BULL. AUSTRAL. MATH. SOC. VOL. 1 (1969). 419-424.

Continuity of derivations on topological algebras of power series

R. J. Loy

Let A be an algebra of formal power series in one indeterminate over the complex field, D a derivation on A. It is shown that if A has a Fréchet space topology under which it is a topological algebra, then D is necessarily continuous provided the coordinate projections satisfy a certain equicontinuity condition. This condition is always satisfied if A is a Banach algebra and the projections are continuous. A second result is given, with weaker hypothesis on the projections and correspondingly weaker conclusion.

In this paper we show that derivations on a certain class of metrizable topological algebras of formal power series are necessarily continuous. This result is contained in one of Johnson [3], however the proof as outlined in that paper requires the algebras to satisfy a certain algebraic condition which we do not assume here. Algebras satisfying this condition are considered in [4], where it is shown that they are necessarily semisimple in the Banach algebra case. The class we consider here, however, contains non-semisimple Banach algebras. Indeed, we consider a particular case below of a radical Banach Algebra.

Throughout this paper A will denote an algebra of formal power series in an indeterminate t over the complex field, containing the element t, but not necessarily having an identity. Elements of A will be denoted by expressions of the form $\sum a_{i}t^{i}$. We suppose further that A is a

Received 11 August 1969. This research was supported by a Post-Doctoral Fellowship at Carleton University.

topological algebra under a complete locally convex metrizable topology determined by a sequence $\{\|\cdot\|_n\}_{n\geq 1}$ of seminorms, and note that multiplication in A is necessarily jointly continuous ([1], Theorem 5).

THEOREM 1. Suppose that the projections $p_j : \sum a_i t^i + a_j$ are continuous and, moreover, that there is a sequence $\{\gamma_n\}_{n\geq 0}$ of positive real numbers such that the family $\{\gamma_n^{-1}p_n\}_{n\geq 0}$ is equicontinuous. Then any derivation on A is continuous.

Proof. Suppose to the contrary that D is a discontinuous derivation on A. Since $\{p_n\}_{n\geq 0}$ is a separating family of continuous linear functionals on A it follows by the closed graph theorem that at least one of the functionals $\{p_n D\}_{n\geq 0}$, and hence one with least index, $p_k D$ say, is discontinuous. In order to give a proof valid for all values of kwe make the convention that empty sums, of the form $\sum_{i=1}^{j} (\cdot)_i$ with j < 1, have the value zero.

Since the functionals p_0^D , ..., p_{k-1}^D are continuous there is a neighbourhood U of zero in A such that if $x \in U$ then $|p_j^{(Dx)}| \leq 1$, $0 \leq j \leq k-1$. Also, by the equicontinuity of the family $\{\gamma_n^{-1}p_n\}_{n\geq 0}$ there is a neighbourhood V of zero in A such that if $x \in V$ then $|p_n^{(x)}| \leq \gamma_n$ for all $n \geq 0$. Finally, by the joint continuity of multiplication in A there is a sequence $\{M_n\}_{n\geq 1}$ of positive integers, and a sequence $\{\delta_n\}_{n\geq 1}$ of positive numbers such that if $||x||_i < \alpha$, $||y||_i < \beta$ for $1 \leq i \leq M_n$, where $\alpha\beta < \delta_n$, then $||xy||_i < 1$, $1 \leq j \leq n$.

Let $\{\mu_n\}_{n\geq 1}$ be a sequence of positive numbers such that $\gamma_n \mu_n^{-1} \neq 0$ as $n \neq \infty$. Define inductively a sequence $\{x_n\}_{n\geq 1} \subseteq A$ such that

(i)
$$x_n \in U$$
, $Dt.x_n \in V$.

420

Thus if $n \ge k+2$

$$\begin{split} |p_{n}(Dy)| &\geq |p_{k}(Dx_{n-k})| - \sum_{i=1}^{n+1} i |p_{n+1-i}(Dt.x_{i})| - \left[\sum_{i=0}^{k-1} + \sum_{i=k+1}^{n-1}\right] |p_{i}(Dx_{n-i})| \ . \end{split}$$

But by (i) $\sum_{i=0}^{k-1} |p_{i}(Dx_{n-i})| &\leq k \text{ and } \sum_{i=1}^{n+1} i |p_{n+1-i}(Dt.x_{i})| &\leq \sum_{i=1}^{n+1} i \gamma_{n+1-i} \ , \end{aligned}$
and so by (iii) $|p_{n}(Dy)| \geq \mu_{n} \ . \end{split}$

Now choose a non-zero scalar λ so small that $\lambda Dy \in V$. Then for each $n \geq 0$, $|\lambda|\mu_n \leq |p_n(\lambda Dy)| \leq \gamma_n$, and so $\gamma_n \mu_n^{-1} \geq |\lambda| > 0$. But this is impossible for all n by the definition of the sequence $\{\mu_n\}$; and so the result follows. REMARK. The hypothesis of Theorem 1 is satisfied by any Banach algebra of power series in which the projections are continuous, for clearly the family $\{\|p_n\|^{-1}p_n\}_{n\geq 0}$ is equicontinuous. The algebra of entire functions on the complex plane, considered as a power series algebra, is another example. Cauchy's inequalities show easily that in this case the family $\{p_n\}_{n\geq 0}$ is equicontinuous.

In Newman [5] it is shown that there are no non-zero continuous derivations on a certain radical Banach algebra R, the elements of which are formal power series $\sum_{i\geq 1} a_i t^i$ with $\sum_{i=1} |a_i| |\lambda_i^i| < \infty$ for a certain sequence $\{\lambda_i\}_{i\geq 1}$, this latter expression defining the norm. This algebra clearly satisfies the conditions of Theorem 1, and we conclude that R admits no non-zero derivations. This establishes the falsity of the conjecture of Singer and Wermer stated in [5], namely that a commutative Banach algebra which admits no non-zero derivations is necessary semisimple. Newman's result had shown it false if the derivations were restricted to being continuous. The conjecture is true for finite dimensional algebras by [2], Theorem 4.3.

The proof of Theorem 1 made use of the fact that for each $x \in A$ there is a positive number K(x) such that $\left|\gamma_n^{-1} p_n(x)\right| \leq K(x)$ for all $n \geq 0$. If we use this condition as hypothesis we can obtain the following result, which requires no continuity restrictions on the projections.

THEOREM 2. Suppose that A satisfies the following two conditions:

(a) if $\sum_{i=1}^{n} a_{i}t^{i} \in A$ then $\sum_{i\geq n} a_{i}t^{i} \neq 0$ in A as $n \neq \infty$;

(b) there is a sequence $\{\gamma_n\}$ of positive real numbers such that for each $x \in A$ there is K(x) such that $\left|\gamma_n^{-1} p_n(x)\right| \leq K(x)$ for all $n \geq 0$.

Let D be a derivation on A with Dt = 0. Then D = 0.

Proof. The proof follows the same line as that of Theorem 1 and we give an outline only.

Suppose p_k^D is discontinuous but that p_0^D, \ldots, p_{k-1}^D are continuous. Let U, $\{\delta_n\}$, $\{M_n\}$ be as in the proof of Theorem 1, and let $\{\mu_n\}_{n\geq 1}$ be a sequence of positive numbers such that $\gamma_n \mu_n^{-1} \neq 0$ as $n \neq \infty$. Define inductively a sequence $\{x_n\}_{n\geq 1} \subseteq A$ such that

(i)'
$$x_n \in U$$
.
(ii)' $||x_n||_i < 2^{-n} \delta_n \min_{\substack{1 \le j \le n \\ 1 \le m \le n}} ||t^j||_m^{-1}$ for $1 \le i \le M_n$.
(iii)' $|p_k(Dx_n)| \ge \mu_{n+k} + k + \sum_{i=1}^{n-1} |p_{i+k}(Dx_{n-i})|$.

Then $y = \sum_{m \ge 1} t^m x_m \in A$ and $|p_n(Dy)| \ge \mu_n$. But then $|\gamma_n^{-1}p_n(Dy)| \ge \gamma_n^{-1}\mu_n \to \infty$ as $n \to \infty$ by the definition of $\{\mu_n\}$ contradicting hypothesis (b). It follows that $p_n D$ is continuous for all $n \ge 0$.

To see that D = 0, suppose $D\left(\sum_{i\geq n} a_i t^i\right) = \sum_{i\geq n} b_i t^i$. Then for each j, $p_j D\left(\sum_{i\geq n} a_i t^i\right) = b_j$ for all n, and so by (a) it follows that $b_j = 0$. Thus $D\left(\sum_{i\geq n} a_i t^i\right) = 0$, as required.

References

- [1] Richard Arens, "Linear topological division algebras", Bull. Amer. Math. Soc. 53 (1947), 623-630.
- [2] G. Hochschild, "Semisimple algebras and generalized derivations", Amer.
 J. Math. 64 (1942), 677-694.
- [3] B.E. Johnson, "Continuity of derivations on commutative algebras", Amer. J. Math. 91 (1969), 1-10.

423

- [4] R.J. Loy, "A class of topological algebras of power series", Carleton Mathematical Series 11 (to appear).
- [5] Donald J. Newman, "A radical algebra without derivations", Proc. Amer. Math. Soc. 10 (1959), 584-586.

Department of Mathematics, Carleton University, Ottawa, Canada.

424