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Abstract

Some results on fixed points of asymptotically regular mappings are obtained in complete metric
spaces and normed linear spaces.

The structure of the set of common fixed points is also discussed in Banach spaces. Our work
generalizes essentially known results of Das and Naik, Fisher, Jaggi, Jungck, Rhoades, Singh and
Tiwari and several others.
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1. Introduction

Many authors have extended the well-known result of Jungck [35]. In addition to
the authors specifically cited in this paper, Conserva [9], Cheh-Chih Yeh [5],
Fisher [17], [20], Khan [27], Khan and Imdad [30], Park [46], Park and Rhoades
[48], Singh [61] have proved their results in complete metric spaces, Khan [28] in
uniform spaces and Cheh-Chih Yeh [6] in L-spaces.

Sessa [60] has generalized the result of [10], considering two self maps A, S of a
complete metric space (X,d) which are weakly commuting, that is,
(1.1) d(ASx,SAx) < d{Sx,Ax)

for any x e X.
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[21 Asymptotically regular mappings 329

EXAMPLE 1. Let X = [0,1] equipped with the euclidean metric and Sx =
x/(x + 16), Ax = x / 8 for any x e X. We have for any x e X:

d(ASx,SAx) =
x2

x + 128 8x + 128 x + 128 8* + 128

X ~\~ oX X X

"" 8(x + 16) 8 x + 16

Thus S and yl satisfy (1.1) but do not commute for any x + 0.
Using an idea developed in [53], the results of this paper are established in

complete metric spaces without considering the usual sequence of successive
approximations in order to show the existence of common fixed points. Further,
in convex Banach spaces the structure of the set of common fixed points is
investigated without assuming any hypothesis of commutativity of the mappings
under discussion.

Two survey papers of the first author [50], [51] compare many contractive
conditions. It is easily seen that most of the contractive conditions used imply the
asymptotic regularity of the mappings under consideration, so the study of such
mappings plays an important role in fixed point theory.

2. Results in complete metric spaces

The following definition appears in [53]:

DEFINITION 1. Let A and 5 be two self maps of X and {xn} a sequence in X.
Then {xn} is said to be asymptotically S-regular with respect to A if d(Axn, Sxn)
-* 0 as n -> oo.

If A is the identity map of X, Definition 1 becomes that of Engl [15].
Drawing inspiration from the contractive conditions of Hardy and Rogers [24]

and Jungck [35], we present our main theorem.

THEOREM 1. Let A, S, T be three selfmaps of a complete metric space (X, d)
satisfying

(2.1) d(Sx, Ty) < Old(Sx, Ax) + a2d(Tx, Ax) + a3d(Sy, Ay)

+ a4d(Ty,Ay) + a5d(Sx,Ay) + a6d(Tx,Ay)

+ a-,d(Sy,Ax) + a%d(Ty,Ax) + a9d(Ax,Ay)
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330 B. E. Rhoades, S. Sessa, M. S. Khan and M. Swaleh 131

for all x, y in X, where the a, = at(x, y), i = 1,2,..., 9, are nonnegative functions
such that

(2.2) max/ sup (ax + a2 + a5 + aj,

sup (a3 + a4 + a1 + aj, sup (a5 + a6 + an + a% + ag)
x,yeX

(2.3) If A is continuous,
(2.4) A weakly commutes with S and T, and
(2.5) there exists a sequence which is asymptotically S-regular and T-regular with

respect to A,
then A, S and T have a unique common fixed point.

PROOF. Let {xn} be a sequence satisfying (2.5). Using (2.1),

d{Axn, Axm) < d{Axn, Sxn) + d(Sxn, Txm) + d(Txm, AxJ

< d(Axn,Sxn)+aid(Sxn,Axn) + a2d{Txn,Axn)

+ a3d{Sxm,Axm) + a4d(Txm,Axm) + asd(Sxn, Axm)

+ a6d(Txn, AxJ + a-,d(Sxm, AxJ + asd(Txm, AxJ

+ a9d(Axn, AxJ + d(Txm, AxJ

where a, = at{xn, xm). Therefore

(1 - a5 - a6 - a-, - a8 - a9) • d(Axn, AxJ < (1 + ax + a5)

•d(Axn,SxJ +(a2 + aj • d(Txn,Axn) +(a3 + a7)

•d(Sxm, AxJ +(a4 + a8 + 1) • d(Txm, AxJ

which, from (2.2) and (2.5), implies that {Axn} is Cauchy.
Since X is complete, let z = lim Axn.
Being d(Sxn, z) < d(Sxn, AxJ + d(Axn, z), {Sxn} -> z. Similarly, {TxJ ->

z. Also, using (2.3), {A2xn} -» Az, {ASxn} -» Az and {A Txn} -» Az.
From (2.4),

d(SAxn, Az) < d(SAxn, ASxJ + d( ASxn, Az)

*Zd(Axn,Sxn) +

whence {SAxn} -* Az. Similarly, {TAxn} -* Az.
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Further, from (2.1) with at = at(Axn, z),

d(Az, Tz) < d(Az, SAxn) + d(SAxn,Tz)

< d(Az, SAxn) + axd{SAxn, A2xn) + a2d(TAxn, A2xn)

+ a3d(Sz, Az) + a4d(Tz, Az) + a5d(SAxn, Az)

+ a6d(TAxn, Az) + a7d(Sz, A2xn) + a%d{jz, A2xn)

+ a9d(A2xn,Az)

< d(Az, SAxn) + axd(SAxn, A2xn) + a2d(TAxn, A2xn)

+ (a3 + a4 + a7 + a%) • max{ d{Az, Sz), d(Az,Tz)}

+ (fl5 + a6 + a7 + a8 + a9)

•max{d(SAxn,Az), d(TAxn,Az), d{A2xn,Az)}.

Taking the limsup, we have

d(Az,Tz) < sup (ai + a4 + a7 + a8) • max{d(Az,Sz), d(Az,Tz)}.

Similarly,

sup (flj + a2 + as + a6) • max{d(Az,Sz), d(Az, Tz)}.

Then, from (2.2) it follows Az = Sz = Tz.
From (2.1), with at = a,(;cn, Axn),

d{Sxn,TAxn) < axd{Sxn,Axn) + a2d(Txn, Axn) + a3d{SAxn, A2xn)

+ a,d{TAxn,A
2xn) + a5d{Sxn, A2xn) + a6d(TxnA

2xn)

+ a7d(SAxn, Axn) + asd(TAxn,Axn) + a9d(Axn, A2xn)

< aid{Sxn,Axn) + a2d{Txn, Axn) + aid(SAxn, A2xn)

+ a4d(TAxn,A
2xn) +(a5 + a6 + a7 + a8 + a9)

•m&x{d{Sxn,A
2xn), d{Txn,A

2xn),

d{SAxn,Axn), d{TAxn,Axn), d(Axn, A2xn)}.

Taking limsup of both sides, yields

d(z,Az)^ sup (a5 + a6 + a7 + as + a9) • d(z, Az),
X.YEX

which, from (2.2), implies z = Az, and hence z is a common fixed point of A, S
and T.
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To prove the uniqueness of z, suppose z and w are common fixed points of A,
S and T. From (2.1), with a, = a,(z,vt>),

d(z,w) = d(Sz,Tw) < axd{Sz,Az) + a2d(Tz,Az) + a3d(Sw,Aw)

+ a4d(Tw, Aw) + a5d{Sz, Aw) + a6d(Tz, Aw)

+ a7d(Sw,Az) + agdiTw^z) + a9d(Az,Aw)

= (a5 + a6 + a-, + as + a9) • d(z,w)

which, from (2.2), implies z = w.
This completes the proof.

REMARK 1. Theorem 2.1 may be regarded as an extension of the well known
result of Hardy and Rogers [24], which considered the following condition:

(2.6) d(Tx, Ty) < bxd{Tx,x) + b2d(Ty, y) + b3d(Tx, y)

+ b4d(Ty,x) + bsd(x,y)

for all x, y in X, where the control constants bt > 0, / = 1, . . . ,5, satisfy
bx + b2 + b3 + 64 + b5 < 1. No such restriction is required in Theorem 2.1.

REMARK 2. Condition (2.6) has been also used by Guay and Singh [23]
assuming b, ̂  0, i = 1 , . . . , 5, bx = b2, b3 = b4 (such an assumption is not
restrictive) and

(2.7) max{63 + b4 + b5,b1 + b3) < 1.

Our condition (2.1) written for S = T and A the identity map of X becomes
(2.6) with bx = ax + a2, b2 = a3 + a4, b3 = a5 + a6, b4 = a-, + a8, b5 = ag and
clearly (2.2) becomes (2.7).

We also cite the papers of Emmanuele [14] and Taskovic [64], where asymptoti-
cally regular mappings are investigated under different contractive conditions.

REMARK 3. In Jungck [35], the continuity of the mapping S = T is a conse-
quence of his contractive condition and it is used in his proof. But in Theorem 2.1
the continuity of the mappings S and T is neither assumed nor is implied by the
contractive condition (2.1).

REMARK 4. Das and Naik [10] generalize Jungck's theorem by considering the
following condition

d(Sx,Sy) < cmnx{d(Sx,Ax), d(Sy,Ay),

' ' d(Sx,Ay), d(Sy,Ax),d(Ax,Ay)}

for all x, y in X, where 0 < c < 1.
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As indicated in Massa [38], (2.8) is equivalent to the following condition

(2.9) d(Sx, Sy) < a^iSx, Ax) + a2d(Sy, Ay) + a3d(Sx, Ay)

+ a4d(Sy,Ax) + a5d(Ax,Ay)

for all x, y in X, where a, = at(x, y), i = 1 , . . . , 5, and

(2.10) sup (a1 + a2 + a3 + a4 + a5) < 1.

Clearly (2.9) is obtained from (2.1) for S = T and (2.10) implies (2.2). Das and
Naik assume S and A commute, A continuous, S(X) contained in A(X). So,
choosing x0, xl in X such that Sx0 = Axlt they define inductively a sequence
{yn} as follows

Sxn = Axn + 1 =yn, « = 0 , 1 , 2 , . . . .

In their paper, they prove that the sequence { yn} converges to a point y and X
and

lim d(Syn,Ayn) = d(Ay,Ay) = 0.
n~* oc

Thus {yn} is asymptotically S-regular with respect to A. Since the remaining
conditions of Theorem 2.1 are satisfied, Theorem 2.1 is a generalization of the
result of Das and Naik, which has been extended also by Chang [3], Chang [4],
Fisher [18], [19], Khan and Imdad [29] and Rhoades [51] under different contrac-
tive conditions. However, it is not hard to check that these last results are also
valid using the weak commutativity concept. We refer the reader to the paper of
Rhoades [51] for further details.

3. Some examples

EXAMPLE 2. Let X = [0,1] with the Euclidean metric and S = T, A: X -» X
given as in Example 1. S and A weakly commute and let {xn} be a sequence in
X converging to 0. Since

, x xH{xH + 8)
A x ) =

{ x n } is asymptotically 5-regular with respect to A. For every x, y in X,

d(Sx,Sy) =
x + 16 y + 16 (x + 16)(y + 16) 256

- vl 1 IJC — yI 1
16 = 2 8 = 2
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A is continuous in X and it suffices to assume ag = 1/2, a, = 0 for / = 1 , . . . , 8
in order to satisfy Theorem 2.1. Of course, all the results of the preceding authors
are not applicable to this example since S and A do not commute.

By slightly modifying some examples of Fisher [20], we show that some of the
assumptions of Theorem 2.1 cannot be dropped.

EXAMPLE 3. Let X = {xv x 2 ) with any metric d and S = T, A: X -» X
defined by

«A1 JT.X •} O.X 2 -^1 > t J A i X 2 •

Considering the constant sequence {x2}, it is easily seen that all the hypothesis
of Theorem 2.1 are valid except (2.4). Indeed, we have

d(SAx2,ASx2) = d(Sxl,Ax1) = d(x2,x1) > 0 = ^(x^xj = d(Ax2,Sx2)

and A and S do not have a common fixed point.

EXAMPLE 4. Let X = [1, oo) with the Euclidean metric and Sx = 2x, Tx = 4x,
Ax = 22x for any x in X. Since we have — Ay < 8x for all x, y in X, then
2x - Ay < lOx. This implies that if x > 2>>, d(Sx,Ty) = 2(x - 2j) < 10* =
(22x - 2x)/2 = </(Sx, Ax)/2. If x < 2y ^ 6x, then 4 j < 12x which implies
d(Sx, Ty) = 2(2j - x) < lOx = (22x - 2x)/2 = d(Sx, Ax)/2. If x < 6x <
2y, then obviously x < 2x < Ay < lly which implies

d(Sx, Ty) = 2(2/ - x) < lly - x = (22y - 2x)/2 = d(Sx, Ay)/2.

Thus (2.1) is satisfied with

ax = \ and

«! = | and

aj = 0 and

and a, = 0 for / = 2,3,4,6,7,8,9. The other assumptions of Theorem 2.1 are
satisfied except condition (2.5) being for any sequence xn of X,

d(Sxn,Axn) = 2 0 x n - 0 iffxn-»0,

d(Txn,Axn) = 1 8 x n ^ 0 i f f* B -O ,

but 0 does not belong to X.
Condition (2.3) is also necessary in Theorem 2.1. To see this, consider the

following

EXAMPLE 5. Let X = [0,1] with the Euclidean metric and S = T, A: X -» X
given by

H / 2 ifx = 0, M ifx = 0,

a5

a5

as

= 0,
= 0,

i
~ 2 >

if

if

if

X

X

X

<

<

2v,

2 v <

6x <

6x,

^ \ x / 4 i f x # 0 , AX \ x / 2 if
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A commutes with 5 and one can readily verify, considering a sequence {xn},
xn =t 0, converging to 0, that all the assumptions of Theorem 2.1 are satisfied with
a9 = 1/2 and al, = 0 for i' = 1 , . . . , 8 except (2.3). On the other hand, A and S
have no fixed points.

4. Further results

Replacing the continuity of A with the continuity of S or T, we have the
following theorem:

THEOREM 4.1. Let A, S, T be three selfmaps of a complete metric space (X,d)
satisfying conditions (2.1), (2.5) and

(2.2') ax, a2, a3, aA bounded on Xand sup (a5 + a6 + a7 + ag + a9) < 1.

If T is continuous and weakly commuting with A and S, then T has a fixed point.

PROOF. Let {xn} be a sequence as defined in (2.5). As in the proof of Theorem
2.1, the sequences {Axn}, {Sxn}, {Txn} converge to a point z in X. Since T is
continuous, {TAxn} -» Tz and {T2xn} -* Tz. Using the weak commutativity of
Tand A,

d(ATxn,Tz) < d(ATxn,TAxn) + d(TAxn,Tz) < d(Axn,Txn) + d(TAxn,Tz)

which implies that {ATxn} -> Tz as n -» oo.
Since {TSxn} —* Tz and T weakly commutes with S, it is similarly proved that

{STxn} -» Tz as n -* oo.

From (2.1),

d(Sxn,T
2xn)^ (a. + a. + a. + a,)

•max{d(Sxn,Axn), d(Txn,Axn),

d(STxn,ATxn),d(T2xn,ATxn)}

+ (a5 + a6 + a7 + a8 + a9)

•max{d(Sxn,ATxn), d(Txn,ATxn), d(STxn,Axn),

d(T2xn,Axn),d(Axn,ATxn)},

where a, = at(xn, Txn). Taking the limsup,
d(z, Tz) < sup (a5 + a6 + a1 + as + a9) • d(z, Tz),

x,veX

giving Tz = z from (2.2').
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An analogous theorem can be proved using the continuity of S instead of T.
Note that z is not, in general, a comon fixed point of A, S and T as is shown in
the following

EXAMPLE 6. Let X = [0,1] with the Euclidean metric and A, S, T: X -> X
given by

A x =

U i f x * 0 , AX \x/2

Tx = x/2 for any x in X.

We have

d(AT0, TA0) = d{A0, 71) = 1/2 < 1 = d(T0, A0),

d(ST0, TSO) = d(S0, 71/4) = 1/8 < 1/4 = d(T0, SO)

and STx = TSx = x/4, TAx = ATx = x / 2 for any x # 0. So A and S weakly
commute with T which is continuous on X. Further, for x = 0 and _y in X,

and for x =£ 0, j ' in X,

d{Sx,Ty) = \\x - y\= \d{Ax, Ay).

Then (2.1) is satisfied with ax = 1/2, a, = 0 for / = 2 , . . . , 8, ag = 1/2.
Considering a sequence {xn}, xn * 0, converging to 0, one immediately verifies

(2.5) and therefore all the assumptions of Theorem 4.1 hold but 0 is not fixed
point of either S or A.

Using a proof similar to that of Theorem 2.1, one can easily verify the
following

THEOREM 4.2. Let {Sn} be a sequence of selfmaps of a complete metric space
(X,d) and A a continuous selfmap of X satisfying with i =£ j ,

d(Stx, Sjx) < a^fax, Ax) + a2d(SjX, Ax) + a3d(Sty, Ay)

+ a4d(Sjy, Ay) + a,d{Stx, Ay) + a6d{SjX, Ay)

+ a7</(S,j>, Ax) + a%d(Sjy, Ax) + a9d(Ax, Ay)

for all x, y in X, where ak = ak(x, y), k = 1 , . . . , 9, are nonnegative functions
satisfying (2.2). If A weakly commutes with each Sn and there exists an asymptoti-
cally Sn-regular sequence with respect to A for every n = 1,2,..., then the family
{A, Sv S2,...} has a unique common fixed point.
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This theorem can be regarded as an improvement of Theorem 1 of Singh and
Tiwari [62], where the authors assume that range of A contains the range of Sn for
every n, but this is not required in our Theorem 4.2.

5. Results in Banach spaces

In this section, we present a result which deals with the structure of the set of
common fixed points. The next theorem generalizes Theorem 29 of [50] without
requiring the commutativity of the mappings under consideration. We first need
the following

LEMMA 5.1. Let (X, d) be a complete metric space, K a closed subset of X, A, S
and T three selfmaps of K satisfying (2.1) for all x, y in K,

(2.2") maxj sup (ax + a2 + a5 + a6), sup (a3 + aA + a7 + ag)

If A is continuous and a9 is bounded on X, then the set F of common fixed points
of A, S and T is closed.

PROOF. Let {xn} be a Cauchy sequence in F with limit x in K. Then
d(x, Ax) < d(x, xn) + d(xn, Ax) = d(x, xn) + d(Axn, Ax) -> 0 since A is con-
tinuous. Thus Ax = x.

From (2.1), with a, = at(xn, x),

d(x, Tx) < d(x, xn) + d{xn, Tx) = d(x, xn) + d(Sxn, Tx)

< d(x, xn) + aYd(Sxn, Axn) + a2d(Txn, Axn) + a3d(Sx, Ax)

+ a4d(Tx, Ax) + a5d(Sxn,Ax) + a6d(Txn, Ax)

+ a7d(Sx, Axn) + agd(Tx, Axn) + a9d(Axn, Ax)

= d(x, xn) + a3d(Sx, x) + a4d(Tx,x) + a5d(xn, x) + a6d(xn, x)

+ a7d(Sx,xn) + a&d(Tx,xn) + a9d(xn,x)

< (a3 + a4 + a7 + as) • max{ d(x, Tx), d(x,Sx)}

+ (1 + a5 + a6 + an + a% + a9) -d(xn,x).

By the assumptions,

sup (a5 + a6 + a7 + as + a9) < oo.
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Taking the limsup of both sides in the above inequality, we have

d(x,Tx) < sup (a3 + a4 + a-, + a8) • ma\{d(x,Tx), d(x,Sx)}.

Similarly, the inequality d(x, Sx) < d(x, xn) + d(Sx, Txn) yields

sup (a1 + a2 + a5 + a6) • max{d(x,Tx), d(x,Sx)}.

From (2.2"), it follows that Tx = Sx = x. Thus x is in F and F is closed.

THEOREM 5.2. Let X be a strictly convex Banach space, K a convex closed subset
ofX, A, S and T three selfmaps of Ksatisfying (2.1) for all x, y in K, (2.2") and

max< sup (a1 + a2 + a5 + a6 + a1 + as + a9),

(2.2'")
sup (a3 + a4 + a5 + a6 + a1 + a8 + a9)

x,y<=X

If A is continuous andaffine, then the set F of common fixed points of A, S and T
is closed and convex.

PROOF. Since (2.2'") implies a9 is bounded on X, that F is closed follows from
Lemma 5.1. To show convexity, let xvx2 e F, x = (xx + x2)/2. Since K is
convex, x is in K and Ax = x since A is affine.

Case I. Suppose ||JC - Sx\\ < \\x - Tx\\. Then

||x - 7x | |< i ( | |x ! - 7JC|| + | |X2 - 7JC||).

Without loss of generality, we may assume ||JC2 - Tx\\ < ||JC1 - 7!x||. Then, from

(2.1),

< al\\Sx1 - ^ 1 1 + a2\Txx - Ax^\\ + a3\\Sx - Ax\\

+ a4\\Tx - Ax\\ + a5\\Sx1 - Ax\\+ a6\\Tx1 - Ax\\

+ a1\\Sx - 4̂JCXII + a8||7x - Axx\\ + a9\\Axx - Ax\\,

where a, = at(xx, x). Thus

\\x- Tx\\< (o3 + a4) - | | J C - 7jc|| + ( a s + a6 + fl9)-||*1 - JC||

+ a1\\xl-Sx\\+a,\\xl- Tx\\.
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Case la. Assume \\xl — Sx\\ < \\xY - Tx\\. Then

(5.1) (l-a3-aA)-\\x-Tx\\

< ( a 5 + a6 + a9) -{{x, - x\\ +(a7 + a 8 ) •\\xl - Tx\\,

(5.2) \\xx - Tx\\ = \\SXl - Tx\*k ( a 3 + a 4 ) - | | x - 7JC||

+ (as + a6 + a9) •\\x1 - x | | + ( a 7 + a g ) •\\x1 - Tx\\.

Substituting (5.2) into (5.1) yields, (1 - a) • \\x - Tx\\ < b • \\xx - x\\, where

(fl3 + a t ) '(^7 + a s )
1 - a, - a8

a9 4-
- a7 a8

From (2.2'"), a + b < 1. Thus ||x - 7JC|| < \\xx - x2\\/2. Substituting in (5.2),
ll^i - 7JC|| < ||JC, - x\\ = \\Xl - x2\\/2. Then

\\Xl - x2\\^\\Xl - Tx\\ + \\x2- Tx\\<2\\Xl - Tx\\^\\Xl - x2\\

and, since X is strictly convex, Tx = x. Since \\Sx — x\\ < ||7x - x\\, we have
Sx = x too. Thus F is convex.

Case Ib. Assume H^ - Tx\\ < \\xx — Sx\\. Then

(5.3) (l-a3-aA)-\\x-Tx\\

< ( f l 5 + a6 + a9)-\\Xl - x\\+(ai + a 8 ) - I k - S x | | .

From (2.1),

||Sx - x J H S x - rxjH^ a{||Sx - ^ x | | + a'2||7x - ^ x | | + a'3\\Sxl - Axx\\

+ a'A\\Txx - AXl\\ + a'5\\Sx - Ax,\\ + a'6\\Tx - AXl\\

+ a'1\\Sx, -Ax\\+ a'g||Txx - Ax\\+ a'g\\Ax - Ax,||,

where a\ = at(x, xx). Thus

(5.4) || S * - Xl\\ < (a[ + a'2)-\\x - Tx\\+{a'5 + a ' 6 ) - \ \ X l - Sx\\

+ {a'1 + a's + a'9)-\\x-x1\\.

Substi tuting in (5.3) yields

(1 - c) - | |x - 7 x | | < d-\\Xl - x\\

where

c = a-, + a, +

d — a5 + ab + a9

5 6

(a7 + a8) -(a7 + a8 + a9)

l-a'5-a'6
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F r o m (2 .2 ' " ) , c + d < 1, so that ||JC - 7JC|| < \\xx - x2\\/2. Substituting in (5.4)
yields II*! - SJC|| < I K - x2\\/2. Thus

ll^i ~x2\\< \\xx -Tx\\ + \\x2 - Tx\\ < 2\\Xl - 7* | | < 2\\Xl - & c | | « \\Xl - x2\\

and, since X is strictly convex, Tx = x. As in case la, Sx = x too and F is
convex.

Case II. Assume ||JC - 7JC|| < ||JC - Sx\\. The proof is similar to case I and will
therefore be omitted.

This concludes the proof.

6. Fixed points of orbitally continuous mappings

Let T be a selfmap of a metric space (A ,̂ d). An orbit of T at x0 is denoted by
the set

0{x0,T) = {xo,Txo,T
2xo

Further, 0(xo,T) stands for the closure of the orbit.

DEFINITION 2 (Jaggi [33]). A selfmap T of X is jc0-orbitally continuous for
some x0 in X if its restriction to the set ®(x0, T) is continuous.

If T is ;t0-orbitally continuous for any x0 in X, Then T is said to be orbitally
continuous. Ciric [7] has shown that orbitally continuous mappings are not
necessarily continuous and on other hand, Jaggi [33] gave an example of x0-orbit-
ally continuous mapping T, but not orbitally continuous on X.

Browder and Petryshyn [2] give the following

DEFINITION 3. A selfmap T of X is asymptotically regular at a point x of X if
d(T"x, Tn + lx) -> 0 as n -» oo.

The following theorem is a special case of Theorem 6 of Park [47] (the proof is
enclosed for sake of completeness):

THEOREM 6.1. Let S be an x0-orbitally continuous selfmap of a metric space
(X,d) for some x0 in X. If the sequence {S"x0} has a cluster point z in X and S is
asymptotically regular at x0, then z is a fixed point of S.
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PROOF. Let {Sk(n)x0} be a subsequence of {S"x0}-converging to z. Since
d(z, Sz) < d(z, Sk<n)x0) + d(Sk(n)x0, Sk(")+1x0) + d(S(Skin)x0), Sz), using the
asymptotic regularity of S and its x0-orbitally continuity, we have z = Sz.

It is not hard to check that Theorem 6.1 includes a multitude of results for
mappings satisfying conditions (l)-(24) and (26)-(49) of Rhoades [50] and also
those of Ciric [8], Jaggi [33], Meir and Keeler [44], Fisher [16].

The following theorem is motivated by the contractive condition invented by
Yen [65]:

THEOREM 6.2. Let K be a non-empty convex subset of a normed linear space X, T
a selfmap of K satisfying

(6.1) \\Tx - 7>||< fllmax{||jc - Tx\\, \\y - Ty\\)

+ a2max{||x - Ty\\, \\y - Tx\\) + a3\\x - y\\

for all x, y in K, where a, = at(x, y), i= 1,2,3, are nonnegative functions
satisfying

(6.2) sup {2ax + a2 + a 3 } < 1, inf a1(x,y)>0.

For each X, 0 < X < 1, let Tx = X • I + (1 - X). T where I is the identity map
of K. Let x0 be a point of K such that the sequence { T£(x0)} clusters to a point z of
K and assume that Tx is x0-orbitally continuous and asymptotically regular at x0.
Then z is the unique fixed point of T in K and { T£(x0)} converges to z.

PROOF. From Theorem 6.1, z is a fixed point of Tx. Thus Tz = z and suppose
T has two distinct fixed points w, z. From (6.1) with a, = at(w, z),

\w-z\\ = \\Tw- 7z| |< (a2 w — z

which implies 2ax{w, z) = 0, a contradiction to (6.2).
For any x in K,

(6.3) | | rx(x) - z|| < X -||JC - z|| + (1 - X) • | |7* - Tz\\.

From (6.1) with a, = at(x, z),

\\Tx - TzU a.m^iWx - Tx\\,\\z - Tz\\)

+ a 2 max{ | | jc - 7z| | , ||z - 7x | |} + a3\\x - z\\

= flxlljc — 7 x | | + a 2 m a x { | | x - z | | , | | z - 7x | | } + a 3 | | x - z | |

< ^ ( H x - z|| + | | rz - 7JC||) + a 2 m a x { | | x - z | | , \\Tz - Tx\\] + a3\\x - z\\.

Suppose ||JC - z\\ < \\Tx - Tz\\. Then, it follows from (6.2) that \\Tx - Tz\\ <

\\Tx - Tz\\, a contradiction. So \\Tx - Tz\\ < ||JC - z\\ and from (6.3), \\Tx(x) - z\\

\\x ~ z\\.
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Since x is arbitrary in K, we note that for x = 7\"(x0),

\\T"+1(v i •,II <- \\T"<v ~\ 7ii

which guarantees the convergence of the sequence {T£(x0)} to z, since z is a
cluster point of the same sequence.

This concludes the proof.

REMARK 5. For a non-expansive mapping T, the convergence of {T£(x0)} was
investigated by Diaz and Metcalf [11], Edelstein [13]. Kannan [25], Krasnoselskii
[31] and Schaeffer [58] in either uniformly convex or strictly convex Banach
spaces. Jaggi [34] discussed the convergence of {rx"(x0)} in a normed linear space
with no additional structure. Our Theorem 6.2 extends Theorem 1 of [34].

7. Approximating fixed points in Banach space

Let X be a Banach space and K be a convex subset of X. Dotson [12] gives the
following

DEFINITION 4. A selfmap T of K is quasi-nonexpansive if T has a fixed point z
in K and \\Tx - z\\ < ||x - z\\ for any x in K.

An extensive literature exists about non-expansive and quasi-nonexpansive
mappings. Here we cite the fine papers of Garegnani and Zanco [21], Goebel and
Massa [22], Karlovitz [26], Kuhn [32], Maluta [36], Massa [39], [40], [41], Massa
and Roux [43], Petryshyn and Williamson [49], Rhoades [52], Roux [54], [55], [56],
Roux and Zanco [57], Soardi [63] and the Italian bibliography of Papini [45] for
further information.

In the case of a Banach space, a slightly more general result than Theorem 6.2
concerning approximation of fixed points can be obtained by considering an
iterative procedure of Mann [37]. Strictly speaking, let x1 be a point of K and
M(xv tn, t) stands for the sequence {xn} defined by xn+l = (1 - tn) • xn + /„ •
Txn, where {/„} is a sequence of [a, b], 0 < a < b < 1. F(T) denotes the set of
the fixed point of T. A selfmap Tof K with F(T) # 0 is said to satisfy

Condition I. If there is a non-decreasing function / : [0, oo) -» [0, oo) with
/(0) = 0, /(/•) > 0 for any r > 0, such that \\x - Tx\\ > f(d(x, F(T))) for all x
in K, where d(x, F(T)) = inf{||jc - z\\: z e F(T)}.

Condition II. If there is a real number h > 0 such that \\x - Tx\\ > h •
d(x, F(T)) holds for all x in K.
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It is easily verified that a mapping T satisfying condition II also satisfies
condition I.

These conditions appear in Senter and Dotson [59], who obtained the following
theorem.

THEOREM 7.1. Let X be a uniformly convex Banach space, K a closed convex
subset of X and T quasi-nonexpansive selfmap of K. If T satisfies condition I, then
for arbitrary xl in K, M{xy, tn, T) converges to an element of F(T).

We use this result to establish the following theorem:

THEOREM 7.2. Let K be a non-empty closed convex subset of a uniformly convex
Banach space X. Suppose that T is a selfmap of K, with F(T) # 0, satisfying (6.1)
for all x, y in K and (6.2). Then for arbitrary xr chosen in K, M(xx, tn, t)
converges to the unique element of F(T).

PROOF. Since F(T) * 0, let be z an element of F(T). As in the proof of
Theorem 6.2, it is immediately proved that z is the unique element of F(T) and T
is quasi-nonexpansive. From (6.1) with a, = at(x, z),

-rz|H|rx-z| |<a imax{| |x-7*|| , | |z-rz| |}

'" -rz| | , | |z-rx| |}+a 3 | |x-z| |

Therefore

fll||ac - T x \ \ + ( a 2 + a 3 ) - \ \ x - z \ \ > \ \ T x - z \ \ > \ \ x - z \ \ - \ \ x - Tx\\

which implies \\x - Tx\\ > h • \\x - z\\ where h = (1 - a2 - a3)/(l + ax). From
(6.2), h > 0 and so T satisfies condition II. The thesis follows from Theorem 7.1.

Related results to Theorem 7.2 can be found in Bose and Mukherjee [1] and
Massa [42], which improves the results of [1].
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