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Vitamin D: emerging new roles in insulin sensitivity
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The growing incidence of prediabetes and clinical type 2 diabetes, in part characterised by insulin
resistance, is a critical health problem with consequent devastating personal and health-care
costs. Vitamin D status, assessed by serum 25-hydroxyvitamin D levels, is inversely associated
with diabetes in epidemiological studies. Several clinical intervention studies also support that
vitamin D, or its active metabolite 1,25-dihydroxyvitamin D (1,25(OH),D), improves insulin
sensitivity, even in subjects with glucose metabolism parameters classified within normal ranges.
The mechanisms proposed which may underlie this effect include potential relationships with
improvements in lean mass, regulation of insulin release, altered insulin receptor expression and
specific effects on insulin action. These actions may be mediated by systemic or local production
of 1,25(OH),D or by suppression of parathyroid hormone, which may function to negatively
affect insulin sensitivity. Thus, substantial evidence supports a relationship between vitamin D
status and insulin sensitivity; however, the underlying mechanisms require further exploration.
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The reported incidence of diabetes is increasing at an
alarming rate. The WHO estimates that more than 180
million individuals worldwide have diabetes and that 1-1
million died from diabetes in 2005'". Further, the WHO
estimates that this number is likely to more than double by
2030'". The rate of change in incidence of insulin resistance
and diabetes cannot be accounted for by shifts in population
demographics, which suggests that lifestyle choices, rather
than differences in genetics, are a primary contributor.
Unfortunately, the dramatic rise in the prevalence of diabetes
in this decade is likely to continue given the number of
Americans with prediabetes and given that current
recommendations for prevention are either ineffective or
are not implemented sufficiently.

Several lifestyle factors may play a role in this rapid
increase in prediabetes and progression to clinical diabetes.
An increase in diabetes has occurred concurrently with an
increase in obesity, as the latter is a strong risk factor for
diabetes. This relationship may be rooted in the general
relationship between energy balance, obesity and diabetes.
However, the presence, or absence, of specific dietary
factors may also play a role in these diseases. Therefore it is
critical to identify factors that influence body weight, factors
that are independent of weight that will contribute to the
prevention of abnormal glucose homeostasis and insulin
resistance to reduce the incidence of diabetes beyond the

difficult process of weight loss. It has been proposed
that vitamin D may play an important role in the
development of insulin resistance and diabetes®~*.
Although low vitamin D status is also implicated in
the development of type 1 diabetes (or insulin-dependent
diabetes) diabetes(s), the present review will focus on the
relationship of vitamin D status with insulin sensitivity
and the development of type 2 diabetes.

Discussion

Classical role of vitamin D in metabolism and prevalence of
deficiencies in US populations

It is well established that vitamin D functions to regulate
Ca homeostasis. Studies on the hormonal response to dietary
Ca deprivation have identified the vitamin D metabolite
1,25-dihydroxyvitamin D (1,25(OH),D) and parathyroid
hormone (PTH) as major hormonal regulators of
Ca homeostasis. Low serum Ca is sensed at the level of
the parathyroid gland through a Ca-sensing receptor'®.
The Ca-sensing receptor relays a signal that leads to
the increased production and release of PTH into the
circulation. Finally, PTH is a strong stimulator of the renal
enzyme lo-hydroxylase that catalyses the conversion of
25-hydroxyvitamin D (25(OH)D) to 1,25(OH),D, the
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hormonally active form of vitamin D. The 1,25(OH),D
produced by the kidney and released into the serum acts on
intestine, bone and kidney to regulate Ca homeostasis. Thus,
a dietary Ca load results in an acute lowering of serum
PTH®, whereas higher vitamin D status as well as overall
better Ca status leads to a lower serum PTH even in the
fasting state®'?,

The primary dietary sources of vitamin D are fortified
dairy products; however, the availability of vitamin D for
individuals is heavily influenced by the exposure to sunlight,
as vitamin D is also produced in the skin. With trends
towards reduction in milk intake and less sun exposure,
much of the population of the USA is considered
functionally vitamin D deﬁcient(“); however, the preva-
lence of vitamin D deficiency is highly dependent on the
working definition of deficiency. When vitamin D
deficiency is defined as =< 37-5nM-25(OH)D"?, a marker
for vitamin D status, there are 4-2 % Caucasians and 42 %
African-Americans that can be considered vitamin D
deficient. Other definitions used indicate that serum levels
of at least 80 nM-25(OH)D are necessary for individuals to
be considered adequate for vitamin D status. The latter
greatly elevates the estimates of vitamin D inade-
quacy'®'?. The net effect of the latter may be dietary
recommendations to promote vitamin D intakes that
promote maximal bone health"” but may not reflect
vitamin D requirements for overall health. In order to
establish appropriate recommendations for vitamin D it is
critical to consider the plethora of effects of vitamin D as a
metabolic regulator that extend far beyond the well-
recognised role of this nutrient in maintaining bone. Of
particular importance to the discussions presented in this
review are the roles of vitamin D in modulating body
composition, energy homeostasis, insulin sensitivity and the
development of insulin resistance, a predisposing factor for
type 2 diabetes.

Roles of vitamin D status, calcium and diet
as risk factors for diabetes

In discussing the role of vitamin D in the development of
insulin resistance and diabetes, it is important to also
consider both the level of vitamin D supplied and the dietary
source. Because vitamin D is derived, at least in part,
through the same dietary source of dairy products as Ca, it is
difficult in epidemiological studies to separate the impact of
dietary Ca from dietary vitamin D in the regulation of body
composition. Assessing the impact of vitamin D from the
diet is also particularly difficult since vitamin D produced
by UV exposure is a much greater influence on vitamin D
status than dietary vitamin D.

Inadequate vitamin D status is proposed to play a role in
insulin resistance®*'>~'”. The primary source of dietary
vitamin D is fortified dairy products. The relationship of
dairy intake with risk for type 2 diabetes was explored in a
prospective analysis utilising the Health Professionals
Follow-up Study (n 41254 male participants; Table 1)"'®).
The results of this study show that in 12 years of follow-up,
the relative risk for type 2 diabetes in men in the top quintile
of dairy intake was 077 (95% CI 0-62, 0-95; P for
trend = 0-003) compared with those in the lowest quintile.
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Thus, each serving per d increase in total dairy intake was
associated with a 9% lower risk for type 2 diabetes,
independent of BMI"'®. However, there are many
components of dairy foods, in addition to vitamin D, that
may influence the risk for diabetes. As a consequence, there
is considerable confounding interpretation of experimental
outcomes.

Body composition, vitamin D and diabetes

Obesity is a major risk factor for the development of type 2
diabetes. A number of studies have been conducted to study
the effects of dietary Ca on body fat mass'?~*?. Many
studies, both epidemiological and intervention studies,
support an inverse relationship between higher Ca intakes,
enhanced by dairy product intake, and body fat mass"'?.
However, other intervention studies®>~> do not support that
Ca or dairy products will be effective in every situation but
instead alternatively suggest that another dietary factor,
probably vitamin D, may be responsible for inducing changes
that improve body composition. Evidence that supports a link
between vitamin D status and an increase in energy expended
from a meal® provides an explanation of the role of
vitamin D to reduce adiposity. In the study of 250 overweight
and obese adults of different ethnicities, serum 25(OH)D
was shown to be inversely related to weight (r —0-21),
BMI (r —0-18) and waist circumference (r —0-14), but
not fat mass®”). These results suggest that the relationship
of vitamin D status was specific to waist circumference,
an independent risk factor for disease, and not to fat mass.

Muscle mass is an important determinant of overall body
insulin sensitivity and vitamin D status clearly has effects on
muscle and physical activity. Changes in gait, difficulties in
rising from a chair, inability to ascend stairs and diffuse
muscle pain are classic symptoms of vitamin D
deficiency®®. Results of epidemiological studies support a
need for diet and lifestyle factors conducive to higher
vitamin D status, assessed by 25(OH)D and greater muscle
function®®~**_ Several intervention studies also support the
conclusion that improved vitamin D status improves muscle
function® ", In a meta-analysis which included five
double-blind randomised, controlled trials in elderly
populations (mean age 60 years; n 1237), vitamin D
supplementation reduced the corrected OR of falling by 22 %
compared with patients receiving Ca or placebo, independent
of Ca supplementation®. A randomised controlled trial of
patients (ninety-six women) with post-stroke hemiplegia
receiving vitamin D supplementation of 1000 IU (25 ng)/d
for 2 years reduced injurious falls by 59 %©".

The efficacy of vitamin D to promote muscle growth is
supported by laboratory experiments. Rodents receiving
diets containing high levels of vitamin D for 12 weeks had
8 % greater muscle mass compared with animals receiving
suboptimal vitamin D levels®®. In support of an important
physiological role for 1,25(OH),D on muscle, vitamin D
receptor (VDR) mice ex?erience myopathy characterised by
smaller muscle fibres®”.

The purported impact of vitamin D on insulin sensitivity
may be, at least in part, through an increase in muscle mass,
which will improve overall body insulin sensitivity.
Therefore, the role of vitamin D in potentially reducing
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Table 1. Epidemiological studies investigating relationship of vitamin D and diabetes or insulin resistance endpoints

Study Study type Indicator Sex Baseline Subjects (n) Length Endpoint Association
Choi et al. (2005)('® Prospective Diet, dairy Male Self-report no diabetes 41254 12 years Type 2 diabetes Yes
intake
Liu et al. (2005)“® Cross-sectional Diet, dairy Female Age > 45 years, 10066 Metabolic syndrome Dependent
intake self-report no diabetes on Ca intake
Pittas et al. (2006)“") Prospective Diet Female Age 30-55 years, 83779 20 years Type 2 diabetes Yes
self-report no diabetes
Scragg et al. (2004)“2) Cross-sectional 25(0OH)D Female Age = 20 years 6228 Blood glucose, Yes
and male OGTT, HOMA-IR
Martins et al. (2007)“® Cross-sectional 25(0H)D Female Age = 20 years 15088 Blood glucose, Yes
and male type 2 diabetes
Reis et al. (2007)%¥ Cross-sectional 25(0OH)D, Female Age 44-96 years 1070 Blood glucose, None for
PTH and male metabolic syndrome 25(0OH)D
Yes for PTH,
men only
Ford et al. (2005)“® Cross-sectional 25(0OH)D Female Age = 20 years 8421 Fasting glucose Yes
and male
Baynes et al. (1997)“®) Cross-sectional 25(0H)D Male Age 70-88 years 142 OGTT Yes
Need et al. (2005)“") Cross-sectional 25(0OH)D Female Post-menopausal, 753 Fasting glucose Yes
no diabetes
Targher et al. (2006)“®) Case—control 25(0H)D Female Type 2 diabetics 780 Hypovitaminosis D Yes
and male or controls
Scragg et al. (1995)©“9) Case—control 25(0OH)D Female Newly diagnosed type 2 476 Hypovitaminosis D Yes
and male diabetics or
controls, age
40—-64 years
Chiu et al. (2004)®? Cross-sectional 25(0OH)D Female Normal glucose tolerance 126 Hyperglycaemic clamp Yes
and male
Boucher et al. (1995)©" Case—control and 25(0OH)D Female High fasting glucose 59 OGTT, insulin, Yes
cross-sectional and male or controls C-peptide

25(0OH)D, 25-hydroxyvitamin D; OGTT, oral glucose tolerance test; HOMA-IR, homeostasis model assessment of insulin resistance;

PTH, parathyroid hormone.
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adiposity, improving insulin sensitivity indirectly through
improving muscle mass, and the reduction in vitamin D
status with increased adiposity (Fig. 1) are factors that need
to be carefully considered when reviewing the epidemio-
logical literature on the relationship of vitamin D with
diabetes or insulin sensitivity.

Epidemiological evidence linking vitamin D
status to diabetes

Several epidemiological analyses of large datasets support
that dietary vitamin D is associated with abnormal glucose
homeostasis (Table 1). Cross-sectional results from the
Women’s Health Study show that in women (n 10066;
aged > 45 years) dietary vitamin D is inversely associated
with the prevalence of the metabolic syndrome, but this
relationship is not independent of total Ca intake“”.
Women (n 83 779) participating in the in the Nurses’ Health
Study with no history of diabetes were followed for
approximately 20 years". The results suggest that
although vitamin D intake had a minor influence on the
risk of developing diabetes, a combined daily intake
of > 1200mg Ca and > 800IU (20 pg) vitamin D was
associated with a 33 % lower risk of type 2 diabetes with a
relative risk of 0-67 (95 % CI 0-49, 0-90) compared with an
intake of < 600 mg and 400IU (10 pg) Ca and vitamin D,
respectively. These results suggest that dietary Ca may
enhance the impact of dietary vitamin D", A primary
shortcoming of linking vitamin D intake to health outcomes
is a potential confounding of vitamin D source and
adequacy of supply through the diet and sunlight exposure.
For the study described above the dietary vitamin D may not
adequately predict vitamin D status, but may instead be an
indicator of a healthier diet that includes dairy products or
may suggest greater physical activity which may involve
increased exposure to the sun.

Serum 25(OH)D concentration, a preferred indicator of
vitamin D status, has been correlated with improved glucose
homeostasis and increased insulin sensitivity (Table 1). In
cross-sectional analyses, serum 25(OH)D (using quartiles)
of participants (n 6228) in the Third National Health and
Nutrition Examination Survey (NHANES) was negatively
related to high fasting glucose levels in non-Hispanic whites
(OR 0-25) and Mexican blacks (OR 0-17) after adjusting
for sex, age, BMI, leisure activity and time of year(42)

@ Sunlight
Dietary V|tam|n D 25(OH)D 1,25(0H),D
] Obesﬁ PTH t Insulin
]Muscle X secretion t Insulin
receptor

~ |/

l Insulin reS|stance

l

l Type 2 diabetes

/ } Inflammation

Fig. 1. Potential mechanisms underlying the putative relationship
between vitamin D and insulin sensitivity or diabetes. 25(0OH)D,
25-hydroxyvitamin D; 1,25(0OH),D, 1,25-dihydroxyvitamin D;
PTH, parathyroid hormone.
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In addition, serum 25(OH)D concentration was inversely
associated with fasting and 2 h glucose, fasting insulin and
the homeostasis model assessment of insulin resistance in
Mexican Americans, with a trend towards significance for
non-Hispanic whites (P = 0-06)“*?. However, no relation-
ship between 25(OH)D concentration and measures of
glucose homeostasis was observed in non-Hispanic
blacks“?. These contradictory results suggest a potentially
race-specific inverse relationship of vitamin D status with
serum glucose and possibly insulin resistance.

Analysis of the third NHANES database shows that
serum 25(OH)D levels were lower in participants with
diabetes (OR 1-98 lowest compared with highest quar-
tile)*>. In a secondary analysis of the results from the
Rancho Bernardo Study (1070 men and women aged 44—96
years), PTH, but not serum 25(OH)D, was 1nversel;/
associated with hyperglycaemia in men, but not women®
Finally, the results of a study which included over 8000
adult (aged = 20 years) men and women showed serum
25(OH)D concentration, in quintiles, was negatively
related to fasting hyperglycaemia®. In a cross-sectional
analysis including 142 men (aged 70—88 years), controlling
for age, BMI, physical activity, month of sampling, cigarette
smoking and alcohol, serum 25(OH)D concentration was
inversely correlated with glucose levels at 1 h and area under
the curve of an oral glucose tolerance test (r —0-23
(P <0-01) and r —0-26 (P < 0-01), respectively)*®. In
postmenopausal women (n 753), serum 25(OH)D level, but
not PTH or 1,25(0OH),D, was inversely related to fasting
serum glucose, when controlled for BMI, weight and
age™”. Thus, there is substantial epidemiological data to
support an inverse relationship between vitamin D status
and abnormal glucose homeostasis.

Several case—control studies also support a relationship
between vitamin D status and risk of diabetes or glucose
intolerance (Table 1). For example, the prevalence of
hypovitaminosis D (25(OH)D = 37-5 nmol/l) was higher in
diabetic patients (24 v. 16 %; P < 0-001) than in controls
(390 subjects per group)*®. In addition, serum 25(OH)D
concentration was lower in newly diagnosed diabetics and
those with impaired glucose tolerance compared with
controls (total n 5677, aged 40—64 years)“”. However,
epidemiological studies cannot demonstrate cause and
effect.

Several smaller epidemiological studies explored the
relationship of vitamin D status with other indices of glucose
homeostasis (Table 1). Serum 25(OH)D levels correlated
positively with insulin sensitivity index and negatively with
first- and second-phase insulin response in normal health;/
glucose-tolerant subjects in a cross-sectional study®®,
suggesting a better insulin sensitivity with higher vitamin D
status in healthy young individuals independent of changes
in weight. In addition, in another study 95 % of at-risk
(defined by glucose levels) and 80 % of low-risk subjects
were vitamin D deficient (serum 25(OH)D < 11 ng/ml) and
30 min blood glucose during a glucose tolerance test, serum
insulin and C-peptide levels were correlated with serum
25(0OH)D concentrations in at-risk subjects (n 44) and even
in the ‘not-at-risk’ subjects (n 15)°". These results support
that lower vitamin D status may be a significant risk factor
for glucose intolerance.
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Increased serum PTH may contribute to the risk for
diabetes due to its relationship with obesity. Increased levels
of fasting PTH have been hypothesised to influence
increased levels of body fat mass®®. In a meta-analysis of
studies investigating the relationship of primary hyperpar-
athyroidism with indices of body weight, in thirteen studies,
patients with primary hyperparathyroidism were 3-34 (95 %
CI 1.97, 4-71) kg heavier (P < 0-00001) than age-matched
controls or had an increased BMI of 1-13 (95 % CI —0-29,
2-55) kg/m2 (P = 0-12) compared with controls®?. Studies
in young adults with PTH in normal limits show that serum
PTH levels are higher in the obese than in the non-
obese®*3>_ Thus, serum PTH may be involved in regulating
adiposity, a major risk factor for diabetes.

Vitamin D status, diabetes and controlled interventions

Several intervention studies support that vitamin D
supplementation may affect glucose homeostasis or insulin
resistance (Table 2). Non-diabetic adults (aged = 65 years;
n 314) received Ca (500mg/d) and vitamin D (7001U;
17-5pg) for 3 years in a double-blind, randomised,
controlled trial which was designed for bone-related
outcomes®®. In a post hoc analysis, there was no effect of
the intervention in participants when fasting glucose
concentrations were within normal limits at the initiation
of the study (<<5-6 mmol/l; n 222). However, non-diabetic
subjects with fasting glucose above normal (5-6—6-9 mmol/l;
n 92) displayed a reduced change in fasting plasma glucose
at 3 years compared with those on placebo (0-02 mmol/l
(4 mg/l) v. 0-34 mmol/l (61 mg/l), respectively; P = 0-042)
and a lower increase in homeostasis model assessment of
insulin resistance (0-05 = 0-91; P = 0-031)®®. Therefore
supplementation with Ca and vitamin D may attenuate the
development of insulin resistance that occurs over time and
rescue the progression of abnormal glucose metabolism
toward insulin resistance and type 2 diabetes.

The largest intervention study to examine the influence of
dietary vitamin D and Ca on health risks is the Women’s
Health Initiative, and diabetes risk was examined in
secondary analysis from this trial®”. In this study,
postmenopausal women (n 33951) without diabetes at
baseline were assigned to received either 1000 mg Ca/d plus
40010 (10 pg) vitamin D or placebo. The women were
followed for a median of 7 years and there was no change in
the risk for developing diabetes with the treatment.
Unfortunately, these study results need to be interpreted
with caution, as the level of vitamin D supplementation may
have been too low to achieve a significant change in vitamin
D status. Thus, recent studies demonstrate that a higher level
of intake may be required for optimal health".

Shorter-term intervention studies also demonstrate a
positive impact of vitamin D or its active metabolites on
insulin resistance. Treatment of type 2 diabetic females with
oral vitamin D for 1 month led to an anticipated increase in
25(OH)D but also led to a reduced first-phase insulin
secretion and caused a substantial reduction in insulin
resistance of 21-4 %“¥, Treatment of uraemic patients with
vitamin D and Ca®” or treatment with intravenous
1,25(OH)2D(60) also improved insulin response. In contrast,
in a double-blinded, placebo-controlled, cross-over trial in
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diabetics, acute administration of 1,25(OH),D did not affect
fasting or stimulated glucose, insulin or C-peptide®”. On
the other hand, a single dose of vitamin D (300000IU
(7500 g) intramuscular injection) in type 2 diabetics
resulted in improvements in the oral glucose tolerance
and glucose-stimulated increase in serum insulin levels in
4 weeks compared with placebo controls®®®. However, a
single oral dose up to 4500001IU (11 250 pg) vitamin D did
not alter these parameters, even up to 12 weeks following
the dose®®, suggesting that higher doses of vitamin D may
be required orally to achieve improvements in insulin
sensitivity compared with intramuscular injections. The
results of these intervention studies provide support that
vitamin D specifically can improve insulin sensitivity.

Genotypic links to vitamin D action and insulin resistance

Support for a relationship of vitamin D in mediating
improved insulin resistance is found in assessment of
responsiveness of gene transcripts whose protein products
regulate vitamin D metabolism. There are two known
polymorphisms in exon 11 of the vitamin D-binding protein
(DBP) gene that result in amino acid variants: at codons 416
GAT -- > GAG (Asp-- > Glu) and 420 ACG-- > AAG
(Thr-- > Lys) which are the genetic basis for the three
common electrophoretic variants of DBP (Gcl1F, GelS and
Gc2). These variants of DBP, the serum carrier of vitamin D
metabolites, are associated with higher risk for type 2
diabetes or prediabetic phenotyges in several popu-
lations(64_68), but not others®>’?. While the precise
association of variant subtypes with predisposition to
insulin resistance and type 2 diabetes is not completely
understood, the relationship between variant expression and
predisposition to insulin resistance provides further
evidence of the importance of vitamin D and maintenance
of glucose homeostasis.

An important mediator of vitamin D action is the VDR
which functions as a transcription factor when bound to
1,25(0OH),D. There is evidence that VDR genotype may
affect insulin resistance, both in regards to insulin secretion
(the Apal VDR polymorphism) and insulin resistance (the
Bsml VDR polymorphism)’". The association of the Fokl,
Apal, BsmlI and Taql polymorphisms of the VDR gene with
type 2 diabetes was explored in a case—control design (308
type 2 diabetic patients and 240 control cases). In this study,
there was no association of the four VDR polymorphisms
examined with type 2 diabetes”?. In another study, the
influence of BsmIl VDR genotype in young males with low
(n 752) and high (n 787) physical activity was investigated.
Those with the Bsml VDR BB genotype had significantly
higher levels of fasting glucose (n 137; 5-61 (sp 0-49)
mmol/l) than gene carriers with the genotype Bb (n 370;
5-44 (sp 0-44) mmol/l) or bb (n 245; 5-38 (sD 0-44) mmol/l).
Of the BB gene carriers, 47 % had fasting glucose
levels > 5-55mmol/l compared with 36 % of Bb gene
carriers and 34 % of bb gene carriers (P = 0'02)(73).
In another study, the distribution of alleles and genotypes
of the four single nucleotide polymorphisms in intron 8
(Bsml, Tru9l, Apal) and exon 9 (Taql) of the VDR gene was
similar in type 2 diabetics (n 309) and controls (n 143)7%.
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Table 2. Intervention studies investigating the relationship of vitamin D and insulin resistance or diabetes

Study Sex Baseline Subjects (n) Metabolite Dose (IU)* Length Endpoint Effect
Pittas et al. (2007)'® Female Age > 65 years 314 Vitamin D 700/d 3 years Fasting glucose, Yes
or placebo HOMA-IR
De Boer et al. (2008)®”) Female Self-report 33951 Vitamin D 400/d 7 years Type 2 diabetes, None
no diabetes fasting glucose,
insulin, HOMA-IR
Ca or placebo 1000 mg/d
Borissova et al. (2003)®® Female Post-menopausal, 10 Vitamin D 1332/d 1 month Intravenous GTT, Yes
type 2 diabetes HOMA-IR
Allegra et al. (1994)©9 Female Uraemia 17 Vitamin D 0-100/d 21d Intravenous GTT Yes
and male Ca 500 mg/d
Mak (1998)(©) Female Uraemia 16 patients, 1,25(0OH),D or Intravenous 4 weeks Fasting glucose, Yes
and male 7 controls dihydrotachysterol or oral OGGT, insulin,
euglycaemic clamp
Orwoll et al. (1994)©" Female Type 2 diabetes 20 1,25(0H).D 200/d 4d cross-over Glucose, insulin, None
and male C-peptide
Raghuramulu et al. (1992)(¢2 Female Type 2 diabetes 42 Vitamin D 300000 4 weeks OGTT, insulin Yes
and male intramuscular
Ayesha et al. (1998)©¥ Female Type 2 diabetes 32 (eight per  Vitamin D Placebo or oral 12 weeks OGTT, insulin None
and male group) 150000,
300000,
450000

HOMA-IR, homeostasis model assessment of insulin resistance; GTT, glucose tolerance test; 1,25(0H).D, 1,25-dihydroxyvitamin D; OGTT, oral glucose tolerance test.* 11U = 0-025 pg vitamin D.
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Thus, the evidence supporting an association of VDR
genotypes with risk for diabetes is conflicting.

Another critical protein in the regulation of vitamin D
action is the vitamin D la-hydroxylase gene, which
converts 25(OH)D to the active vitamin D metabolite
1,25(0OH),D. The prevalence of two variants in the
la-hydroxylase was determined in type 2 diabetic patients
(n 291) and controls (n 231). There were no differences in
the distribution of genotypes, haplotypes and haplotype
combinations between the groups. However, the T-C/T-T
heterozygous haplotype combination was more prevalent in
the subgroup of obese type 2 diabetics (BMI = 30 kg/m?)
than in the controls (41-5 v. 28:6 %; P = 0-01), suggesting
an association with the risk factor for diabetes, obesity”™.

Tissue, cellular and molecular actions of vitamin D
to alter glucose homeostasis

Several mechanisms have been proposed to explain the
impact of vitamin D on insulin sensitivity and glucose
homeostasis (Fig. 1). Because dietary vitamin D and
elevated serum 25(OH)D are well known as regulators of
PTH and 1,25(0OH),D, these are likely candidates to mediate
systemic changes in glucose metabolism. The regulation of
serum Ca via PTH and 1,25(OH),D following changes in
dietary Ca has been proposed to mediate the effects of
vitamin D, at least in part, on insulin resistance. Vitamin D
and PTH have also been associated with a variety of other
actions beyond their classical functions, including cell
growth, differentiation and apoptosis. Both hormones have
been shown to increase levels of intracellular Ca and other
rapid signalling pathways in a variety of tissues including
adipocytes and muscle cells®*’*7")_In addition to its rapid
actions in cells, 1,25(OH),D also mediates genomic
regulation through the VDR, a member of the steroid
hormone receptor family’®. Thus, both hormones have the
capability of regulating a variety of processes far beyond
their classical actions in mediating Ca homeostasis.

It is well established that PTH regulates the activity of the
renal la-hydroxylase to convert 25(OH)D to 1,25(0OH),D;
however, extra-renal la-hydroxylase enzymes have also
been identified in a variety of tissues which may lead to the
local production of 1,25(OH),D under conditions of high
vitamin D status”?. The evidence suggests that these
enzymes are not regulated by PTH®”. When vitamin D
status is improved (as evidenced by higher 25(OH)D levels),
PTH levels are reduced. Total serum concentrations of
1,25(0OH),D are subsequently reduced by the lower PTH
levels. However, the increased 25(OH)D may lead to an
increase in 1,25(OH),D locally at the tissues even with
decreased fasting PTH. Thus, while the dogma exists that
PTH and 1,25(OH),D levels are coordinated, this remains a
controversial issue in normal physiology. Many tissues
have been shown to express the la-hydroxylase”’?,
including muscle and adipocytes®".

There is also evidence to support an effect of 1,25(OH),D
at multiple levels of insulin release and action. Insulin
release is low in vitamin D-deficient rats®**® and is
enhanced by treatment with 1,25(OH),D®®, potentially via
synthesis of proteins and increased conversion of pro-insulin
to insulin®>. Results of studies suggest that the increase in
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insulin release mediated by 1,25(OH),D may involve
increases in intracellular Ca through the phosphoinositide/
protein kinase C pathway and facilitating Ca entry by Ca
channels®® and that activation of the cyclic AMP-mediated
pathway restores insulin release in vitamin D deficiency®”.
Further, the 1a-hydroxylase is expressed in pancreatic islet
cells®®. Consistent with the ability of vitamin D to enhance
insulin secretion, following a single intramuscular injection
of 1000001IU (2500 wg) vitamin D, insulin and C-peptide
concentrations at 30 min of an oral glucose tolerance test
increased 8—12 weeks later in patients with elevated glucose
concentrations, but not in normal subjects(sn. Therefore,
vitamin D is important for insulin secretion.

The active metabolite of vitamin D, 1,25(OH),D, also
may be directly involved in altering insulin action. These
actions may be either direct at the level of the adipocyte to
alter insulin action or at the level of the pancreatic B cell to
alter insulin release. Supporting data indicate that when
adipocytes are incubated with 1,25(OH),D there is an
observed decrease in insulin-stimulated glucose uptake®”.
Likewise there is a vitamin D response element sequence
in the insulin receptor gene promoter®® and cellular tests
indicate increased transcription and protein expression of
the insulin receptor induced by 1,25(0H),D®V. Therefore
an adequate vitamin D status or adequate Ca intake will act
to promote higher levels of 25(OH)D and reduced levels of
PTH, and reduce 1,25(OH),D levels. An increase in
25(OH)D, the substrate for la-hydroxylase, could drive a
local increase in 1,25(OH),D to promote an increased
insulin receptor expression. These changes may occur
despite a suppression of PTH levels with a net effect to
insulin responsiveness in adipocytes with global conse-
quences to induce insulin sensitivity. Diets containing
whey protein that are also high in Ca and vitamin D act
to increase insulin receptor mRNA expression in rodents.
Therefore the data suggest that 1,25(OH),D may affect
insulin resistance by enhancing insulin; however, the effect
of improved vitamin D status alone on insulin receptor
expression has not been explored.

PTH levels are also regulated by vitamin D status. Serum
levels of 25(OH)D, a marker for vitamin D status, are
inversely correlated with fasting levels of serum
PTH® %92 Studies also support a negative relationship
between serum 25(OH)D levels and PTH in healthy young
women®®. It is intriguing that this study also demonstrates
that 1,25(OH),D is positively related to 25(OH)D, and
1,25(OH),D shows no relationship with fasting serum PTH
levels, contrary to the model that only PTH controls the rate
of conversion of 25(OH)D to 1,25(OH),D to regulate serum
concentration. Overall, Ca homeostasis mediated by higher
vitamin D status limits levels of fasting serum PTH.
Therefore vitamin D may improve insulin action is by its
ability to reduce PTH levels'”. There is evidence that
increased blood PTH is associated with insulin resistance or
glucose intolerance®*°>. It is well established that there is
an increased prevalence of type 2 diabetes mellitus (8 %)
and glucose intolerance (40 %) in patients with primary
hyperparathyroidism®®. In addition, fasting PTH levels
were shown to be inversely correlated with insulin
sensitivity index in fifty-two normotensive, healthy
subjects, even after adjustment for potentially confounding


https://doi.org/10.1017/S0954422409389301

NS Nutrition Research Reviews

https://do

Vitamin D and insulin sensitivity 89

factors®”, supporting the hypothesis that higher fasting

serum PTH may mediate a reduction in glucose tolerance.
These results support a role of physiological levels of PTH
and 1,25(OH),D hormones in insulin action.

Likewise, PTH may mediate insulin resistance by
reducing glucose uptake by liver, muscle and adipose
cells. PTH treatment (16h) decreased insulin-stimulated
glucose transport®® in an osteoblast-like cell type.
GLUT1 mRNA was reduced in osteogenic sarcoma cells
following the 16h PTH treatment*®), suggesting a
mechanism for the PTH-mediated reduction in glucose
transport. In addition, PTH decreased insulin-stimulated
glucose uptake in rat adipocytes®”. These studies suggest
that PTH may elicit insulin resistance by reducing the
number of glucose transporters (both GLUT1 and GLUT4)
available in the membrane to promote glucose uptake.
On the other hand, PTH has been shown to suppress insulin
release"'®” and to promote insulin resistance in adipo-
cytes(lm). Therefore, cumulatively, the results of these
studies suggest that PTH may negatively affect insulin
sensitivity through altering body composition and inhibiting
insulin signalling.

Vitamin D, inflammation and emerging roles of vitamin D in
reducing insulin resistance

The pathogenesis of diabetes is complex, and one factor
proposed to mediate an increase in insulin resistance is
inflammation, such as occurs in obesity. Several studies
support a role for vitamin D and 1,25(OH),D, as an anti-
inflammatory agent. For example, 1,25(OH),D inhibits the
release of the pro-inflammatory cytokine TNFa and
regulates the activity of NFkB"'%2~'%® which functions as
a mediator of TNFa pro-inflammatory actions, at multiple
levels. In addition, 1,25(0OH),D down-regulates the
increased levels of inflammatory markers (TNFq, IL-6,
IL-1, IL-8, cyclo-oxygenase-2, intercellular adhesion
molecule-1 and B7-1) in monocytes from type 2 diabetic
patients compared with monocytes from healthy con-
trols'%”. In other models, 1,25(OH),D inhibits the synthesis
and actions of pro-inflammatory PG by inhibiting cyclo-
oxygenase-2 expression, increasing the expression of the
enzyme which inactivated PG (15-PG dehydrogenase) and
decreasing PG receptors. 1,25(OH),D influences several
pathways known to regulate inflammatory responses,
including increasing mitogen-activated protein kinase
phosphatase 5 which down-regulates p38 mitogen-activated
protein kinase activity'®®. Therefore, vitamin D may also
function to reduce the risk of diabetes by acting to reduce
inflammatory responses.

New roles of vitamin D to regulate insulin resistance are
emerging. One such area is the role of vitamin D in the non-
enzymic glycation of proteins. The process occurs more
rapidly in diabetic patients than in normal individuals and
measures of HbA . in blood provide a clinical indicator of
integrated blood glucose homeostasis during the previous
2-3 months. Glycated albumin similarly indicates glucose
metabolism during the previous 21 d period. In addition to
the role of glycation products in vascular complications,
there is evidence that links impaired insulin signalling
in skeletal muscle cells to glycated albumin‘'®”. Recent
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studies support a role for vitamin D as a vascular protective
agent against the effects of advanced glycation endproducts,
which are proposed to mediate the devastating conse-
quences of diabetes on cardiac complications''?.

Summary and future directions

There is substantial evidence to support an association
between optimal vitamin D status, insulin sensitivity and
health even for individuals with normal glucose homeosta-
sis. Multiple mechanisms have been proposed with
supportive results in the literature for the action of
vitamin D to improve glucose homeostasis. Vitamin D
may reduce risk factors for diabetes by reductions in fat
mass and gains in lean mass, through the direct action of its
active metabolite, through suppression of PTH, or a
combination of these responses. Vitamin D may also
mediate insulin sensitivity by improving Ca status,
increasing local production of 1,25(OH),D, thus leading
to transcriptional regulation of specific genes, or by
suppressing serum levels of PTH. Likewise, 1,25(OH),D
may act to enhance insulin synthesis and release, increase
insulin receptor expression, and suppress inflammation, all
three mechanisms acting to reduce the potential risks for
insulin resistance. More directly, vitamin D may influence
levels of PTH, which have recently been linked to insulin
signalling at the level of the adipocyte. These effects of
vitamin D, either acting in concert or alone, all serve to
improve insulin sensitivity. The challenge that lies ahead is
in determining the mechanisms and relative strengths of
these pleiotrophic actions of vitamin D in order to make
informed recommendations for vitamin D intakes that
promote health and reduce the risks of onset of insulin
resistance and progression to type 2 diabetes.
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