|

|Hi| .

For i ∈ {1, . . . , r}, the orbits Γi := [x1, xi]G ⊆ X×X of the diagonal action of G on
X × X are called orbitals. If i∗ ∈ {1, . . . , r} is defined by Γi∗ = [xi, x1]G ⊆ X × X ,
then Xi∗ ⊆ X is called the H-orbit paired to Xi; in particular we have ki∗ = ki.
Let Ai = [ai,x,y] ∈ {0, 1}n×n, with row index x ∈ X and column index y ∈ X , be
defined by ai,x,y = 1 if and only if [x, y] ∈ Γi.

Let ZX be the permutation ZG-module associated with the G-set X , and let E :=
EndZG(ZX) be its endomorphism ring. By [28], see also [15, Ch.II.12], the set
{Ai; i ∈ {1, . . . , r}} ⊆ E is a basis of E, called its Schur basis. It can also be
considered as a basis of EC := E⊗Z C ∼= EndCG(CX), which is a split semisimple C-
algebra. Moreover, E is commutative if and only if the permutation character 1G

H ∈
ZIrr(G) associated with the G-set X is multiplicity-free, that is all the constituents
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of 1G
H occur with multiplicity 1, where Irr(G) denotes the set of irreducible C-valued

characters of G.

For i ∈ {1, . . . , r} let Pi = [ph,i,j] ∈ Zr×r, with row index h ∈ {1, . . . , r} and
column index j ∈ {1, . . . , r}, be the representing matrix of Ai for its right regular
action on E, with respect to the Schur basis, thus we have AhAi =

∑r
j=1 ph,i,jAj .

Hence E → Zr×r : Ai 	→ Pi, for i ∈ {1, . . . , r}, is a faithful representation of E.
The matrices Pi, whose entries are given as ph,i,j = |Xh ∩ Xi∗gj| ∈ N0, are called
intersection matrices.

The first row and the first column of Pi are given as p1,i,j = δi,j and ph,i,1 = khδh,i∗ ,
where δ·,· ∈ {0, 1} denotes the Kronecker function, and the column sums of Pi are
given as

∑r
h=1 ph,i,j =

∑r
h=1 |Xh ∩Xi∗gj| = ki, for all j ∈ {1, . . . , r}. Moreover, we

have kj · |Xh ∩ Xi∗gj | = kh · |Xj ∩ Xigh|, implying kjph,i,j = khpj,i∗,h. Thus from∑r
j=1 |Xj ∩ Xigh| = ki depending on h ∈ {1, . . . , r} we get the weighted row sums

of Pi as
∑r

j=1 kjph,i,j = khki.

2.2.
From now on suppose E is commutative. Letting Irr(E) be the set of irreducible

C-valued characters of EC, we have |Irr(E)| = r, and λ(A1) = 1 for all λ ∈ Irr(E).
The character table of E is defined as the matrix ΦE := [λ(Ai)] ∈ Cr×r, with
row index λ ∈ Irr(E) and column index i ∈ {1, . . . , r}; hence in particular ΦE is
invertible. There is a natural bijection, called the Fitting correspondence, between
Irr(E) and the constituents of 1G

H ; the Fitting correspondent of λ ∈ Irr(E) is denoted
by χλ ∈ Irr(G). We have n

χλ(1) =
∑r

i=1
||λ(Ai)||2

ki
, where || · || denotes the complex

absolute value; thus degrees of Fitting correspondents are easily computed from
ΦE .

Let Q ⊆ K be the algebraic number field generated by the character values {χλ(g) ∈
C; λ ∈ Irr(E), g ∈ G}. Hence by [8, La.IV.9.1] the χλ are realisable over K. Thus
by Schur’s Lemma the Ai ∈ E are simultaneously diagonalisable over K. Hence K
is a splitting field of E, the eigenvalues of Ai are the character values λ(Ai), which
are algebraic integers in K, and we have ΦE ∈ Kr×r.

The character table ΦE and the intersection matrices Pi are related as follows.
If ΦE is given, we have Pi = Φtr

E · diag[λ(Ai); λ ∈ Irr(E)] · Φ−tr
E , where diag[·] ∈

Cr×r denotes the diagonal matrix having the indicated entries. Hence the Pi are
easily computed from ΦE . Conversely, if all the Pi are given, the set of rows
{[λ(A1), . . . , λ(Ar)] ∈ Cr; λ ∈ Irr(E)} of ΦE is the unique basis of Cr consist-
ing of simultaneous row eigenvectors of all the P tr

i ∈ Cr×r and being normalised to
have 1 as their first entry. Hence ΦE can already be determined from a subset of
the P tr

i , as soon as the associated set of simultaneous normalised row eigenvectors
is uniquely determined. Actually, we will pursue the extreme strategy to compute
ΦE from a single non-identity intersection matrix.

3. Enumeration of big orbits

To handle a finite G-set X , where G is a finite group acting from the right, using
standard orbit enumeration techniques, see [11], every point in X eventually has to
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be stored. If X is too big to be stored completely, this is no longer feasible. We give
a rough outline of the new orbit enumeration technique remedying this; for more
details see [21, 23, 22].

3.1.
The basic idea, invented independently in [24, 17], is not to store single points in

X , but to enumerate X by enumerating the U -orbits contained in X , where U � G
is a suitable helper subgroup, and only storing suitable representatives of each U -
orbit. To this end, let Y be another finite U -set admitting a homomorphism of
U -sets : X → Y . The most common case for this setting is that X ⊆ M , where M
is an FG-module for some field F , such that there is an FU -module homomorphism
π : MU → M ′, where MU is the restriction of M to U and M ′ is a suitable FU -
module, such that we may let Y := Xπ ⊆ M ′ and let be the restriction of π to
X ⊆ M .

Now, for any U -orbit in Y we arbitrarily designate a U -minimal point in it, and
a point x ∈ X is called U -minimal if x ∈ Y is U -minimal. To enumerate X we
only store the U -minimal points in X . More precisely, to perform an orbit-stabiliser
algorithm for a G-orbit x1G ⊆ X , in a way eventually facilitating iteration in 3.2, we
devise the following procedures. For any point x ∈ X the procedure MinimaliserU (·)
computes an element u ∈ U such that xu ∈ X is U -minimal, and for any U -minimal
point x ∈ X the procedure BarStabiliserU (·) computes StabU (x) � U and its order.
These are used as follows.

Given a point x′ ∈ X , applying u := MinimaliserU (x′) ∈ U yields the U -minimal
point x := x′u ∈ X . Hence by looking up whether x has already been stored, we de-
cide whether the U -orbit xU = x′U ⊆ X has been encountered earlier. If xU is a new
U -orbit, the U -minimal points in xU and the stabiliser StabU (x) � U are computed
by a standard orbit-stabiliser algorithm using StabU (x) = BarStabiliserU (x) � U . If
xU has been touched upon before, we collect a Schreier generator of StabG(x1) � G.

To perform this we assume that orders of subgroups of G, given by sets of generators,
can be determined, for example by using a suitable permutation representation of G.
Moreover, the StabU (x)-orbits occurring have to be small enough to be enumerable
by a standard orbit-stabiliser algorithm.

The helper subgroup U � G is chosen optimally if it only has regular orbits in
Y . In this case, storing only the U -minimal points in X , compared to storing all
points in X , yields a memory saving factor of ∼ |U |, and since for enumeration the
generators of G essentially have to be applied to the U -minimal points only we also
get a time saving factor of ∼ |U |; moreover, we have StabU (x) = {1} for all x ∈ X ,
hence the StabU (x)-orbits in X are as small as possible anyway.

Typically Y cannot be chosen to consist of regular U -orbits only, but just to have
many U -orbits yU ⊆ Y such that |StabU (y)| is small. These U -sets in practice turn
out to be very effective as well, in particular if we are content with enumerating
only the usually large part of X consisting of those U -orbits xU ⊆ X such that
|StabU (x)| is small.
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3.2.
The idea in [21, 23] now is to iterate the helper subgroup trick. Let V � U � G

be helper subgroups, such that the index [U : V ] is small enough such that a left
transversal L of V in U can be computed explicitly. Moreover, let Z be a V -set,
let ˜: Y → Z be a homomorphism of V -sets, and assume that we already given
procedures MinimaliserV (·) and BarStabiliserV (·) with respect to the map ˜.

Hence the U -orbits in Y can be enumerated by V -orbits, and we have a notion of
V -minimal points in Y . For any U -orbit in Y we designate a U -minimal point y ∈ Y
amongst the V -minimal points in it, and still a point x ∈ X is called U -minimal
if x ∈ Y is U -minimal. Moreover, for any V -minimal point y′ ∈ yU \ yV we store
an element u ∈ L ⊆ U such that y′u ∈ yV ⊆ Y , and for any V -minimal point
y′ ∈ yV ⊆ Y we store an element v ∈ StabV (ỹ) = BarStabiliserV (y) � V such that
y′v = y ∈ Y is the U -minimal point in yU . With these preparations done, we are
able to devise procedures MinimaliserU (x) and BarStabiliserU (x) with respect to the
map .

Given a point x ∈ X , let xU = yU ⊆ Y , where y ∈ Y is the U -minimal point
in yU . Let v′ := MinimaliserV (x) ∈ V , hence y′ := xv′ ∈ yU ⊆ Y is V -minimal.
Thus we have stored an element u ∈ L ⊆ U such that y′′ := y′u ∈ yV ⊆ Y . Let
v′′ := MinimaliserV (y′′) ∈ V , hence y′′′ := y′′v′′ ∈ yV ⊆ Y is V -minimal. Thus
we have stored an element v ∈ StabV (ỹ′′′) = BarStabiliserV (y′′′) � V such that
y′′′v = y ∈ Y . Hence in conclusion we have xv′uv′′v = y ∈ Y being U -minimal, and
we let MinimaliserU (x) := v′uv′′v ∈ U . Finally, if x ∈ X already is U -minimal, then
y := x ∈ Y is U -minimal as well, hence BarStabiliserU (x) = StabU (y) � U is found
by enumerating the U -orbit yU ⊆ Y by V -orbits.

3.3.
Hence this may be iterated along chains {1} =: U0 � U1 � U2 � · · · � Uk �

Uk+1 := G of helper subgroups, for some k ∈ N, admitting Ui-sets Yi and homo-
morphisms of Ui-sets Yi+1 → Yi, for i ∈ {1, . . . , k}, where we let Yk+1 := X . Here,
while [G : Uk] is allowed to be arbitrary, we assume that all the indices [Ui : Ui−1],
for i ∈ {1, . . . , k}, are small enough such that left transversals of Ui−1 in Ui can be
computed explicitly.

Letting Y0 be the singleton U0-set, each point in Y1 is U0-minimal anyway, and
MinimaliserU0(·) and BarStabiliserU0(·) are trivial procedures always returning 1 ∈ U0

and {1} � U0, respectively. Hence we may proceed by induction along the sub-
group chain as described in 3.2. Again the most common case is that Yi ⊆ Mi, for
i ∈ {1, . . . , k + 1}, where Mi is an FUi-module for some field F , such that the ho-
momorphisms of Ui-sets Yi+1 → Yi are restrictions of FUi-module homomorphisms
πi : (Mi+1)Ui → Mi.

Note that, for example if we already know the sizes of the G-orbits in X , we might
want to restrict ourselves to a simple orbit algorithm for the G-set X without
determining stabilisers in G. In this case, stabiliser computations only take place
in Uk, hence we only have to be able to determine orders of subgroups of Uk, which
can be done for example by specifying a suitable permutation representation of
Uk only, or just by sifting through the subgroup chain using the left transversals
available anyway.
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Table 1: Conjugacy classes in G and H-orbits.

i C kC splits into dimF2(FixM (·))
1 1A 1

2, 3 2B 7 379 550 93 150 + 7 286 400 2 322
4 2D 262 310 400 2 202
6 3A 9 646 899 200
5 4B 4 196 966 400 1 256
8 4E 537 211 699 200 1 114
7 4G 470 060 236 800 1 166
9 5A 4 000 762 036 224

10 6C 6 685 301 145 600

4. Determining the character table

We are now prepared to consider the action of the Baby Monster group B on
the cosets of 21+22.Co2. The group theoretical and representation theoretic data
concerning the groups involved is available in [6] and [13], and also accessible in the
character table library of GAP. Computations with characters and with permutation
and matrix representations are done with GAP and the MeatAxe [25], in particular
we make use of the algorithms to compute submodule lattices described in [18],
and those to compute socle series described in [19].

4.1.
From now on let G = B and 21+22.Co2

∼= H < G, and let X be the set of right
cosets of H in G. We have |X | = 11 707 448 673 375 ∼ 1.1 · 1013, and by [3] the
permutation character 1G

H it is multiplicity-free of rank r = 10, its constituents
have pairwise distinct degrees and hence are Q-valued. The H-orbit sizes ki, for
i ∈ {1, . . . , 10}, are stated without explicit proof in [14], where unfortunately the
values given there do not sum up to |X |. Hence we just compute the ki anew.

Using the notation in [6], let 2B ⊆ G denote the associated conjugacy class in G,
and picking c ∈ 2B suitably we have H = CG(c). Hence the conjugation action of
G on 2B is equivalent to its action on X . For any conjugacy class C ⊆ G in G
let (2B)C := {d ∈ 2B; cd ∈ C}. Hence (2B)C ⊆ 2B is a union of H-orbits with
respect to the conjugation action. We have kC := |(2B)C | = |C|·m2B,2B,C

|2B| ∈ N0,
where m2B,2B,C := |{(c, d) ∈ 2B × 2B; cd = e}| ∈ N0 is the corresponding class
multiplication coefficient and e ∈ C is fixed. The class multiplication coefficients are
easily determined from the character table of G, and we find kC �= 0 precisely for the
conjugacy classes C ∈ {1A, 2B, 2D, 3A, 4B, 4E, 4G, 5A, 6C}, where the associated
sizes kC are given in Table 1.

As we have r = 10, but only find nine conjugacy classes C ⊆ G such that kC �= 0,
we conclude that precisely one of the non-empty sets (2B)C ⊆ 2B consists of two
H-orbits, while the others each consist of a single H-orbit. As k2B is the only of
the kC �= 0 not dividing |H |, we conclude that (2B)2B splits into two H-orbits.
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Table 2: The subgroup chain.

i Ui |Ui| [Ui : Ui−1]

5 B 4 154 781 481 226 426 191 177 580 544 000 000 ∼ 1.1 · 1013

4 21+22.Co2 354 883 595 661 213 696 000 ∼ 3.9 · 1011

3 211.M22 908 328 960 1 024
2 2.M22 887 040 1 344
1 L2(11) 660 660

The sizes of the latter are also indicated in Table 1, and are determined in 4.4.
After all, it turns out that in [14] the value of k7 = k4G is erroneously stated as
‘4 700 602 368’, obviously just a typo.

4.2.
In order to to place ourselves into the situation described in Section 3, we look

for an FG-module containing an H-invariant but not G-invariant vector. Let F2

be the field of order 2, and let M be the absolutely irreducible F2G-module of
dimension 4370; by [12] this is the smallest faithful representation of G over fields of
characteristic 2. Representing matrices for standard generators of G, in the sense of
[29], have been constructed in [30] and are available in [31], where also words in the
standard generators giving generators for H are available. Using a random search,
from the latter we find generators of H being preimages of standard generators of
the sporadic simple Conway group Co2, with respect to the natural epimorphism
H → Co2.

We find that the subspace FixH(M) � M , consisting of the vectors fixed by H , is
1-dimensional. Thus picking the non-trivial vector 0 �= x1 ∈ FixH(M), the G-orbit
x1G ⊆ M is as a G-set equivalent to X , and hence we may identify x1G and X .
Note that to store a vector in M we need � 4370

8 � = 547 Bytes, thus to store all
of X we would need 6 403 974 424 336 125 ∼ 6.4 · 1015 Bytes. Hence we are indeed
tempted to apply a better strategy.

4.3.
We choose the following chain of subgroups, see Table 2:

G = B > H = 21+22.Co2 > U3 := 211.M22 > U2 := 2.M22 > U1 := L2(11).

Generators of Ui, for i ∈ {1, . . . , 3}, are found as follows. Words in the standard
generators of Co2 giving standard generators of the maximal subgroup M23 < Co2,
and words in the latter giving standard generators of the maximal subgroup M22 <
M23 are available in [31]. Applying these to the chosen generators of H indeed yields
a subgroup 21+22.M22 < H . Let 21+22 ∼= N �H be the maximal normal 2-subgroup
of H . Hence N is an extraspecial group, and Co2 acts absolutely irreducibly on the
F2-vector space N/Z(N) of dimension 22. It turns out that (N/Z(N))M22 is an
uniserial F2M22-module with ascending composition series [1a, 10a, 10b, 1a], where
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the constituents are absolutely irreducible F2M22-modules having the indicated
dimensions.

By a random search we find a subgroup U3 := 211.M22 < 21+22.M22, whose maximal
normal 2-subgroup is as an F2M22-module isomorphic to the unique submodule
of (N/Z(N))M22 of dimension 11. Similarly, we find a subgroup U2 := 2.M22 <
211.M22 = U3, being a non-split central extension of M22. Finally, words in the
standard generators of M22 giving standard generators of the maximal subgroup
L2(11) < M22 are available in [31], and applying these straightforwardly yields a
subgroup U1 := L2(11) < 2.M22 = U2.

To specify F2Ui-modules Mi, for i ∈ {1, . . . , 3}, we proceed as follows. Let M4 := M
be the absolutely irreducible F2G-module of dimension 4370. Letting rad5(MU3) <
MU3 be the fifth layer of the radical series of the restriction MU3 of M to F2U3, we
first find a suitable quotient M3 of MU3/rad5(MU3) of dimension 78. It is easy then
to find suitable quotients M2 of (M3)U2 , and M1 of (M2)U1 , having dimensions 31
and 21, respectively. The associated F2Ui-homomorphisms πi : (Mi+1)Ui → Mi are
just the natural maps.

4.4.
To find H-orbit representatives xi ∈ Xi ⊆ X and elements gi ∈ G such that

xi = x1gi, for i ∈ {2, . . . , 10}, we use the G-set 2B ⊆ G equivalent to X . By a
random search we pick a few elements g ∈ G, and check to which conjugacy class
in G the commutator [c, g] := c · (g−1cg) ∈ G belongs, where c ∈ 2B is as chosen
in 4.1. This is done by computing the order of [c, g] ∈ G, and the dimension of the
subspace FixM ([c, g]) � M , consisting of the vectors fixed by [c, g]; the relevant
dimensions are given in Table 1. This yields suitable elements gi ∈ G for i �∈ {3, 5};
in particular we are lucky to find a representative for the small H-orbit X4 ⊆ X
already at this stage. Summing up the ki for i �∈ {3, 5}, and dividing by |X |, we
obtain a fraction of ∼ 9996

10000 . Hence it is rather improbable to find further H-orbits
in X by a random search.

To proceed we concentrate on X2 ⊆ X . If we had k2 = 93150, then there might
be an element d ∈ (2B)2B ∩ N , where N � H is as in 4.3, such that CH(d) =
21+21.(210 : M22 : 2) < H , where 210 : M22 : 2 < Co2 is a maximal subgroup and
CH(d) ∩ N = 21+21. Words in the standard generators of Co2 giving generators of
210 : M22 : 2 < Co2 are available in [31], and it turns out that (N/Z(N))210 : M22 : 2 is
uniserial with ascending composition series [1a, 10a, 10b, 1a]. Applying these words
to the chosen generators of H indeed yields a subgroup 21+21.(210 : M22 : 2) <
H , where the normal subgroup 21+21 is a preimage of the unique submodule of
(N/Z(N))210 : M22 : 2 of dimension 21, with respect to the natural epimorphism N →
N/Z(N).

Indeed we find a vector 0 �= x2 ∈ FixM (21+21.(210 : M22 : 2)) such that x2 �= x1.
Since |x2H | | [H : (21+21.(210 : M22 : 2))] = 93150, it is straightforward to enumer-
ate x2H ⊆ M completely by a standard orbit algorithm, which shows |x2H | =
93150. Moreover, by applying a few random elements of G we find a point in
x2G ⊆ M being in an H-orbit in X we have encountered earlier, showing that
indeed x2 ∈ X ⊆ M , and hence X2 := x2H ⊆ X . This also yields g2 ∈ G such that
x1g2 = x2, and proves that k2 = 93150 and k3 = 7286400, as asserted in Table 1.
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Finally, by checking a few random points in X2g2 ⊆ X , we find representatives of
the H-orbits X3 ⊆ X and X5 ⊆ X .

4.5.
Since X1 = {x1} and X2 ⊆ X has already been enumerated explicitly, we con-

sider the H-orbits Xi ⊆ X for i ∈ {3, . . . , 10}. It turns out that (X3

.∪ X4)π3 =
{0} ⊆ M3, hence for all x ∈ X3

.∪ X4 we have StabU3(xπ3) = U3, rendering orbit
enumeration by U3-orbits ineffective. Hence we do not enumerate X3 ⊆ X and
X4 ⊆ X at all, and provide an alternative treatment in 4.6. But for i ∈ {5, . . . , 10}
we are prepared to apply the strategy described in 3.3 to enumerate a substantial
part of Xi ⊆ X .

For example, for the largest H-orbit X10 ⊆ X , where k10 = 6 685 301 145 600 ∼
6.7 · 1012, we enumerate 2 000 251 387 904 ∼ 2 · 1012 points, hence a fraction of
∼ 3

10 of the whole of X10. These points are comprised into 2603 U3-orbits, having
a total of 4305 U3-minimal points, hence we obtain a memory saving factor of
∼ 464 634 468 ∼ 4.6 · 108, which indeed is of the same order of magnitude as
|U3| = 908 328 960 ∼ 9.1 · 108. Here, we just ignore those U3-orbits xU3 ⊆ X10

such that |StabU3(xπ3 )| � 500. To do this using the GAP package ORB we need
∼ 1.3 · 109 Bytes of memory space and ∼ 7000 s of CPU time on a 3 GHz Pentium
IV processor, where both figures include the time and space required to enumerate
the appropriate parts of the helper sets Mi, for i ∈ {1, . . . , 3}.

4.6.
Having the H-orbits Xi ⊆ X under control, the aim now is to compute the

intersection matrix P2 = [ph,2,j] ∈ Z10×10 for the smallest non-trivial H-orbit
X2 ⊆ X , having size k2 = 93150. Since it is the only H-orbit having this size X2

is self-paired, hence we have ph,2,j = |X2gj ∩ Xh|. Since we are done for j = 1
anyway, for all j ∈ {2, . . . , 10} we compute X2gj ⊆ X explicitly, and determine
which H-orbits Xh ⊆ X , for h ∈ {1, . . . , 10}, the various points in X2gj belong to.
This is straightforward for h ∈ {1, 2}, and for h ∈ {5, . . . , 10} we proceed as follows.

As we have enumerated only parts but not all of the H-orbits Xh, we not only test
a given point x ∈ X2gj for membership in Xh, but do the same with several points
in xH ⊆ X . Still, this only allows to prove membership of x in a given Xh, but not
to disprove it. Hence we let h ∈ {5, . . . , 10} vary, and in a first run we test a very
few points in xH ⊆ X , at most 5 say, for membership in the various H-orbits Xh.
If x cannot be proven to belong to a particular H-orbit, we launch a second run
where we test some more points in xH ⊆ X , at most 1000 say. Now this is done for
all x ∈ X2gj , and it turns out that after the second run only a very few points have
not been proven to belong to a particular H-orbit, of course in particular including
those which actually belong to X3

.∪ X4 ⊆ X .

We could repeat this further by testing even more points, but instead we note
that we have already found good lower bounds for the matrix entries ph,2,j ∈ N0.
Now we have the weighted rows sums

∑10
j=1 kjph,2,j = k2kh, and the integrality

conditions kjph,2,j = khpj,2,h, which in particular imply that ph,2,j = 0 if and only
if pj,2,h = 0. It turns out that these conditions are sufficient to find all the matrix
entries ph,2,j ∈ N0, for h, j ∈ {1, . . . , 10} such that [h, j] �∈ {[3, 3], [3, 4], [4, 3], [4, 4]}.
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Table 3: Intersection matrix P2 of B on 21+22.Co2.

i ki 1 2 3 4
1 1 . 1 . .
2 93 150 93150 925 63 15
3 7 286 400 . 4928 63 120
4 262 310 400 . 42240 4320 1815
5 4 196 966 400 . 45056 24192 6720
6 9 646 899 200 . . . .
7 470 060 236 800 . . 64512 53760
8 537 211 699 200 . . . 30720
9 4 000 762 036 224 . . . .

10 6 685 301 145 600 . . . .

5 6 7 8 9 10
. . . . . .
1 . . . . .

42 . 1 . . .
420 . 30 15 . .

1807 891 272 120 . 27
2048 891 512 . 100 36

30464 24948 10287 5040 3850 3060
15360 . 5760 3495 4125 4320

. 41472 32768 30720 31175 32256
43008 24948 43520 53760 53900 53451

The result is given in Table 3, where the as yet unknown entries are indicated in
bold face.

Actually, there are only a very few possibilities for the unknown entries left, which
can be checked using the following additional necessary condition. Since all the
constituents of 1G

H are Q-valued, the field Q is a splitting field of the associated
endomorphism ring E, and hence in particular the characteristic polynomial of P2

splits into linear factors over Q. The latter condition turns out to be fulfilled by
precisely one of the possibilities left, thus completing P2.

4.7.
To conclude, we determine the row eigenspaces of P tr

2 ∈ Q10×10, and find eight
1-dimensional and a single 2-dimensional one. Computing the degrees of the Fitting
correspondents associated with the 1-dimensional eigenspaces, by the formula given
in 2.2, we conclude that we have found Irr(E)\{λ2, λ4}, using the notation in Table
4, where the degrees of the Fitting correspondents and a basis {ϕ1, ϕ2} ⊆ Q10 of
the 2-dimensional eigenspace of P tr

2 are given as well.

Finally, to determine the as yet unknown characters λ2 and λ4 we proceed as follows.
For j ∈ {2, 4} we have λj = ϕ1+xjϕ2, for some xj ∈ Z. The formula for the degrees
of Fitting correspondents, applied to ϕ1 + X · ϕ2 ∈ Q[X ]10, leads to the quadratic

24https://doi.org/10.1112/S1461157000000504 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000504


Baby Monster action

Table 4: Character table of B on 21+22.Co2.

λ χλ 1 2 3 4 5
1 1 1 93150 7286400 262310400 4196966400
2 96255 1 −2025 772200 −5702400 42768000
3 9 458 750 1 10287 215424 3777840 25974432
4 347643114 1 −2025 99000 356400 −5702400
5 4 275 362 520 1 495 48960 −334800 1631520
6 9 287 037 474 1 3375 28800 356400 1015200
7 536 105 794 455 1 1095 1560 7200 −113280
8 635 966 233 056 1 −425 9400 −3600 −57600
9 4 375 623 425 250 1 135 −360 −12960 17280

10 6 145 833 622 500 1 −153 −936 8640 1152
ϕ1 1 −2025 107129 283239 −5117112
ϕ2 0 0 11 −99 792

6 7 8 9 10
9646899200 470060236800 537211699200 4000762036224 6685301145600
290816000 −2714342400 5474304000 8833204224 −11921817600
35514368 607533696 100362240 −42467328 −730920960
8806400 0 45619200 −191102976 141926400
2769920 −9636480 −12441600 −2359296 20321280
−870400 −6652800 4147200 −14155776 16128000

81920 107520 −921600 2555904 −1720320
−115200 358400 −76800 1409024 −1523200
−40960 138240 414720 −884736 368640

32768 −129024 −207360 294912 0
12211712 −32776128 111171456 −82132992 −3745280

4608 −44352 88704 147456 −197120

equation
11707448673375

χλj (1)
=

9563
294400

· X2 +
6905057
147200

· X +
14897519123

294400

having xj ∈ Z as one of its solutions. Since the degrees of the Fitting correspondents
are χλ2(1) = 96255 and χλ4(1) = 347643114, this yields

x2 ∈ {−591998657
9563

, 60461} and x4 ∈ {−6743057
9563

,−739}.
Hence we have λ2 = ϕ1 + 60461 · ϕ2 and λ4 = ϕ1 − 739 · ϕ2, and we are done.
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