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Generalized Reductive Lie Algebras:
Connections With Extended Affine
Lie Algebras and Lie Tori

Saeid Azam

Abstract. We investigate a class of Lie algebras which we call generalized reductive Lie algebras. These

are generalizations of semi-simple, reductive, and affine Kac–Moody Lie algebras. A generalized reduc-

tive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class

of algebras has been under intensive investigation in recent years. They have also been called extended

affine Lie algebras. The larger class of generalized reductive Lie algebras has not been so intensively

investigated. We study them in this paper and note that one way they arise is as fixed point subalgebras

of finite order automorphisms. We show that the core modulo the center of a generalized reductive

Lie algebra is a direct sum of centerless Lie tori. Therefore one can use the results known about the

classification of centerless Lie tori to classify the cores modulo centers of generalized reductive Lie

algebras.

Introduction

In 1990 Høegh–Krohn and B. Torresani [HK-T] introduced a new interesting class

of Lie algebras over field of complex numbers, called quasi simple Lie algebras by

proposing a system of fairly natural and not very restrictive axioms. These Lie al-

gebras are characterized by the existence of a symmetric nondegenerate invariant

bilinear form, a finite dimensional Cartan subalgebra, a discrete root system which

contains some nonisotropic roots, and the ad-nilpotency of the root spaces attached

to non-isotropic roots. As it will appear from the sequel, these algebras are natural

generalizations of reductive Lie algebras, and affine Kac–Moody Lie algebras. For this

reason and other reasons indicated in the introduction of the paper [AABGP] we call

this class of Lie algebras generalized reductive Lie algebras (GRLA for short).

In [HK-T], the authors extract some basic properties of GRLAs from the axioms,

but for the further study of such Lie algebras they assume the irreducibility of the

corresponding root systems. Namely, a GRLA is called an extended affine Lie algebra

(EALA for short) if the set of non-isotropic roots is indecomposable and isotropic

roots are non-isolated (see Definition 1.1 for terminology). We note that EALAs

have been under intensive investigation in recent years, however the more general

class of generalized reductive Lie algebras has not been so intensively investigated.

In [AABGP] the axioms for an EALA are introduced in steps in such a way that

the power of each axiom is clearly shown before introducing the next one. This in
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particular provides a good framework for the study of Lie algebras which satisfy only

a part of the axioms. In Section 1, we follow the same steps as in [AABGP, Chapter I]

to obtain the basic structural properties of a GRLA. However, it turns out that some

of the results in [AABGP, Chapter I] can be proved using fewer axioms than those in

[AABGP](see Proposition 1.4(i)).

In Section 2, we get more information about the structure of a GRLA G by decom-

posing its root system R into a finite union of indecomposable subroot systems, and

then corresponding to each subroot system we construct an indecomposable gener-

alized reductive subalgebra of G. More precisely, we show that up to some isolated

spaces, a GRLA is a finite sum of certain indecomposable generalized reductive subal-

gebras and an abelian subalgebra, with trivial Lie bracket between distinct summands

(on the level of core). In particular, if there are no isolated root spaces (that is if G

satisfies part (b) of axiom GR6 of a GRLA), the structure of G can be thought of a

generalization of a reductive Lie algebra. In fact when the nullity is zero, G is nothing

but a reductive Lie algebra (see Corollary 2.11 for details). The main result of this

section is that the core modulo center of a GRLA G is isomorphic to a direct sum

of the cores modulo centers of some indecomposable generalized reductive ideals of

G. When the nullity is less than or equal two, this result can be read as: the core of

G modulo its center is a direct some of the cores modulo centers of some extended

affine Lie algebras (see Theorem 2.10(iv) and Corollary 2.11(i)).

In Section 3, the main section, we show that the core modulo center of an in-

decomposable GRLA is a centerless Lie torus, and therefore the core modulo center

of a GRLA is a direct sum of centerless Lie tori (Theorem 3.1 and Corollary 3.2).

Therefore, one can use the results of [BGK], [BGKN], [AG], [Y], [ABG] and [AFY]

regarding the classification of centerless Lie tori to classify the cores modulo centers

of GRLAs for types which the classification is achieved. In principle, the classification

of centerless Lie tori is done for all types except type BC2. See also [A2, Proposition

1.28], [AG, Proposition 1.28] and [N2, Theorem 6] for the relation between an EALA

and its core modulo center. For a deep study of EALAs and their root systems we re-

fer the reader to [S], [BGK], [BGKN], [AABGP], [AG], [ABG], [A1], [A3]. Also see

[N1-2] and [AKY] for some new classes of Lie algebras which are closely related to

EALAs.

In Section 4, we give several examples of GRLAs and we show some methods of

constructing new GRLAs from old ones. In particular, it is shown that GRLAs arise

as the fixed point subalgebras of finite order automorphisms.

The author would like to thank the referee for pointing out a gap in an early ver-

sion of this work, as well as for many helpful suggestions. He also would like to thank

Professors, B. Allison, S. Berman, K. H. Neeb and A. Pianzola for some helpful dis-

cussions. A discussion with Professor K. H. Neeb led to Example 4.3. A part of this

work was completed while the author was visiting the Department of Mathematical

Sciences at the University of Alberta, thanks for their hospitality.

1 Generalized Reductive Lie Algebras

Let G be a Lie algebra over the field of complex numbers, let H be a subalgebra of G

and ( · , · ) : G × G → C be a bilinear form on G. Consider the following axioms for
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the triple
(
G, ( · , · ), H

)
:

GR1 The form ( · , · ) is symmetric, nondegenerate and invariant on G.

GR2 H is a nontrivial finite dimensional abelian subalgebra which is self-centrali-

zing and ad(h) is diagonalizable for all h ∈ H.

According to GR2 we have a vector space decomposition G =
⊕

α∈H⋆ Gα, where

Gα = {x ∈ G | [h, x] = α(h)x for all h ∈ H}.

The set R =
{

α ∈ H⋆ | Gα 6= {0}
}

is called the root system of G.

From GR1–GR2 it follows that

(1.1) G0 = H, 0 ∈ R,

and

(1.2) (Gα, Gβ) = {0} unless α + β = 0.

In particular,

(1.3) R = −R,

and the form restricted to H is nondegenerate. For α ∈ H⋆ let tα be the unique

element in H which represents α via the form. Then for any α ∈ R,

(1.4) [Gα, G−α] = Ctα.

Transfer the form to H⋆ through

(1.5) (α, β) := (tα, tβ) for α, β ∈ H⋆.

Let

R×
= {α ∈ R | (α, α) 6= 0} and R0

= {α ∈ R | (α, α) = 0}.

Elements of R× (resp., R0) are called non-isotropic (isotropic) roots of R. The next

axioms are as follows:

GR3 For any α ∈ R× and x ∈ Gα, adG(x) acts locally nilpotently on G.

GR4 R is a discrete subset of H⋆.

GR5 R× 6= ∅.

Definition 1.1 A triple (G, ( · , · ), H) satisfying axioms GR1–GR5 is called a gen-

eralized reductive Lie algebra (GRLA for short). We call a generalized reductive Lie

algebra indecomposable if it satisfies

GR6a R× is indecomposable, that is R× is not a disjoint union of two of its non-

empty subsets which are orthogonal with respect to the form.
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We call a GRLA non-singular if it satisfies

GR6b For σ ∈ R0, there exists α ∈ R× such that α + σ ∈ R, that is isotropic roots

of R are non-isolated.

Finally, a GRLA is called an extended affine Lie algebra (EALA for short) if it satisfies

GR1–GR6. When there is no confusion, we simply write G instead of (G, (· , ·), H).

The core of a GRLA G is by definition, the subalgebra Gc of G generated by root spaces

corresponding to non-isotropic roots. It follows that Gc is a perfect ideal of G. A

GRLA is called tame if Gc contains its centralizer in G.

Remark 1.2 (i) It follows from axioms GR1–GR2 and GR6b that R× 6= ∅, so the

axiom GR5 is redundant for a non-singular GRLA.

(ii) It is easy to see that a GRLA G is tame if and only if CG(Gc) = {x ∈ G |
(x, Gc) = {0}}. The proof of [ABP, Lemma 3.62] shows that a tame GRLA is non-

singular.

(iii) Semisimple Lie algebras, finite dimensional reductive Lie algebras and a di-

rect sum of EALAs are examples of non-singular GRLAs. Heisenberg Lie algebras

(with derivation added) satisfy axioms GR1–GR4, however they are not GRLAs as

R×
= ∅. It is shown in [ABY, Section 3] that the fixed point subalgebra of an EALA

under a finite order automorphism satisfies GR1–GR4.

From now on we assume that (G, ( · , · ), H) is a GRLA with the corresponding root

system R. So we may use all the results in [AABGP] which are obtained by axioms

GR1–GR5. Let us state from [AABGP] some of the important properties of G which

will be of use in the sequel. We emphasize in particular the axioms which are used in

the proof of each result.

It is shown in [AABGP, I.(1.18)] that if G satisfies GR1–GR2, then for α ∈ R×

there exist ea ∈ Gα and fα ∈ G−α such that

(1.6) (eα, hα := [eα, fα], fα) is a sl2-triple,

that is the C-span of {ea, hα, fα} is a Lie subalgebra of G isomorphic to sl2(C). Note

that

hα =
2tα

(α, α)
.

If U is a vector space equipped with a bilinear form, let us write

α∨ :=
2α

(α, α)
for α ∈ U with (α, α) 6= 0.

Theorem 1.3 (AABGP, Theorem I.1.29) Let G satisfy GR1–GR3 and α ∈ R×. Then

(a) For β ∈ R, we have (β, α∨) ∈ Z.

(b) For β ∈ R, β − (β, α∨)α ∈ R.

(c) If k ∈ C and kα ∈ R, then k = 0,±1.

(d) dim Gα = 1.

(e) For any β ∈ R, there exist two non-negative integers u, d such that for any n ∈ Z

we have β + nα ∈ R if and only if −d ≤ n ≤ u. Moreover, d − u = (β, α∨).

https://doi.org/10.4153/CJM-2006-009-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-009-8


Generalized Reductive Lie Algebras 229

The statement of part (i) of the following proposition is the same as [AABGP,

Proposition I.2.1], however the proof given here is different, as we are not allowed to

use axiom GR6. We do not even use GR4 in the proof.

Proposition 1.4

(i) Let G satisfy GR1–GR3. Then (R, R0) = {0}.

(ii) δ ∈ R0 is isolated if and only if Gδ ⊆ CG(Gc).

Proof (i) First let α ∈ R× and δ ∈ R0. Suppose to the contrary that (α, δ) 6= 0.

By [AABGP, Lemma I.1.30], α + nδ ∈ R for sufficiently large n, and it is clear that

α + nδ ∈ R× except at most for one n. But then for suitable n we have

2(α + nδ, δ)

(α + nδ, α + nδ)
=

2(α, δ)

(α, α) + 2n(α, δ)
/∈ Z

which contradicts Theorem 1.3(a).

Next let δ, η ∈ R0. We must show (δ, η) = 0. If not, then η + δ and η− δ are non-

isotropic and are not orthogonal to δ, η. Therefore by the previous step, η ± δ 6∈ R.

So we get a contradiction if we show that

(η, δ) 6= 0 ⇒ η + δ ∈ R or η − δ ∈ R.

Suppose (η, δ) 6= 0 and η − δ 6∈ R. Choose xδ ∈ Gδ and x−δ ∈ G−δ such that

[x−δ, xδ] = tδ . Take any 0 6= xη ∈ Gη . Then using the Jacobi identity, we have

[
x−δ, [xδ, xη]

]
= (η, δ)xη 6= 0.

Thus [xδ, xη] 6= 0, and so η + δ ∈ R.

(ii) Suppose first that δ ∈ R0 is not isolated, that is there exists α ∈ R× such

that α + δ ∈ R. We must show that [Gδ, Gc] 6= {0}. Since Gα ⊆ Gc , it is enough

to show that [Gδ, Gα] 6= {0}. Consider the non-negative integers u, d appearing in

the α-string through δ, as in part (e) of Theorem 1.3. We have d = u as by part (i),

(δ, α) = 0. Let 0 6= x ∈ Gδ−dα. Then [x, G−α] ⊆ Gδ−(d+1)α = {0}. By [AABGP,

Lemma I.1.21] and part (d) of Theorem 1.3, for any 0 6= z ∈ Gα, we have

(ad z)N (x) 6= 0 but (ad z)N+1(x) = 0,

where N = 2(δ − dα,−α)/(α, α) = 2d. Since α + δ ∈ R, we have d = u ≥ 1, so

d + 1 ≤ 2d = N . Thus [z, (ad z)d(x)] = (ad z)d+1(x) 6= 0. But (ad z)d(x) ∈ Gδ and

so [Gδ, Gα] 6= {0}. Conversely, if δ is isolated then α + δ 6∈ R for all α ∈ R×. Thus

[Gδ, Gα] = {0}.

Remark 1.5 (i) According to part (ii) of Proposition 1.4, axiom GR6b is equivalent

to

GR6b ′ For any δ ∈ R0, the root space Gδ is not contained in the centralizer of the

core.
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(ii) The proof of part (ii) of Proposition 1.4 and [AG, Lemma 1.3] show that for

any α ∈ R× and β ∈ R, α + β is a root if and only if [Gα, Gβ] 6= {0}. In particular,

if α + β ∈ R×, then [Gα, Gβ] = Gα+β . The proof of Proposition 1.4(ii) is in fact a

modified version of a standard sl2-argument.

Define an equivalence relation on R× by saying that two roots α and β in R× are

related if and only if there is a sequence of roots α0 = α, α1, . . . , αt = β in R× such

that (αi , αi+1) 6= 0 for 0 ≤ i ≤ t − 1. This determines a partition R×
=

⋃
i∈I R×

i

where R×
i ’s are indecomposable and (R×

i , R×
j ) = 0 for i 6= j. In particular, if V is the

real span of R and Vi is the real span of R×
i then

(1.7) (Vi , V j) = 0 for i 6= j,

and

(1.8) V =

∑

i∈I

Vi + span
R

R0.

Fix i ∈ I. It follows from part (a) of Theorem 1.3 and indecomposability of R×
i

(see [AABGP, I. Section 2]) that there exist nonzero scalars ci ∈ C such that the form

on Vi defined by

(1.9) ( · , · )i := ci( · , · ),

is real valued and

(1.10) (γ, γ)i > 0 for some γ ∈ R×
i .

If (1.10) does not hold for all γ ∈ R×
i , then it follows from indecomposability of R×

i

that there are roots α, β ∈ R×
i such that (α, α)i > 0, (β, β)i < 0 and (α, β)i 6= 0.

But as the proof of [AABGP, Lemma I.2.3] suggests this leads to the existence of a

complex simple Lie algebra of dimension 6 which is absurd. Thus

(1.11) (α, α)i > 0 for all α ∈ R×
i .

Also note that for α, β ∈ Vi with (α, α)i 6= 0, we have

(1.12) (β, α∨)i :=
2(β, α)i

(α, α)i

= (β, α∨).

The proof of the following lemma is almost the same as [AABGP, Lemma I.2.6],

however we have to be careful for one part in which the α-string through β is used.

We provide the proof here with the necessary modifications.

Lemma 1.6 For α, β ∈ R×, we have −4 ≤ (β, α∨) ≤ 4.
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Proof Since (R×
i , R×

j ) = {0} for i 6= j and (R, R0) = {0} by Proposition 1.4, we

may assume that α, β ∈ R×
i for some i. Since (β, α∨) = (β, α∨)i we may replace

( · , · ) with ( · , · )i . So it is enough to show that if (α, β)i < 0 then (β, α∨)i ≥ −4.

Suppose to the contrary that (α, β)i < 0 but a = (β, α∨) ≤ −5. Let b = (α, β∨).

From (1.11) we have b ≤ −1. By Theorem 1.3(e) all elements of the string

β − dα, . . . , β − α, β, β + α, . . . , β + uα,

are elements of R, where d − u = a ≤ −5. Thus u ≥ 5. In particular β + 2α ∈ R. If

(β + 2α, α)i = 0 then (β, α)i = −2(α, α)i . So

−5 ≥ a =
2(β, α)i

(α, α)i
=

−4(α, α)i

(α, α)i
= −4

which is absurd. Thus (β + 2α, α)i 6= 0 and so β + 2α ∈ R×
i . Then

(β + 2α, β + 2α)i =
2(β, α)i

a
(a + 4) < 0.

This contradicts (1.11).

The restriction of the form ( · , · ) to V × V defines a symmetric bilinear map

( · , · ) : V × V → C.

Let

V0 :=
{

v ∈ V | (v, V) = {0}
}

,

be the radical of this map. Let V = V/V0 and consider the canonical map : V → V.

We have V 6= {0} as we have assumed that R× 6= ∅. Define on the real vector space

V × V a complex valued symmetric bilinear map

(1.13) ( · , · ) : V × V → C

by

(α, β) := (α, β) for α, β ∈ V.

Then ( · , · ) is nondegenerate on V. Moreover, if Vi is the image of Vi under the

map , then the restriction of ( · , · ) to Vi × Vi is also nondegenerate and for α, β ∈
Vi \ {0},

(1.14) (β, α∨)i :=
2(β, α)i

(α, α)i

= (β, α∨) ∈ Z.

Set

R = {α | α ∈ R} and Ri = {α | α ∈ R×
i } ∪ {0}.

Lemma 1.7 R is finite.
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Proof Consider a basis {α1, . . . , αℓ} ⊆ R of V. If α j ∈ Ri j
for some i j ∈ I, then by

(1.11) the term ci j
(α j , α j) is a nonzero real number and so

{ 2α1

ci1
(α1, α1)

, . . . ,
2αℓ

ciℓ(αℓ, αℓ)

}

is also a basis of V. Now for β ∈ V define

ϕ(β) =

(
ci1

(
β,

2α1

ci1
(α1, α1)

)
, . . . , ciℓ

(
β,

2αℓ

ciℓ(αℓ, αℓ)

))
.

Note that for each j, if (β, α j) 6= 0, then β ∈ Ri j
and so by (1.14), ϕ(β) ∈ Z

ℓ. Now

from Lemma 1.6 we see that ϕ(R) has at most 9ℓ elements. Since the bilinear map

(1.13) on V is nondegenerate, ϕ is one to one and so R is finite.

We have from Lemma 1.7 that the index set I is finite, say I = {1, . . . , k}, and so

(1.15) R×
=

k⋃

i=1

R×
i and V =

k∑

i=1

Vi + span
R

R0,

where span
R

R0 ⊆ V0.

For α ∈ R× define wα : V → V by

wα(β) = β − (β, α∨)α, (β ∈ V).

By Theorem 1.3(b), wα(R) ⊆ R. Since wα preserves the form ( · , · ), we have from

(1.7) that for α ∈ R×
i ,

wα(R×
i ) ⊆ R×

i and wα(Vi) ⊆ Vi .

In a similar manner, for α ∈ Ri \ {0}, we can define wα on Vi . Then

(1.16) wα(β) = wα(β) and wα(Ri) ⊆ Ri.

Lemma 1.8

(i) The symmetric bilinear form ( · , · )i on Vi is positive definite.

(ii) The symmetric bilinear form ( · , · )i on Vi is positive semidefinite.

Proof Clearly (ii) is an immediate consequence of (i). By Lemma 1.7, Ri is finite,

and Ri \ {0} is indecomposable with respect to the form ( · , · )i , as R×
i is indecom-

posable. Now follow the proof of [AABGP, Theorem I.2.14] with Ri in place of R and

Vi in place of V.

We now would like to put together the forms ( · , · )i to obtain a positive semidef-

inite bilinear form on V. Using (1.15) we can write each element α ∈ V in the form

(1.17) α =

k∑

i=1

αi + δα where αi ∈ Vi , δα ∈ span
R

R0 ⊆ V0.
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Lemma 1.9 Let α =
∑k

i=1 αi + δα and β =
∑k

i=1 βi + δβ be two elements of V in

the form (1.17) and define

(1.18) (α, β) ′ =

k∑

i=1

(αi , βi)i .

Then ( · , · ) ′ is a well-defined real valued positive semidefinite symmetric bilinear form

on V. Moreover,

(1.19) (β, α∨) ′ :=
2(β, α) ′

(α, α) ′
= (β, α∨) for α, β ∈ R×.

Proof To show that ( · , · ) ′ is well defined consider α and β as in the statement and

let α =
∑k

i=1 α ′
i + δ ′

α and β =
∑k

i=1 β ′
i + δ ′

β be other expressions of α and β in the

form (1.17). We must show that

k∑

i=1

(αi , βi)i =

k∑

i=1

(α ′
i , β

′
i )i .

Now using (1.7) and the fact that δα, δβ , δ ′
α, δ ′

β are isotropic, we have

(αi , βi)i = ci

(
α −

∑

j 6=i

α j − δα, βi

)

= ci

( k∑

j=1

α ′
j + δ ′

α −
∑

j 6=i

α j − δα, βi

)

= ci(α
′
i , βi)

= ci

(
α ′

i , β −
∑

j 6=i

β j − δβ

)

= ci

(
α ′

i ,

k∑

j=1

β ′
j + δ ′

β −
∑

j 6=i

β j − δβ

)

= ci(α
′
i , β

′
i ) = (α ′

i , β
′
i )i .

This proves that the form ( · , · ) ′ is well-defined. Now since ( · , · )i is positive semi-

definite on Vi , for each i, it is clear that ( · , · ) ′ is positive semidefinite on V and that

(1.19) holds.

We have from Lemmas 1.8, 1.7, (1.14) and (1.16) that

(1.20) Ri is an irreducible finite root system in Vi.

Lemma 1.9 together with other properties which we have seen about V and R lead

us to state the following definition.
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Definition 1.10 Let V be a nontrivial finite dimensional real vector space with a

nontrivial positive semidefinite symmetric bilinear form ( · , · ) and let R be a subset

of V. We say R is a generalized reductive root system (GRRS for short) in V if R satisfies

the following 5 axioms:

(R1) R = −R.

(R2) R spans V.

(R3) R is discrete in V.

(R4) If α ∈ R× and β ∈ R, there exist two non-negative integers u, d such that

for any n ∈ Z we have β + nα ∈ R if and only if −d ≤ n ≤ u. Moreover,

d − u = (β, α∨).

(R5) α ∈ R× ⇒ 2α 6∈ R.

We call the GRRS R non-singular if it satisfies:

(R6) for any δ ∈ R0, there exists α ∈ R× such that α + δ ∈ R.

We say a root satisfying this condition is nonisolated and call isotropic roots which do

not satisfy this isolated.

The GRRS R is called indecomposable if it satisfies:

(R7) R× cannot be decomposed into a disjoint union of two nonempty subsets which

are orthogonal with respect to the form.

A non-singular indecomposable GRRS R is known at the literature as an extended

affine root system (EARS for short). One may also call it an irreducible GRRS. The

nullity of a GRRS R is defined to be the dimension of the real span of R0.

Since the form in the definition of a GRRS is nontrivial we have from (R2) that

R× 6= ∅. Then it follows from this, (R1) and (R4) that 0 ∈ R. The root system R of a

(non-singular) GRLA G is a (non-singular) GRRS. In fact the existence of a nontrivial

positive semi-definite bilinear form was shown in Lemma 1.9, and by (1.1), (1.3),

GR4 and Theorem 1.3(d)–(e) axioms (R1)–(R5) also hold. From Remark 1.2(ii) we

know that the root system of a tame GRLA is a non-singular GRRS. We define the

nullity of a GRLA to be the nullity of its root system.

For a GRRS R we set

Riso = {δ ∈ R0 | δ + α 6∈ R for any α ∈ R×}, and Rniso = R0 \ Riso .

That is Riso (resp., Rniso ) is the set of isolated (non-isolated) roots of R. So R is non-

singular if and only if Riso = ∅.

2 Intrinsic Decomposition of a GRLA

Let
(
G, ( · , · ), H

)
be a GRLA with root system R. Let V, V, Vi and Vi be as in

Section 1. Let ( · , · ) be the form on H⋆, defined by (1.5), restricted to V. Fix a

real valued positive semidefinite symmetric bilinear form ( · , · )i on Vi , as in (1.9).

Let ( · , · ) be the real positive semidefinite symmetric bilinear form on V defined by

(1.18). Then

( · , · ) ′|Vi
= ( · , · )i = ci( · , · ).
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We also have from Lemma 1.8(i) that the form ( · , · )i on Vi is real-valued and posi-

tive definite, and Ri is an irreducible finite root system in Vi . Note also that the forms

( · , · ) and ( · , · ) ′ on V have the same radical V0.

Fix a basis Πi = {αi1, . . . , αiℓi
} of Ri and choose a preimage αi j ∈ Ri of αi j ,

1 ≤ j ≤ ℓi . Put Π̇i = {αi1, . . . , αiℓi
}.

Set

V̇i = span
R

Π̇i, Ṙi = {α̇ ∈ V̇i | α̇ ∈ Ri} and V0
i = V0 ∩ Vi .

Then

(2.1) Vi = V̇i ⊕ V0
i and V =

( k⊕

i=1

V̇i

)
⊕ V0.

(See (1.15) for this last equality.) Now the map restricted to V̇i is an isometry from

V̇i onto Vi with respect to the form ( · , · ) ′ = ci( · , · ) which maps Ṙi bijectively onto

Ri , and so Ṙi is a finite root system in V̇i isomorphic to Ri .

Moreover,

R×
i = {α̇ + δ ∈ R | α̇ ∈ Ṙsh i×, δ ∈ V0}.

Let W be the Weyl group of R and Ẇi be the group generated by {wα̇ | α̇ ∈ Ṙ×
i }.

Since (Ṙi , V j) = {0} for i 6= j and (Ri , V
0) = {0}, by restriction Ẇi is isomorphic

to the Weyl group of the finite root system Ṙi . Moreover, since R contains all reduced

roots of Ṙi (see [AABGP, Proposition II.2.11]) and wrα̇ = wα̇, α̇ ∈ Ṙ×
i , r ∈ R \ {0},

Ẇi is a subgroup of W. It follows from this that

(2.2) R×
i = {α̇ + δ ∈ R | α̇ ∈ Ṙ×

i , δ ∈ R0}.

In fact if α̇ + δ ∈ R, α̇ ∈ Ṙ×
i , δ ∈ V0, then α̇ = rwβ̇1

· · ·wβ̇m
(γ̇) for some β̇1, . . . , β̇m,

γ̇ ∈ Π̇i where r = 2 or 1, depending on either α̇/2 is a root in Ṙi or not. Since R is

W invariant and isotropic elements are fixed under the action of the Weyl group we

get ±rγ̇ + δ ∈ R. Now consider the γ̇-string through rγ̇ + δ to conclude that δ ∈ R

(see [AABGP, Proposition II.2.11(b)]). A similar argument shows that if we put

R0
i := {δ ∈ R0 | α + δ ∈ R for some α ∈ R×

i },

then

(2.3) {δ ∈ R0 | α̇ + δ ∈ R for some α̇ ∈ Ṙ×
i } ⊆ R0

i .

Now let

Ri = R×
i ∪ R0

i .

Then

(2.4) R =

( k⋃

i=1

Ri

)
∪ Riso .
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Since V = span
R

R, it follows from (2.4), (2.1) and (2.2) that

V0
= span

R
R0.

Set

R ′
i = Ri ∪ (〈Ri〉 ∩ R0).

By (2.3),

(2.5) (R ′
i )0

= 〈Ri〉 ∩ R0
= 〈R0

i 〉 ∩ R0.

The proof of the following lemma is essentially the same as [ABY, Lemma 1.2],

however for the reader’s convenience we give the details. In what follows we denote

by 〈S〉, the Z-span of a subset S of a vector space.

Lemma 2.1 Let R be a GRRS and R1 be a subset of R with R×
1 := R1 ∩ R× 6= ∅.

Suppose that

(a) R1 = −R1,

(b) {δ ∈ R0 | α ′ + δ ∈ R1 for some α ′ ∈ R×
1 } ⊆ R1,

(c) α ′ ∈ R1, β ∈ R, (α ′, β) 6= 0 ⇒ β ∈ R1.

Then R1 is a GRRS in its real span. Moreover, if we set

R ′
1 = R×

1 ∪ (〈R1〉 ∩ R0),

then R ′
1 is also a GRRS in the real span of R1.

Proof Since R×
1 6= ∅, it is enough to show that axioms (R1)–(R5) hold for R1.

Clearly (R1)–(R3) and (R5) hold for R1. We now check (R4). Let α ′ ∈ R×
1 and

β ′ ∈ R1. Since (R4) holds for R, it is enough to show that for n ∈ Z,

β ′ + nα ′ ∈ R ⇒ β ′ + nα ′ ∈ R1.

Since β ′ ∈ R1, we may assume that n 6= 0. Assume first that n > 0. So let β ′ + nα ′ ∈
R, n > 0. If β ′ + nα ′ ∈ R×, then (β ′ + nα ′, β ′) 6= 0 or (β ′ + nα ′, α ′) 6= 0. In either

case, we get from (c) that β ′ + nα ′ ∈ R1. Next, let β ′ + nα ′ ∈ R0. Since (R4) holds

for R and n > 0, we have β ′ + (n − 1)α ′ ∈ R×. So repeating our previous argument

we get β ′ + (n − 1)α ′ ∈ R1. Since

β ′ + nα ′ + (−α ′) = β ′ + (n − 1)α ′ ∈ R×
1

it follows from (a) and (b) that β ′ + nα ′ ∈ R1. If n < 0 and β ′ + nα ′ ∈ R, then

−β ′−nα ′ ∈ R. Now by the previous step −β ′−nα ′ ∈ R1 and so by (a), β ′ + nα ′ ∈
R1. This completes the proof of the first assertion.

Next let R ′
1 be as in the statement. Clearly R1 and R ′

1 have the same real span. Since

R×
1 = (R ′

1)×, it is easy to check that R ′
1 satisfies conditions (a)–(c), and so is a GRRS.
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Corollary 2.2 Ri is an EARS (an irreducible GRRS) and R ′
i is an indecomposable

GRRS in Vi .

Proof It is clear from the way Ri is defined that conditions (a) and (b) of Lemma 2.1

hold for Ri . Condition (c) also holds as Ri is indecomposable.

We define the rank of Ri to be the rank of finite root system Ri .

Remark 2.3 (i) From [AABGP, Theorem II.2.37] we know that the set of isotropic

roots of an EARS is of the form S+S where S is a semilattice in the radical of the form.

If the nullity ν is 1, then S is a lattice ([AABGP, Corollary II.1.7]). If ν = 2 then from

[AABGP, II. Section 1] we know that the Z-span Λ of S is of the form Λ = Zσ1 ⊕Zσ2

where σ1, σ2 ∈ S and {σ1, σ2} is a basis of V0. Then S is one of the semilattices

Λ, S ′ := 2Λ ∪ (σ1 + 2Λ) ∪ (σ2 + 2Λ), S ′ + σ1, S ′ + σ2.

Thus S + S = Λ. Therefore if ν ≤ 2, the set of isotropic roots is a lattice. Now

according to Corollary 2.2 each Ri is an EARS and so R0
i is a lattice if ν ≤ 2. Thus by

(2.5), (R ′
i )0

= R0
i and so R ′

i = Ri . In particular if R is non-singular, all R ′
i ’s are also

non-singular.

(ii) Even when R is non-singular, the root systems R ′
i might be singular. According

to part (i), this only can happen if ν ≥ 3. To see an example let ν = 3, V =

Rα1 ⊕ Rα2 ⊕ Rσ1 ⊕ Rσ2 ⊕ Rσ3. Define a positive semi-definite bilinear form on V

by letting σi ’s to be isotropic and (αi , α j) = 2δi j . Set

R1 = (S + S) ∪ (±α1 + S) and R2 = Λ ∪ (±α2 + Λ),

where

Λ = Zσ1 ⊕ Zσ2 ⊕ Zσ3 and S = 2Λ ∪ (σ1 + 2Λ) ∪ (σ2 + 2Λ) ∪ (σ3 + 2Λ).

By [AABGP, Theorem II.2.37], R1 and R2 are GRRS of type A1 in the real span of R1

and R2, respectively. Set R = R1 ∪R2. Then R is a non-singular GRRS in V. However

R ′
1 = Λ ∪ (±α1 + S) is a singular GRRS.

We now return to the GRLA G and the corresponding GRRS R. Set

H(R) = span
C
{tα | α ∈ R},

H0(R) =
{

h ∈ H(R) |
(

h, H(R)
)

= {0}
}

and

Ḣi = span
C
{tα | α ∈ Ṙi} = span

C
{tα | α ∈ Ṙ×

i }.

Lemma 2.4

(i) The form ( · , · ) on H restricted to Ḣi is nondegenerate.

(ii) H(R) = H0(R) ⊕ (
⊕k

i=1 Ḣi).

(iii) H0(R) = span
C
{tδ | δ ∈ R0}.
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Proof (i) Let h =
∑

(k j + ik ′
j)tα j

∈ Ḣt be in the radical of the form ( · , · ) restricted

to Ḣt , where α j ∈ Ṙt , k j , k ′
j ∈ R and i is the complex number with i2

= −1. In

particular (∑
k jα j , V̇t

)
+ i

(∑
k ′

jα j , V̇t

)
= {0}.

Multiplying both sides by the scalar ct (see (1.9)) we obtain

(∑
k jα j , V̇t

)

t
+ i

(∑
k ′

jα j , V̇t

)

t
= {0}.

Since ( · , · )t is real valued and positive definite (in particular nondegenerate) on V̇t

we get
∑

k jα j = 0,
∑

k ′
jα j = 0 and so h = 0.

(ii) Since Ṙi and Ṙ j are orthogonal if i 6= j, we have (Ḣi , Ḣ j) = {0}. So by part

(i), Ḣi ∩ (
∑

j 6=i Ḣ j) = {0}. In particular, the sum
∑k

i=1 Ḣi is direct and the form

restricted to
⊕k

i=1 Ḣi is nondegenerate. Thus (
⊕k

i=1 Ḣi) ∩ H0(R) = {0}. Note that

if α ∈ R, then α = α̇ + δ, where α̇ ∈ Ṙi and δ ∈ V0, for some 1 ≤ i ≤ k. Now

tα̇ ∈ Ḣi and tδ ∈ H0(R). So tα ∈ Ḣi ⊕ H0(R).

(iii) Let α ∈ R. By (2.2), α = α̇ + δ where α̇ ∈ Ṙi for some 1 ≤ i ≤ k and

δ ∈ R0. Therefore tα is in the span of {tα̇, tδ | α̇ ∈ Π̇i, δ ∈ R0}. It follows that if

h ∈ H0(R) ⊆ H(R), then h = ḣ + h0 where ḣ ∈
⊕

Ḣi and h0 ∈ span
C
{tδ | δ ∈ R0}.

But by part (ii), ḣ = 0 and h = h0.

Set

H0
i := span

C
{tδ | δ ∈ R0, α̇ + δ ∈ R for some α̇ ∈ Ṙ×

i } ⊂ H(R)0.

From (2.3) it follows that H0
i ⊆ span

C
{tδ | δ ∈ R0

i }. By Corollary 2.2, Ri is an EARS.

So by [AABGP, Corollary II.2.31] if δ ∈ R0
i , then δ = δ1 + δ2, where tδ1

, tδ2
∈ H0

i .

Thus tδ ∈ H0
i and

(2.6) H0
i = span

C
{tδ | δ ∈ R0

i } = span
C
{tδ | δ ∈ (R ′

i )0}.

Define

Ḣ =

k⊕

i=1

Ḣi and H0
=

k∑

i=1

H0
i ⊆ H(R)0.

Recall from Definition 1.1 that the subalgebra Gc of G is the subalgebra of G gen-

erated by root spaces Gα, α ∈ R×.

Lemma 2.5 Ḣ ⊕ H0
=

∑
α∈R×[Gα, G−α] = Gc ∩ H.

Proof It follows immediately from the definition of Gc and (1.1) that the second

equality holds. Since G satisfies axioms GR1–GR4 of an EALA, we have from (1.4)

that if α ∈ R× then [Gα, G−α] = Ctα. So if α̇ ∈ Π̇i ⊂ R×
i ⊂ R×, then tα̇ ∈

[Gα̇, G−α̇]. Thus tα̇ ∈
∑

α∈R×[Gα, G−α] for all α̇ ∈ Ṙi , so Ḣi ⊆
∑

α∈R×[Gα, G−α].

Next let δ ∈ R0
i . Then α + δ ∈ R for some α ∈ R×

i . Also by (2.2) and (2.3) α = α̇ + η
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for some α̇ ∈ Ṙi \ {0} and η ∈ R0
i . Now tα̇, tα, tα+δ ∈

∑
α∈R×[Gα, G−α]. Thus the

sum contains tδ too, and so contains Ḣ ⊕ H0.

Conversely, let α ∈ R×, then α ∈ Ri for some i. By (2.2) and (2.3) α = α̇ + δ
where α̇ ∈ Ṙi \ {0} and δ ∈ R0

i . Then tα = tα̇ + tδ ∈ Ḣ ⊕ H0
i .

It can be read from proof of Lemma 2.5 that

Corollary 2.6 Ḣi ⊕ H0
i =

∑
α∈R×

i
[Gα, G−α].

Set

(2.7) R0
0 = Riso

∖( k⋃

i=1

R ′
i

)
= Riso

∖( k⋃

i=1

(R ′
i )iso

)
.

Since ( · , · ) is nondegenerate on H and Ḣ, we have H = Ḣ ⊕ Ḣ⊥ where Ḣ⊥ is

the orthogonal complement of Ḣ in H. Since (Ḣ ⊕ H0, H0) = {0}, there exists a

subspace D of Ḣ⊥ such that

(2.8)
dim D = dim H0, (D, D ⊕ Ḣ) = {0},

( · , · ) is nondegenerate on Ḣ ⊕ H0 ⊕ D.

Next, let W be the orthogonal complement of Ḣ ⊕ H0 ⊕ D in H, then we have

(2.9)
H = Ḣ ⊕ H0 ⊕ D ⊕ W, (Ḣ ⊕ H0 ⊕ D, W) = {0},

( · , · ) is nondegenerate on W.

Now consider a basis B = {h1, . . . , hm} of H0 such that B contains a basis of H0
i , for

each i. Using (2.8), we may pick a basis B ′
= {d1, . . . , dm} of D such that (hi , d j) =

δi j . Let

Di = span
C
{d j ∈ B ′ | h j ∈ H0

i }.

Then D =
∑k

i=1 Di and

(2.10)
dim Di = dim H0

i , (Di , D ⊕ Ḣ) = {0},

( · , · ) is nondegenerate on Ḣ ⊕ H0
i ⊕ Di .

Note that if α ∈ R ′
i , then α = α̇ + δ where tα̇ ∈ Ḣi and tδ ∈ H0

i . Since(Ḣi ⊕
H0

i , Ḣ j) = {0} for i 6= j, we have α(Ḣ) = α̇(Ḣ) = α̇(Ḣi). Now from (2.8), (2.9),

(2.10) and the way the spaces Di ’s are defined, we have δ(H) = δ(D) = δ(Di). Thus

(2.11) α(H) = α(Hi) = α(Ḣi ⊕ Di) for α ∈ R ′
i .

It follows from this that for α ∈ R ′
i \ {0},

(2.12) Gα =

{
x ∈

∑

β∈R ′

i \{0}

Gβ

∣∣∣ [h, x] = α(h)x for all h ∈ Hi
}

.

https://doi.org/10.4153/CJM-2006-009-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-009-8


240 Saeid Azam

In fact, it is clear that Gα is a subset of the right hand side. To see the reverse inclusion

let x = xβ1
+ · · · + xβt

be an element of the right hand side, where β ′
j ∈ R ′

i \ {0} for

all j, xβ ∈ Gβ . Let h = ḣ + h0 + d + h0
0 + w0

0 + w0 be an arbitrary element of H in the

form (2.9), where ḣ =
∑k

j=1 ḣ j , ḣ j ∈ Ḣ j . With respect to the basis B ′ of D we may

write d = d ′ + d ′ ′ where d ′ ∈ Di and d ′ ′ ∈ span
C
{d j | d j 6∈ Di}. Now using (2.11)

we have

[h, x] =

t∑

j=1

β j(h)xβ j
=

t∑

j=1

β j(ḣi + d ′)xβ j
= [ḣi + d ′, x] = α(ḣi + d ′)x = α(h)x.

So x ∈ Gα.

Starting from each Ri , we now would like to construct a generalized reductive

subalgebra Gi of G which is indecomposable. For this set

(2.13) Hi = Ḣi ⊕ H0
i ⊕ Di and Gi

= Hi ⊕
∑

α∈R ′

i \{0}

Gα

Proposition 2.7

(i)
(
Gi , ( · , · ), Hi

)
is an indecomposable generalized reductive subalgebra of G.

(ii) Gi
c ∩ Hi = Ḣi ⊕ H0

i .

Proof First we must show that Gi is a subalgebra of G. Note that R ′
i , Ri and R×

i have

the same linear span. It then follows from (1.4) and Corollary 2.6 that

[Gi , Gi] ∩ H =

∑

α∈R ′

i

[Gα, G−α] =

∑

α∈R×

i

[Gα, G−α] = Ḣi ⊕ H0
i ⊂ Gi .

Since G0 = H acts diagonally on G, we have [H, Gi] ⊂ Gi . Thus it only remains to

show that if α, β ∈ R ′
i \ {0} and α + β ∈ R \ {0}, then α + β ∈ R ′

i . If α + β is

isotropic, it is clear from definition of R ′
i that α + β ∈ R ′

i . If α + β is non-isotropic,

then it can not be orthogonal to both α and β and so α + β ∈ Ri ⊂ R ′
i , since Ri is

indecomposable. Thus Gi is a subalgebra of G. Moreover, from (2.11) and (2.12) we

have Hi = CGi (Hi) and

Gα = {x ∈ Gi | [h, x] = α(h)x for all h ∈ Hi} (α ∈ R ′
i \ {0}).

Thus

(2.14) Gi
=

∑

α∈R ′

i

(Gi)α, where (Gi)0 = Hi and (Gi)α = Gα for α 6= 0.

Next we must show that GR1–GR5 and GR6a hold for Gi . By (2.10), (1.2) and Corol-

lary 2.2, GR1 holds for Gi . Considering R ′
i as a subset of H⋆

i , we see from (2.14) that

elements from Hi act diagonally on Gi via the adjoint representation. So GR2 holds
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as CGi (Hi) = Hi . Validity of GR3 and GR4 for Gi follows from the fact that these

axioms hold for G and that R ′
i ⊂ R, and it is clear that GR5 holds. Finally, GR6a

holds, since R ′
i is indecomposable. Part (ii) follows from Corollary 2.6.

Put

(2.15) I =

∑

δ∈R0

0

Gδ.

From (1.1), (2.4), (2.9) and (2.15) we have

(2.16) G =

k∑

i=1

Gi ⊕ W ⊕ I.

Here W and each Gi ’s are Lie subalgebras of G and I is a subspace of G. The di-

rect sums appearing in (2.16) are just sums of vector spaces. We now would like to

investigate the Lie bracket between these spaces, at the level of cores.

Lemma 2.8

(i) Gc =
∑k

i=1 Gi
c where [Gi

c, G
j
c ] = {0} for i 6= j. In particular, Gi

c is an ideal of G,

for each i.

(ii) If x =
∑k

i=1 xi ∈ Z(Gc) where xi ∈ Gi
c, then xi ∈ Z(Gi

c) for each i. In particular,

Z(Gc) =
∑k

i=1 Z(Gi
c) and as Lie algebras

Gc

Z(Gc)
∼=

k⊕

i=1

Gi
c

Z(Gi
c)

.

Proof (i) Let i 6= j, α ∈ R×
i and β ∈ R×

j . Then (α, β) = 0 and so α + β is

orthogonal to neither of α and β. Thus α + β is not a root of G. This shows that

[Gi
c, G

j
c ] = {0} for i 6= j, and that Gi

c is an ideal of Gc. Since Gi
c is perfect, it follows

from the Jacobi identity that Gi
c is an ideal of G. In particular,

∑k
i=1 Gi

c is a subalgebra

of G containing all non-isotropic root spaces. Clearly any subalgebra of G containing

all non-isotropic root spaces must contain this sum. Thus Gc =
∑

Gi
c .

(ii) Let x be as in the statement. Then by part (i) for each i, we have

{0} = [x, Gi
c] =

k∑

j=1

[x j , G
i
c] = [xi , G

i
c].

So xi ∈ Z(Gi
c). It now follows that

⊕k
i=1 Z(Gi

c) is the kernel of the epimorphism

k⊕

i=1

Gi
c →

Gc

Z(Gc)
, (xi) 7→

∑
xi + Z(Gc).
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Lemma 2.9

(i) W ⊆ CG(
∑k

i=1 Gi).

(ii)
∑

δ∈Riso
Gδ ⊆ CG(Gc). In particular, W ⊕ I ⊆ CG(Gc).

Proof (i) Let α ∈ R ′
i . We have 〈R ′

i 〉 = 〈R×
i 〉. It follows from this that tα ∈ Hi . Then

from (2.9) we have

[W, Gα] = α(W)Gα = (tα, W)Gα ⊆ (Hi , W)Gα = {0}.

(ii) The first part of the statement follows from Proposition 1.4(ii). The second

part of the statement holds now by part (i).

Let us summarize the results obtained in the following theorem.

Theorem 2.10 Let
(
G, ( · , · ), H

)
be a GRLA with corresponding root system R.

Then

(i) R = (
⋃k

i=1 Ri) ∪ Riso where for each i, Ri is an EARS. Moreover R ′
i = Ri ∪

(〈Ri〉 ∩ R0) is an indecomposable GRRS.

(ii) For 1 ≤ i ≤ k, there exists a subspace Di of H such that if Hi := Di ⊕∑
α∈R×

i
[Gα, G−α] and Gi := Hi ⊕

∑
α∈R ′

i
Gα, then

(
Gi , ( · , · ), Hi

)
is an in-

decomposable generalized reductive subalgebra of G. Moreover,

dim Di = dim
( ∑

α∈R×

i

[Gα, G−α]
)
− rank(Ri).

(iii) H has a decomposition as in (2.9). Moreover G =
∑k

i=1 Gi ⊕ W ⊕ I, where W

and I are subspaces of G defined by (2.15). Moreover, [(
∑k

i=1 Gi)⊕W, W] = {0}
and [I, Gc] = {0}.

(iv) If i 6= j, then [Gi
c, G

j
c ] = {0} and Gc =

∑k
i=1 Gi

c. In particular, Gi
c is an ideal of

G. Moreover, Z(Gc) =
∑k

i=1 Z(Gi
c) and

Gc

Z(Gc)
∼=

k⊕

i=1

Gi
c

Z(Gi
c)

.

(v) If π is the projection map V → V0 (with respect to the decomposition (2.1)), then

for i 6= j,

[Gi , G j] ⊆ (H0
i ∩ H0

j ) ⊕
∑

α∈R ′

i ∪R ′

j ,π(α)6=0

Gα +
∑

α ′,β ′

[Gα ′ , Gβ ′],

where (α ′, β ′) ∈
(

R×
i × (R ′

j)
0 \ {0}

)
∪

(
R×

j × (R ′
i )0 \ {0}

)
. In particular,

[Gi , G j] = {0} if V0
= {0}.

(vi) If G is tame, then W = {0} and I = {0}.
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Proof (i) See (2.4) and Corollary 2.2. (ii) See Corollary 2.6, (2.10), (2.13) and

Proposition 2.7. (iii) See (2.16) and Lemma 2.9. (iv) See Lemma 2.8.

(v) We must check [(Gi)α, (G j)β] for α ∈ R ′
i , β ∈ R ′

j . First let α = 0 and

β ∈ R ′
j \ {0}. Then (Gi)α = Hi and (G j )β = Gβ . Since tβ−π(β) ∈ Ḣ j , we have from

(2.8) that

[Hi , Gβ−π(β)] = (tβ−π(β), Hi) ⊂ (Ḣ j , Hi) = {0}.

Thus

[Hi,
∑

β∈R ′

j \{0}

Gβ] ⊆
∑

β∈R ′

j ,π(β)6=0

Gβ .

Next let α ∈ R ′
i \ {0}, β ∈ R ′

j \ {0}. If −β = α = δ ∈ (R ′
i )0 ∩ (R ′

j)
0, then by (1.4)

and (2.6), we have [(Gi)α, (G j)β] = [Gδ, G−δ] = Ctδ ⊆ H0
i ∩ H0

j . It then follows

from (2.8)(i) that for 0 6= α ∈ R ′
i and 0 6= β ∈ R ′

j ,

[Gα, Gβ] ⊆ H0
i ∩ H0

j ⊕
∑

α ′,β ′

[Gα ′ , Gβ ′],

where α ′, β ′ are as in the statement.

(vi) If G is tame then CG(Gc) ⊆ Gc and by [ABP, Lemma 3.62], Riso = ∅ (and

so I = {0}). By part (iii), W ⊆ CG(Gc) ∩ H ⊆ Gc ∩ H. But by Lemma 2.5,

Gc ∩ H = Ḣ ⊕ H0. So from (2.9) we get W = {0}.

Corollary 2.11 Let
(
G, ( · , · ), H

)
be a non-singular GRLA of nullity ν with root

system R. Then G =
∑k

i=1 Gi ⊕ W, where Gi ’s are indecomposable GRLAs with

[Gi
c, G

j
c ] = {0}, for i 6= j, and W is contained in the centralizer of G. Moreover,

(i) if ν ≤ 2, then each Gi is an EALA;

(ii) if ν = 0, then G is a finite dimensional reductive Lie algebra.

Proof By assumption Riso = ∅ and so I = {0}. If ν ≤ 2, we have from Re-

mark 2.3(i) that R ′
i = Ri . That is (R ′

i )iso = ∅. Thus Gi satisfies GR6b.

If ν = 0, then from Theorem 2.10(v), we have that the sum in the statement is

direct, that is G = (
⊕k

i=1 Gi) ⊕ W. Moreover, Ri = Ṙi is an irreducible finite root

system and

Gi
=

⊕

α∈Ṙi

(Gi)α where (Gi)0 = Hi and (Gi)α = Gα for α 6= 0.

Since H0
i = {0} = Di , we have dim Hi = dim Ḣi = rank Ṙi . Now it follows

from Theorem 1.3 and Serre’s Theorem that each Gi is a finite dimensional simple

Lie algebra over the field of complex numbers. That is G is a reductive Lie algebra.

It is worth mentioning that the basic structural properties of an EALA essentially

come from its core modulo its center (see [AG, Proposition 1.28], [A2, Proposi-

tion 1.28] and [N2, Theorem 6]). Therefore Theorem 2.10(iv) together with Corol-

lary 2.11(i) suggest that the structural properties of a generalized reductive Lie alge-

bra G can be obtained from the indecomposable subalgebras Gi .
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3 On the Classification of GRLAs

In this section, we show that the core modulo center of an indecomposable GRLA is

a centerless Lie torus. Therefore by Theorem 2.10(ii), (iv) the core modulo center of

a GRLA is a direct sum of centerless Lie tori. For the classification of centerless Lie

tori of types A1 and A2 see [Y] and [BGKN] respectively. For simply laced types of

rank ≥ 3 see [BGK]. For types Bℓ, Cℓ, F4 and G2 see [AG]. For type BCℓ (ℓ ≥ 3) see

[ABG]. Finally, for type BC1 see [AFY]. The classification for type BC2 is open.

Let us recall the definition of a Lie torus over C, introduced in [N1]. Let L be a

complex Lie algebra, Ṙ be an irreducible finite root system and Λ be a free abelian

group of finite rank. Denote the set of indivisible roots of Ṙ by Ṙind , that is Ṙind =

{α̇ ∈ Ṙ | 1
2
α̇ 6∈ Ṙ}. Then, the Lie algebra L is called a Lie torus of type (Ṙ, Λ) if it

satisfies the following axioms:

LT1 L has a (〈Ṙ〉 ⊕ Λ)-grading of the form

L =

⊕

α̇∈〈Ṙ〉,λ∈Λ

Lλ
α̇, [Lλ

α̇, Lµ

β̇
] ⊆ L

λ+µ

α̇+β̇
, satisfying Lλ

α̇ = {0} if α̇ 6∈ Ṙ.

LT2 For α̇ ∈ Ṙ× := Ṙ \ {0} and λ ∈ Λ, we have

(i) dim Lλ
α̇ ≤ 1, with dim L0

α̇ = 1 if α̇ ∈ Ṙind ,

(ii) if dim Lλ
α̇ = 1, then there exists (eλ

α̇, f λ
α̇ ) ∈ Lλ

α̇ × L
−λ
−α̇ such that hλ

α̇ :=

[eλ
α̇, f λ

α̇ ] ∈ L0
0 acts on x ∈ L

µ

β̇
(β̇ ∈ Ṙ, µ ∈ Λ) by

[hλ
α̇, x] = (β̇, α̇∨)x,

where (β̇, α̇∨) is the Cartan integer of β̇, α̇.

LT3 For λ ∈ Λ we have Lλ
0 =

∑
α̇∈Ṙ×,µ∈Λ

[L
µ
α̇, Lλ−µ

−α̇ ].

LT4 Λ =
〈{

λ ∈ Λ | Lλ
α̇ 6= {0} for some α̇ ∈ Ṙ

}〉
.

We start with an indecomposable GRLA
(
G, ( · , · ), H

)
, that is G satisfies axioms

GR1–GR5 and GR6a. Let R be the root system of G. According to Section 1, we have

R = Rt ∪ Riso , where Rt = R× ∪ R0
t ,

with

R0
t = {δ ∈ R0 | δ + α ∈ R for some α ∈ R×}.

Moreover, Rt is an EARS (an irreducible GRRS) and Λt = 〈R0
t 〉 is a lattice. So there

exists an irreducible finite root system Ṙ with

Rt ⊆ Ṙ + Λt and Ṙind ⊆ R×.

(See [AABGP, Proposition II.2.11].) Thus

R ⊆ Ṙ + Λt + Λ0, where Λ0 = 〈Riso〉.

Set

Λ = 〈R0〉 = Λt + Λ0 = 〈R0
t + Riso〉.

So 〈R〉 = 〈Ṙ〉 ⊕ Λ.
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Theorem 3.1 Let
(
G, ( · , · ), H

)
be an indecomposable GRLA. Then the Lie algebra

Gc/Z(Gc) is a Lie torus of type (Ṙ, Λt ).

Proof We start by proving that axioms LT1 and LT2 of a Lie torus hold for G with

respect to a grading based on the abelian group 〈Ṙ〉 ⊕ Λ. From Section 1, we know

that

G =

⊕

α∈R

Gα =

⊕

α̇∈〈Ṙ〉,λ∈Λ

Gα̇+λ

is a (〈Ṙ〉 ⊕ Λ)-grading for G with Gα̇+λ = {0} if α̇ 6∈ Ṙ. Thus by considering Lλ
α̇ :=

Gα̇+λ, (α̇ ∈ 〈Ṙ〉, λ ∈ Λ), we see that axiom LT1 of a Lie torus holds for G with respect

to this grading. Next let α̇ ∈ Ṙ× and λ ∈ Λ. If α̇ + λ ∈ R, then α̇ + λ ∈ R× and

so by Theorem 1.3(d), dim Gα̇+λ = 1. If α̇ + λ 6∈ R, then dim Gα̇+λ = 0. Moreover,

Ṙind ⊆ R and so dim Gα̇ = 1 for α̇ ∈ Ṙind \{0}. Thus part (i) of the axiom LT2 holds

for G.

Next note that if α̇ ∈ Ṙ×, λ ∈ Λ and dim Gα̇+λ = 1, then α := α̇ + λ ∈ R×. So if

eα, fα, hα are as in (1.6), then for any x ∈ Gβ̇+µ (α̇ ∈ Ṙ, µ ∈ Λ)

[hα, x] = (β̇ + µ)(hα)x =

(
tβ̇+µ,

2tα

(α, α)

)
x =

2(β̇, α̇)

(α̇, α̇)
x = (β̇, α̇∨)x.

Thus part (ii) of LT2 also holds for G.

Recall that the core Gc of G is the ideal of G generated by root spaces Gα, α ∈ R×
=

R×
t . So Gc inherits from G a (Ṙ ⊕ Λ)-grading, namely

Gc =

⊕

α∈〈Ṙ〉⊕Λ

(Gc)α, where (Gc)α = Gc ∩ Gα.

Moreover, from the way Gc is defined, we have

(3.1) (Gc)δ =

∑

α∈R×

[Gα+δ, G−α] =

∑

α̇∈Ṙ×

∑

λ∈Λt

[Gα̇+λ+δ, G−α̇−λ] (δ ∈ R0).

Next let G̃ = Gc/Z(Gc). Then

G̃ =

⊕

α∈〈Ṙ〉⊕Λ

G̃α where G̃α =
(Gc)α + Z(Gc)

Z(Gc)
,

is a 〈Ṙ〉 ⊕ Λ-grading for G̃. Note that if α ∈ Riso then by Proposition 1.4(ii), G̃α ⊆

Z(Gc) and so G̃α = {0}. Therefore we may assume that α ∈ Rt . Thus

(3.2) G̃ =

⊕

α∈〈Ṙ〉⊕Λt

G̃α.

That is G̃ has a 〈Ṙ〉 ⊕ Λt -grading. Clearly, we have G̃α̇+λ = {0} if α̇ 6∈ Ṙ. Thus

LT1 holds for G̃ with respect to the (〈Ṙ〉 ⊕ Λt )-grading (consider Lλ
α̇ = G̃α̇+λ, α̇ ∈

〈Ṙ〉, λ ∈ Λt ).
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For α̇ ∈ Ṙ× and λ ∈ Λt , dim G̃α̇+λ ≤ 1, as dim Gα̇+λ ≤ 1. Moreover, by Theo-

rem 1.3(d) and Proposition 1.4, Gα̇ ∩ Z(Gc) = {0} and so

(3.3) dim G̃α̇ = 1 for α̇ ∈ Ṙind ⊆ R×.

Thus part (i) of LT2 holds for G̃. Now as part (ii) of LT2 holds for G, one can see that

it also holds for G̃ by considering

ẽα = eα + Z(Gc), f̃α = fα + Z(Gc) and h̃α = hα + Z(Gc).

From (3.1) we see that LT3 holds for G̃.

Finally, we show that LT4 holds for G̃. So let δ ∈ R0
t . Then Gδ 6= {0} and δ is not

isolated. Thus by Proposition 1.4, Gδ 6⊆ Z(Gc). So we have G̃δ 6= {0} and

δ ∈ 〈δ ∈ Λt | G̃α̇+λ 6= {0} for some δ ∈ Ṙ〉.

This shows that LT4 holds for G̃ and completes the proof.

Corollary 3.2 The core modulo center of a GRLA is a direct sum of centerless Lie tori.

We remark here that if G is an EALA, then Theorem 3.1 is a consequence of [AG,

Proposition 1.28]. Also an statement similar to Theorem 3.1 is announced in [N2,

Proposition 3] for a class of Lie algebras which includes the class of EALAs, however

GRLAs do not necessarily satisfy GR6(b), while the Lie algebras appearing in [N2]

are tame by definition and so satisfy GR6b. In [N2] a procedure is introduced for the

construction of an EALA starting from a centerless Lie torus. In fact it is shown that

all EALAs arise this way. It is therefore natural to ask if one can introduce a similar

procedure for constructing a GRLA starting from a direct sum of centerless Lie tori.

4 Construction of New GRLAs From Old

It is known that affine Lie algebras can be realized by a process known as affinization-

and-twisting [K]. It is also known that affine Lie algebras can be realized as the fixed

points of some others under a finite order automorphism. This phenomenon has

recently been investigated for the class of EALAs (see [ABP], [ABY] and [A2]). In this

section we consider a similar method for constructing new GRLAs from old ones.

Let
(
G, ( · , · ), H

)
be a GRLA with root system R. Let σ be an automorphism of

G and set

Gσ
= {x ∈ G | σ(x) = x} and Hσ

= {h ∈ H | σ(h) = h},

that is Gσ and Hσ are fixed points of G and H under σ, respectively. Assume that G

satisfies

(4.1)

• σ is of finite order,
• (σx, σy) = (x, y) for all x, y ∈ G,
• σ(H) = H,
• The centralizer of Hσ in Gσ equals Hσ .

https://doi.org/10.4153/CJM-2006-009-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-009-8


Generalized Reductive Lie Algebras 247

Theorem 4.1 Let
(
G, ( · , · ), H

)
be a GRLA and σ be an automorphism of G satis-

fying (4.1). Then (Gσ, ( · , · ), Hσ) satisfies GR1–GR4, where ( · , · ) is the form on G

restricted to Gσ . In particular, Gσ is a GRLA if its root system contains some nonisotropic

roots.

Proof It is shown in [ABY] that if
(
G, ( · , · ), H

)
is an EALA then Gσ satisfies GR1–

GR4. Now checking the proof of [ABY, Theorem 2.63], one can see that the irre-

ducibility of G (or its root system R) is not used at all to prove that Gσ satisfies GR1–

GR4.

Next we consider the so called affinization of a Lie algebra G introduced in [ABP].

Let G be a complex Lie algebra and let c and d be two symbols. Consider the vector

space

Aff(G) := (G ⊗ C[t, t−1]) ⊕ Cc ⊕ Cd,

where C[t, t−1] is the algebra of Laurent polynomials in variable t . Then Aff(G)

becomes a Lie algebra by assuming that c is central, d = t d
dt

is the degree derivation

(so that [d, x ⊗ tn] = nx ⊗ tn), and

[x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m + n(x, y)δm+n,0c.

Aff(G) is called the affinization of G.

If G is equipped with a invariant symmetric bilinear form, then one can define an

invariant symmetric bilinear form ( · , · )Aff on Aff(G) by

(αx ⊗ tn + βc + γd, α ′y ⊗ tm + β ′c + γ ′d)Aff = αα ′δn,−m(x, y) + βγ ′ + β ′γ.

Moreover, this form is nondegenerate if the form on G is nondegenerate.

Theorem 4.2 Let G, ( · , · ), H) be a GRLA with root system R and let σ be an auto-

morphism of G satisfying (4.1). Then

(
Aff(G), ( · , · )Aff , H ⊕ Cc ⊕ Cd

)

is a GRLA with root system R̃ = R + Zδ where δ ∈ Ht⋆ is defined by δ(d) = 1 and

δ(H + Cc) = 0. Moreover, Aff(G) is tame if and only if G is tame. Finally if we extend

σ to an automorphism of Aff(G) by

σ(x ⊗ t i + rc + sd) = ζ−iσ(x) ⊗ t i + rc + sd,

then σ satisfies (4.1) and Aff(G)σ satisfies GR1–GR4. In particular, Aff(G)σ is a GRLA

if its root system contains some nonisotropic roots.

Proof It can be checked easily that Aff(G) is a GRLA with root system R̃ as in the

statement, and that σ extended to Aff(G) satisfies (4.1). The statement regarding

tameness is also easy to see. The last statement now follows from Theorem 4.1.
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Example 4.3 Let G =
⊕k

i=1 Ġi be a complex semisimple Lie algebra with k > 1,

where each Ġi is a simple Lie algebra and consider Aff(G). According to Theorem 4.2,

Aff(G) is a GRLA. Now if we follow the same procedure as in the proof of Theo-

rem 2.10, we see that

Aff(G) =

k∑

i=1

Gi , where Gi = Ġi ⊗ C[t, t−1] ⊕ Cc ⊕ Cd.

In particular, the sum is not direct. Note that each Gi is an affine Lie algebra.

References

[AABGP] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their
root systems. Mem. Amer. Math. Soc. 603(1997), 1–122.

[ABG] B. Allison, G. Benkart and Y. Gao, Lie tori and extended affine Lie algebras of type BCr ,
(r ≥ 3). in preparation.

[ABP] B. Allison, S. Berman and A. Pianzola, Covering Algebras I. Extended affine Lie algebras.
J. Algebra 250(2002), 458–516.

[AFY] B. Allison, J. Faulkner and Y. Yoshii, Lie tori of rank 1. Proceedings of the conference on Lie
and Jordan algebras, their representations and applications, Guarujá, Brazil, May 2004, to
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