
J. Functional Programming 4 (1): 1-18, January 1994 © 1994 Cambridge University Press

A functional animation starter-kit
KAVI ARYA1

IBM TJ Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract

A functional approach presents a fresh perspective on the problem of animation. We present
an implementation of a functional animation system written in Haskell, and illustrate how it
may be used to create simple and colourful animations.

Capsule review

The process of animation - generating a series of pictures to form a movie - turns out to be an
excellent application of functional programming languages. This paper shows how higher-
order functions and lazy evaluation can play a natural and essential role in the composition of
individual pictures to form entire scenes, and in the creation of streams of scenes to form
complete animations. It should be of interest to researchers in functional programming as well
as those interested in animation. For the latter, even if performance is an impediment, the
methodology can at least be viewed as an excellent vehicle for animation prototyping.

1 Introduction

As the cost of computing power falls still further and the use of graphics becomes
widespread, we note the increasing use of computer generated pictures and animation.
These trends indicate the need for making animation more accessible and amenable
to rapid prototyping. For example, the news graphics team of a television company
typically needs to create animated sequences under severe time constraints. This
anticipates the need for simple systems which allow users to quickly generate
animation sequences to present data or to illustrate ideas.

As graphic engines deliver faster processing speeds, it is the labour of the animator
which is becoming the critical factor in the cost of computer animation.
Unfortunately, there has not been enough work on the development of languages that
allow animators to step back adequately from implementation details to consider the
forms and the structures for creating animated sequences. There are two reasons for
this: the first is that animation is about visual effect, and this requires a degree of
control that is often difficult to achieve solely through script-driven programming.
The second is that animators often come from non-computer backgrounds and feel
uncomfortable with a programmer-oriented interface. However, there is a large

1 Current address: Tata Research Development and Design Centre, 1 Mangaldas Road, Pune 411, 001
India.
1 FPR 4

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

2 Kavi Arya

domain of animation applications that are particularly suited to a script based
paradigm. These domains include scientific visualization, animation previewing,
presentation graphics, television news graphics - in short, any application which
needs to rapidly prototype animation sequences. The basis for our approach to
animation is just this script-based system. We build an animation system around a
compact set of primitive operations which are used as building blocks to construct
more complex operations.

Many of the problems faced by animators are similar to those faced by software
engineers working on large systems within a computing environment and using tools
that are quite cumbersome. An analogy may be drawn with desk-top publishing
systems just over a decade ago. Functional languages, in our experience (Arya, 1986,
1988), are very effective for the rapid prototyping of systems, due particularly to the
use of higher-order functions which leads to very compact programs. It is felt that a
functional approach helps create a prototype much more quickly than by using an
imperative language. In our experience, it is through experience with initial
implementations that we understand a problem better. The understanding gained
from a functional prototype may be used to develop a production-quality system
using a conventional language such as C.

The motivation for this paper is threefold. The first is to present the reader with a
guide to our functional animation system. The second is to offer this code as the basis
for other applications - since it is often easier to build a working system by modifying
an existing program. Lastly, this implementation serves as a pointer on functional
style and as an example of a relatively large (functional) program.

We start in Section 2, by discussing the critical role of a non-strict semantics in our
work. A higher-order style of programming allows us to build a model of our
animation system as a collection of functions. We identify the separate concerns of
editing movies in Section 3, and of animating characters in Section 4. This is brought
together in a series of examples in Section 5. Our earliest inspiration for work on
functional graphics came from the paper by Peter Henderson (1982) on 'Functional
Geometry'. We briefly discuss this in Section 6.

All the functions introduced in this paper exist as part of a (1500 line) functional
animation system written in Haskell (1990), running under Unix.2 The user interacts
with the functional system to produce movies which are displayed using an Xll
preview program.

2 The role of laziness

The non-strict semantics of our functional environment - with lazy evaluation as its
operational manifestation - is the basis of our approach to animation. The strength
of this approach lies in the way it allows us to reason about sequences - especially
infinite ones. Lazy evaluation may be informally described as an expression
evaluation strategy where a sub-expression is only evaluated when its value is
required. A consequence is that we can write definitions of infinite data-structures.

2 A complete listing of this program may be obtained from The Haskell Project, Yale University,
Department of Computer Science, Box 2158 Yale Station, New Haven, Ct 06520 USA, or by sending
electronic mail to haskell-request@cs. yak .edit.

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 3

Consider the function osc (a function we use frequently) which oscillates a given
sequence:

osc:: [a] -> [a]

osc s\ (lengths) == 0 = []

osc s\ (lengths) = = 1 = head s: osc s

oscs = s -H- ((tail .reverse. tail) s) -H-(osc s).
Its use:

osc [1,2,3]
[1,2,3,2,1,2,3,2,1,2,3,....

The function osc takes a sequence of finite length and returns an 'oscillated' sequence
of (potentially) infinite length. If we typed the above expression (osc [1,2,3]) into the
machine, it would go into an 'endless loop' in building the infinite structure.
However, by using another function, take, we prevent the building of the infinite
structure by requesting only a finite section of it:

take\0(osc[\,2,3])

[1,2,3,2,1,2,3,2,1,2].

Laziness guarantees that only the part of the sequence that is actually used in
computing the result is generated. This gives the advantage in animation that we do
not need to fix the length of the finished sequence in advance by specifying the length
of the component sequences. We reason in terms of component programs generating
infinite sequences from which we take the length we need. Laziness frequently leads
to substantial improvements in the efficiency of certain patterns of processing over
sequences (Wadler, 1985). We have used it extensively in our work to program
animation sequences, and also to construct functional processes modelled as lazy
stream processing functions (Arya, 1989).

3 Functional movies

Animation consists of manipulating sequences of pictures or movies. A movie
consists of a sequence of pictures made up of closed sets of polygons. We use the
words frame and picture interchangeably to refer to a picture in the context of
animation. The polygons need to be closed to allow us to model opacity to use
pictures to obscure other pictures. This approach necessarily makes lines and open-
polygons special cases of a polygon:

type Movie = [Pic]

type Pic = [(Colour, [Vec])]

type Colour = Int

type Vec = (Int, Int).

The type 'Vec' corresponds to a vector ('(op^op^ is the Cartesian product
operator which constructs a set of pairs). Thus pictures consist of a sequence of
(coloured) polygons each of which consists of a sequence of vertices and an associated

1-2

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

4 Kavi Arya

colour-value. These colours are actually assigned in the animation previewer where
the numbers are mapped onto actual colours.

Our movie-operations are discussed under four headings. Section 3.1 illustrates
how movies are created, and Section 3.2 presents the functions which combine movies
to give new movies. Cueing allows us to stagger the activation of animation sequences
or to trigger them by various means-this is discussed in Section 3.3. In Section 3.4
we present the interpolation function, which allows us to modify a picture into another
picture over a number of steps. We have not made any mention of operations that
geometrically transform movies (move, rotate, etc.); these are regarded as behaviours,
and are discussed in the next section. The reader is referred to the appendix, and to
Arya (1988) for a complete description of the functions available.

3.1 Creating movies

Consider animating a man going through the motion of walking. We start by creating
a sequence of key-frames for each character — this consists of pictures capturing the
key elements of its action (which may already exist as a library sequence):

man = osc [man 1, man2, man3]

= [man 1, manl, manb, man2, man 1, man2,

man3,man2,manl,...].

The function osc takes a finite sequence of key-frames and returns an infinite sequence
of oscillating key-frames that show the man walking on the same spot ad infinitum.
For the rest of this section we assume the existence of the following definitions:

man = osc [manl, man2,man3,man4]

gull = osc[gulll,gull2]

ball =osc[balll].

Henceforth, we refer to this sort of primitive movie - consisting of a sequence of
cycled key-frames - as a character. It is quite reasonable to reason in terms of
characters rather than in terms of individual pictures, since this is how a conventional
animator reasons about lengths of film. In animation, when we see a stationary
picture on the screen we are seeing the same picture at the rate of 25 frames/s. It is
this intuitive understanding of animation that we have modelled. We shall keep
drawing the attention of the reader to this point since it is quite important. It may be
noted that most of our primitive functions work on movies of potentially infinite
length.

3.2 Editing movies

Once we have created instances of movies we want to combine them in various ways.
Some of the combining forms that let us ' edit' movies are:

overlay:: Movie -»• Movie -»• Movie

put :: [Vec] -» Movie -» Movie -*• Movie

behind :: Movie -»• Movie -> Movie.

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 5

Each of the functions takes several sequences as arguments and returns a result
only as long as the shortest argument-sequence. The function overlay takes two
movies and returns a result in which the corresponding frames are overlaid such that
the 'world-origins' of the two 'foils' coincide.

Consider the following movie:

overlay flying_bird walking-man.

This animation shows the two threads of action, of the walking man and the flying
bird, proceeding simultaneously. We overlay the frames of the movie onto a single
frame to show the cumulative effect. The man walks rightward while the bird flies
from the bottom-left corner of the screen towards the top-right corner. Figure 1
shows the result of collapsing the first 11 frames of this animation into a single frame.
We may, instead of using the function overlay, choose one of the other combining
forms to combine the component pictures in some other fashion. Put combines the
two movies similarly but displaces the pictures of the first (relative to the second) by
amounts in the given sequence of vectors. Behind does a shielding operation by using
the pictures in the second sequence to mask out overlapping portions of the pictures
in the first sequence. This allows us to implement the notion of depth in an animation.

Each picture in a movie is contained in an imaginary box bounding its maximum
dimensions. Operations such as above, beside and over, let us combine movies in a
manner which preserves symmetry with respect to the bounding boxes of the
component pictures.

3.3 Cueing

A simple variety of cueing may be arranged by exploiting the time-ordering implied
in the sequence of pictures. Given below are brief descriptions of the sorts of
functions available:

then '-'-[a] ->[a]-+ [a]

wait wlnt^- [a] ->• [a]

appear :: Int -> [a] -> [a]

disappear:: Int -> [a] -> [a].

Suppose we want the bird to fly after the man has walked, we use then - this is really
just the append operator (-H-):

(take 30 walking_man)' then 'flying-bird.

Note that if we did not use take on the first sequence, it would not finish and we would
not see the bird. To make the bird wait n frames before appearing, we use wait:

overlay walking-man (wait nflying_bird)

The function wait appends a given number of empty frames to the front of the
sequence; functions appear and disappear cause the character to appear and to

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

Kavi Arya

Fig. 1. Take 11 (overlay flying_bird walking_man)

disappear a given number of frames into its action, respectively; appear n drops the
first n frames of the movie and disappear n follows the nth frame with the infinite
nullseq. There are a variety of other functions such as freeze, while, and until which
implement other kinds of cueing.

3.4 Interpolation

We have a number of flavours of interpolation. One of them is inbetween which takes
a number and two pictures as argument and returns a sequence of pictures where the
animation starts off as the first picture and ends as the second picture over the given
number of frames:

inbetween ::Int^> Pic -> Pic -»[Pic].

This 'inbetweening' algorithm may be as sophisticated as we like - however, we
have chosen a simple, linear interpolation between corresponding vertices in the
component pictures. 'Corresponding' here implies interpolation by definition-order.
Consider a lazy way of animating a palm tree. We have one picture (palml see Fig. 2)
of a palm tree from which we may derive a sequence of key-frames as follows:

palm:: Movie

palm

= osc palmframes

where

palmframes

= inbetween 3palml (flipx_pic 100palml).

In this example the third argument to inbetween is palml 'flipped' in the lx — 100'
axis. The key-frames of the palm are derived from a single picture that has been

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 1

interpolated over three frames to give a sequence of key-frames. The resulting key-
frames may be turned into a primitive palm tree sequence of a palm tree swinging
from side to side, ad infinitum.

Fig. 2. Palm

4 Behaviour

The last section discussed (editing) functions which allow us to combine and
manipulate movies in various ways. Here we describe the animation aspect. Again we
wish to have a style of combining simpler animations to construct more complex
animation. Behaviour consists of a sequence of changes that may be undergone by a
character in a movie:

type Behaviour = [Pic -> Pic].

Each such change is a function of type (Pic -»• Pic). For instance, the behaviour-
producing function mov returns a behaviour which when applied to the key-frames
denoting a character moves it to the right by ten units over each consecutive frame:

mov ::[Fec]-s-Behaviour

movA:: Behaviour

movA = mov [(10,0), (20,0), (30,0), (40,0)].

Here mov is given a sequence of vectors as argument and returns an instance of
behaviour (i.e. a sequence of partially applied picture-operations):

movA = [mov^pic (\0,0), mov-pic (20,0), mov-pic (30,0),...].

To see the effect of such a behaviour on a given character it has to be applied using
the function apply:

apply:: Behaviour -»• Movie -> Movie

The function apply makes behaviours work - it takes a behaviour and a movie and
returns a movie where the corresponding changes in the behaviour-sequence have
been applied to the frames of the movie:

apply movA walking_man.

The function apply simply applies each function in the behaviour sequence to the

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

8 Kavi Arya

corresponding pictures in the movie. The sequence of changes in the behaviour are
not being accumulatively applied to a single picture but separately to the consecutive
pictures in the movie sequence.

It is laborious to have to construct behaviour from scratch each time we want to
animate a character - in Section 4.1 we show how primitive behaviours may be
created. These may be combined to give more complicated behaviour - as we see in
Section 4.2.

4.1 Creating behaviour

The following may be regarded as our primitive behaviour-creating functions. Each
takes a sequence of arguments and returns an instance of behaviour:

mov :: [Vec] -> Behaviour
rot ::[Int]^ Behaviour
scale:: [Int] -> Behaviour
flipx :: [Vec] -> Behaviour
flipy :: [Vec] -> Behaviour
flip :: Behaviour.

Given a sequence of vectors, mov returns a behaviour that when applied to a movie
returns a new movie where each picture has been moved (relatively) by the
corresponding amount. Should the length of the sequence of vectors be shorter than
the movie, the movie is cut-off and replaced by the infinite nullseq at the point. The
function rot takes a sequence corresponding to the angles of rotation and rotates the
pictures of a given sequence about their centre. Here, 'centre' refer to the centre of
the bounding-box containing the picture. The function scale, given a sequence of real
numbers, scales the sequence of pictures using the centre as the centre of scaling.
Functions flipx and flipy reflect the picture of a sequence using the appropriate axis
passing through the given point. The function^?*/) inverts the pictures of each sequence
laterally using the vertical axis passing through the centre of the bounding-box.

It is laborious to build behaviours from primitive functions - we resort to the
primitive style only when we cannot work at a higher level. By partially invoking the
functions (mov, rot, scale, etc.) with default values, we build up a useful collection of
commonly used behaviours (each of which has an infinite duration): left, right, up,
down, cw, ccw, bigger, smaller.

For example, consider animating a cloud scene, given movies of just two clouds
(flat_cloud and puff-cloud); as shown in Fig. 3, we get:

clouds:: Movie
clouds = overlay

[apply right puff-cloud,
apply (right @ right @ smaller)flat^cloud].

Here, the two clouds start at the origin and move rightwards, the flat^cloud moving
at twice the speed of puff_cloud and appearing to recede into the distance.

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit

Fig. 3. Clouds

4.2 Combining behaviours

Behaviours may be combined by 'parallel' composition ('@') or by 'sequential'
composition (':'):

(@):: Behaviour -> Behaviour -> Behaviour

(;):: Behaviour -> Behaviour -> Behaviour.

We use the infix form of the two functions. The expression 'a@b' returns the
sequence of changes where the effect of both behaviours a and b are seen in each
frame of the animation. The expression ' a ;b ' denotes the sequence of changes a
followed (accumulatively) by the sequence denoted by b. Consider the informal
definitions:

/, g:: Behaviour

S ii •••iSnl

f\g = /»> •••>£„•/„]•

Note how in ' / ;# ' the last element of/is composed onto all the elements of g. The
reason for this is to 'have g continue where/ended'. For example, each of the 'dots'
in Figs 4 and 5 exists on a separate frame. The combination ' bounce @ slide'
produces an additive effect in which the composed effect of the bounce and the slide
is applied to each frame of the ball sequence. The combination 'bounce;slide' shows

Fig. 4. Apply (bounce @ slide) ball

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

10 Kavi Arya

Fig. 5. Apply (bounce;slide) ball

the changes produced by the bounce behaviour followed in sequence by the changes
produced by the slide behaviour. (Note: it is pure coincidence that in this example the
ball returns to its original position before being affected by the slide behaviour.)

5 Extended example

We illustrate how the material presented earlier may be used to construct animated
sequences. In Section 5.1 we animate a seaside scene, and in Section 5.2 we animate
a river scene - each illustrates slightly different elements of animation. In Section 5.3
we show how behaviours may be combined to give complex motions, such as those
of planets with their moons, in a solar system.

5.1 Seaside

Consider animating a seaside scene with a vending-machine and a walking-man in the
foreground. In the background we have some gulls flying, a sun rising out of the sea
and a couple of palm-trees swaying in the foreground (see Fig. 6).

We begin by hierarchically decomposing the animation into its constituents and
start with the animation of the man and the vending machine. We have four instances
of gull, each behaving a bit differently from the others:

apply (bPar [right,bigger]) gull

apply (bPar [right, right, small, bigger]) (tailgull)

apply (bPar [up, up, right, small, bigger]) gull

apply (bPar [up, right, right, right]) (tailgull).

The function 'bPar' (denned "fold (@)') takes a sequence of behaviours and
composes them in parallel (using' @'), returning a new behaviour as a result. The first
gull flies rightward becoming bigger on each frame. The second starts off being a
small gull and then flies rightward by a greater degree, becoming bigger on each
frame. The expression 'tail gull' denotes a gull whose key-frame sequence is one
frame out of synchronization with 'gull'. The third starts off being small and becomes

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 11

Fig. 6. Seaside

bigger while following a steeper trajectory. We also have an animated 'sun ' and a
couple of palm trees:

apply (bPar [up, cw, movto {repeat botm)]) sun

apply (mov (repeat botm)) palm

apply (mov (repeat botm)) (tailpalm).

The expression '(mov (repeat v))' denotes a behaviour which displaces a given
character by the given amount (v). The expression 'repeat v' denotes the infinite
sequence [v, v, v,...]'. The sun is made to rotate and to move upwards from the middle
of the lower part of the screen (botm). We have already met palm. Finally, we need
some clouds-we use a slightly more complicated version of clouds than that
introduced earlier. Here flat-cloud and puff-doud have been flipped and scaled to
simulate a multitude of clouds:

apply left (rBESIDE[clouds, clouds, clouds]).

We place three copies of clouds beside each other to give the effect of a continuous
cloud layer moving across the screen. The function 'rBESIDE' (defined 'fold beside1)

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

12 Kavi Arya

Fig. 7. River

inserts the combinator beside between a sequence of movies. The function
' rO VERLA Y' (denned 'fold overlay') takes a sequence of movies and combines them
in the result. The complete program for the animation follows:

seaside:: Movie

seaside
=rOVERLAY

[mari-and—vm,

apply (bPar [right, bigger]) gull
apply (bPar[right, right, small, bigger]) (tail gull)
apply (bPar [up, up, right, small, bigger]) gull
apply (bPar[up, right, right, right]) (tail gull)
apply (bPar [up, cw, movto (repeat botm)]) sun
apply (mov (repeat botm))palm
apply (mov (repeat botm)) (tailpalm)
apply left (jBESIDE[clouds, clouds, clouds])

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 13

Fig. 8. River (10 frames into animation)

5.2 River

The river scene is similar to the seaside scene (see Figs. 7 and 8). Here a sun rises from
behind some hills and as it emerges, it turns from red to yellow, simultaneously
turning the clouds from black to white. In the foreground, we have a river with fish
and ripples that spread to merge with the shoreline.

As can be seen from the implementation below, the (red) sun rises for 10 frames and
then changes colour to yellow and keeps upwards ad infinitum. The function '/ '
(iterate) takes a single element and returns an infinite sequence of that element, and
allows us to use single values with functions that expect infinite sequences.

The expression' ((do 10 up); (ntov (i (360,180))))' moves the sun to the position (360,
180) in the scene, and ensures that that initial translation is mapped over each of the
subsequent frames. The clouds are initially black and then change to white on the
tenth frame. The fish are all moving either towards the left or diagonally upwards to
the left:

; riverscene:: movie

riverscene

= rOVERLAY

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

14 Kavi Arya

[bluesky,

apply (((do 10 up) @ (mov (/(360,180))))

; (up @ (set-color (i yellow))))

orb,

apply (bSeq [(take 10 (set-color (i black))) @

(mo»(i(100,250))),

up @ (set-color (i white))])

clouds,

river,

hills,

apply (left @ (mov (i (196,98))))fish

apply (left @ left @ (mov (/(126,110)))) fish

apply (up @ left @ (mov (i (235,114))))fish

apply (left @ (mov (i (235,SI)))) fish

apply (left @ left @ (mov 0(279,88))))M

apply (left @ (movto (z(500,110))))fish

ripples

]•

Ripples are interpolations of coloured lines (ripplel-7) into the shorelines (shore\-2)
as follows:

ripples:: movie

ripples = rOVERL AY

[osc (inbetween 12 ripplel shore\)

osc (inbetween 20 ripplel shore!)

osc (inbetween 16 rippleZ shore!)

osc (inbetween 25 rippleA shore 1)

osc (inbetween \2ripple5 shore!)

osc (inbetween 30 rippled shore!)

osc (inbetween 20 ripplel shoreX)

]•

The following are examples of ripples:

ripplel = [(white, [(76,223), (92,223), (120,209), (162,200)])]

ripplel = [(white, [(363,144), (382,145), (395,143), (410,134), (433,126), (460,123)])]

5.3 Planets

We wish to model a simple solar-system with a sun in the centre and plants following
a circular orbit around it (see Fig. 9). Each planet has one moon orbiting it. If we were
to specify the behaviours of each entity separately, the moons would turn out to have

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 15

Fig. 9. Planets

extremely complex motions. However, we may break down the motions in the scene
to orbital motions. These may be combined quite simply to give more complex
motions.

We describe the animation in a top-down manner. We have a background coloured
blue, with a yellow sun. In the foreground we have three planet-moon pairs, each
returned by the function 'planets'. The arguments of this function are, in order, the
speed of the planet, the speed of the moon, the radius of the planet, the radius of the
moon, the colour of the planet and the colour of the moon:

planetscene:: Movie

planetscene = rO VERLA Y

[apply (set-color (i white)) bluesky,

apply ((set_color (i yellow)) @ (movto (i center))) orb,

planets (piAO) (pi/10) 450 80 blue sky_blue,

planets (pi/20) (pi/8) 300 50 brown red,

planets (pi/10) (pi/4) 150 40 green white

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

16 Kavi Arya

The function 'planets' uses the function 'circ-move' to construct the circular-
motion behaviour which is applied to the figure in the animation:

planets ::Int-^Int^Int-^Int^ Int ->Int-+ Movie

planetil ilr\r7c\ cl

= rOVERLAY

[applyf\ earth,

apply (f\ @fl) moon

]

where

f\ = circ-mov r\ i\

fl = circ-mov rl il

earth = osc[movto-.pic(vplus center (rl,0)) (circle cl 15)]

moon = osc [movto-pic (vplus center (rl + r2,0)) (circle cl 7)]

The definition of 'circ_move' follows. We use here the curve-generator function
'gen' to generate an increasing sequence of values:

circ^mov ::Int->Int^ Behaviour

circ-mov r inc = mov (map (vmin' (hdvs)) vs)

where vs = [(r * (cos theta), r * (sin theta)) \

theta <- gen 0 inc 0 (2 * pi)]

vmin' xy = vminyx

6 Related work

The original motivation for our work on functional graphics is Henderson's (1982)
paper on 'Functional Geometry'. In this paper, Henderson developed a functional
technique for the specification of recursive pictures such as Escher's 'Square Limit'
(or 'Fish Limit'). This work, in the Lispkit functional language, gave the stimulus
which led to our own work on functional graphics. A small set of functions allow us
to combine and transform pictures in a variety of ways. These pictures consist of sets
of lines which may only be displayed relative to a bounding box which defines the
context. The stretching or shrinking of the bounding-box affects the enclosed picture.
Pictures may be combined by using the functions overlay, above or beside - the effects
are similar to those of our functions discussed earlier. There are other primitives such
as rot (rotate ninety degrees) and flip (lateral inversion).

The functional geometry functions were designed for the specification of recursive
(Escher) pictures for which they are well suited. For the purpose of animation and
graphics, the idiosyncracies of these functions are of questionable value. However,
this approach led us to consider a different interpretation for the combining forms,
which led to our own work on functional animation (Arya 1986).

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

A functional animation starter-kit 17

7 Conclusion

We have presented a functional approach to a variety of key-frame animations. We
started by constructing an abstraction of a movie. We then devised a compact set of
primitive operations over it. The resulting system may be used to construct
denotational descriptions of animation sequences. The user is encouraged to adopt a
higher-order approach, and to resolve problems into their primitive components and
to combine these to construct more complex components.

As graphic hardware becomes cheaper, the cost of computer animation is bound
increasingly to the cost of the skilled manpower involved. By devising a system that
is easier to understand, it becomes easier to prototype animation sequences fairly
quickly. This has already been seen with systems such as the MacLisp-based ASAS
(Reynolds, 1982) which provides a Lisp-based interface to animation software. We
find that just as functional programs are easier to read and to understand than their
imperative counterparts, so are functional animation scripts. We believe that the
rapid-prototyping advantage conferred by functional languages has a definite
potential in devising such systems. The lessons learnt from building these prototypes
may also be used to construct production-quality systems using conventional
languages.

Acknowledgements

The D.Phil, thesis leading to this work was funded by the UK's Science and
Engineering Council (SERC) and supervised by Professor Ian Page at the
Programming Research Group at Oxford University. Further work was done at IBM
TJ Watson Research Center (Yorktown Heights), where I also collaborated with
Professor Paul Hudak and Dr R. S. Sundaresh at Yale University. Professor Hudak
has been a source of great encouragement from the earliest time. His students, Ami
Kleinman and John Tinmouth, have ported the system to the Haskell language - and
have systematically documented the implementation in their reports (Tinmouth,
1991; Kleinman, 1990). Ami Kleinman has also extended the 2D system to a 3D
version.

References

Arya, K. (1986) A functional approach to animation, Computer Graphics Forum, 5 (4):
297-311.

Arya, K. (1988) The Formal Analysis of a Functional Animation System, D.Phil, thesis, Oxford
University, UK.

Arya, K. (1989) Processes in functional animation. Proc. ACM Functional Programming
Languages and Computer Architecture (FPCA '89) Conference, Imperial college, London,
UK.

Haskell. (1990) Report on the Programming Language Haskell, Version 1.0. YALEU/
DCS/RR-777, Yale University, USA.

Henderson, P. (1982) Functional Geometry. Symposium on Lisp and Functional Programming.
Kleinman, A. (1990) A three dimensional graphics animation system in Haskell. Computer

Science Senior Project, Yale University, 9 May.
Magnetat-Thalman, N. and Thalman, D. (1984) CINEMIRA: a 3D computer animation

language based on actor and camera data-types. Technical Report, University of Montreal.

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

18 Kavi Arya

Magnetat-Thalman, N. and Thalman, D. (1985) Computer Animation: Theory and Practice.
Springer-Verlag.

Tinmouth, J. (1991) A functional animation package in Haskell. Computer Science Senior
Project, Yale University, 9 May.

Reynolds, C. W. (1982) Computer animation with scripts and actors. Proc. Siggraph '82,
Volume 16 (3), July.

Wadler, P. (1985) Listlessness is better than Laziness. Volume 217 of Lecture Notes in Computer
Science, Springer-Verlag.

https://doi.org/10.1017/S0956796800000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000915

