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Abstract
We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture
by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion
of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the
support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in
particular, that of each Schubert determinantal ideal is a discrete polymatroid.
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1. Introduction

Schubert polynomials are classical and important objects in algebraic combinatorics. They were intro-
duced by Lascoux and Schützenberger [17] to study the cohomology classes of Schubert varieties. Since
then, Schubert polynomials have played a fundamental role in algebraic combinatorics (see, e.g., [8, 19,
1, 2, 13, 14, 16] and the references therein).

We first recall the definition of Schubert polynomials. Let 𝒮𝑝 be the symmetric group on the set
[𝑝] = {1, . . . , 𝑝}. For every 𝑖 ∈ [𝑝 − 1] = {1, . . . , 𝑝 − 1}, we have the transposition 𝜎𝑖 = (𝑖, 𝑖 + 1) ∈ 𝒮𝑝 .
Recall that the set 𝔗 = {𝜎𝑖 | 1 ≤ 𝑖 < 𝑝} generates 𝒮𝑝 . The length ℓ(𝜋) of a permutation 𝜋 is the least
amount of elements in 𝔗 counting repetitions needed to obtain 𝜋 from the identity permutation. The
permutation 𝜋0 = (𝑝, 𝑝 − 1, . . . , 2, 1) (in one-line notation) is the longest permutation and has length
𝑝 (𝑝−1)

2 . We follow the notation of [14] and [18, Chapter 15] to present permutations and Schubert
polynomials.
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Definition 1.1. The double Schubert polynomial 𝔖𝜋 (t, s) ∈ Z[𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝] of a permutation
𝜋 ∈ 𝒮𝑝 is defined recursively in the following way. First, we define 𝔖𝜋0 =

∏
𝑖+ 𝑗≤𝑝 (𝑡𝑖 − 𝑠 𝑗 ), and for any

permutation 𝜋 and transposition 𝜎𝑖 with ℓ(𝜎𝑖𝜋) < ℓ(𝜋) we set

𝔖𝜎𝑖 𝜋 =
𝔖𝜋 − 𝜎𝑖𝔖𝜋

𝑡𝑖 − 𝑡𝑖+1
,

where 𝒮𝑝 acts only on Z[𝑡1, . . . , 𝑡𝑝] by permutation of variables. The (ordinary) Schubert polynomial
𝔖𝜋 (t, 0) ∈ Z[𝑡1, . . . , 𝑡𝑝] is obtained from 𝔖𝜋 by setting each variable 𝑠 𝑗 equal to 0.

The monomial expansion of ordinary Schubert polynomials has been combinatorially analyzed using
different objects such as compatible sequences [2], reduced pipe dreams [9, 1] and Kohnert diagrams
[15]. The description using pipe dreams also works for the double Schubert polynomials [18, Corollary
16.30]. We also have a formula for double Schubert polynomials using bumpless pipe dreams [16].

Following [19], we say that a polynomial 𝑓 =
∑

n 𝑐nxn ∈ Z[𝑥1, . . . , 𝑥𝑛] has the saturated Newton
polytope property (SNP property for short) if the support supp( 𝑓 ) = {n ∈ N𝑛 | 𝑐n ≠ 0} of f is equal to
Newton( 𝑓 ) ∩ N𝑛, where Newton( 𝑓 ) = ConvexHull{n ∈ N𝑛 | 𝑐n ≠ 0} denotes the Newton polytope of
f ; in other words, if the support of f consists of the integer points of a polytope.

The main goal of this paper is to confirm the following challenging conjecture by Monical, Tokcan
and Yong that appeared in [19, Conjecture 5.2].

Conjecture 1.2 [19]. Double Schubert polynomials have the SNP property.

We confirm the conjecture by proving a stronger result that the support of each double Schubert
polynomial is a discrete polymatroid. A discrete polymatroid P on [𝑛] = {1, . . . , 𝑛} is a collection of
points in N𝑛 of the following form

P =
{
(𝑥1, . . . , 𝑥𝑛) ∈ N

𝑛 |
∑
𝑗∈𝔍

𝑥 𝑗 ≤ 𝑟 (𝔍), ∀𝔍 � [𝑛],
∑
𝑖∈[𝑛]

𝑥𝑖 = 𝑟 ([𝑛])
}

with r being a rank function on [𝑛]. A rank function on [𝑛] is a function 𝑟 : 2[𝑛] → N satisfying the
following three properties: (i) 𝑟 (∅) = 0, (ii) 𝑟 (𝔍1) ≤ 𝑟 (𝔍2) if 𝔍1 ⊆ 𝔍2 ⊆ [𝑛] and (iii) 𝑟 (𝔍1 ∩ 𝔍2) +
𝑟 (𝔍1 ∪ 𝔍2) ≤ 𝑟 (𝔍1) + 𝑟 (𝔍2) if 𝔍1,𝔍2 ⊆ [𝑛].

The following is the main theorem of this article.

Theorem A. Let 𝜋 ∈ 𝒮𝑝 be a permutation and𝔖𝜋 (t, s) ∈ Z[𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝] be the corresponding
double Schubert polynomial. Then, the support supp(𝔖𝜋) ⊂ N2𝑝 of 𝔖𝜋 is a discrete polymatroid on
[2𝑝] = {1, . . . , 2𝑝}. In particular, the statement of Conjecture 1.2 holds.

Our approach to prove Theorem A can be summarized in the following quote by Miller and Sturmfels
[18, Introduction to Chapter 15]: ‘We consider the finest possible multigrading, which demands the
refined toolkit of a new generation of combinatorialists’. More precisely, we utilize the result that
double Schubert polynomials equal the multidegree polynomial of Schubert determinantal ideals with
the aforementioned ‘finest possible multigrading’ (see [18, Theorem 15.40]), and then we develop a
method of standardization of ideals. This process of standardization allows us to study multidegrees
in certain nonstandard multigradings by reducing the problem to a standard multigraded setting. Our
main tool is Theorem 2.2 from [3] which shows that the support of the multidegree polynomial of any
multihomogeneous prime ideal (with usual standard multigrading) is a discrete polymatroid. Here, we
extend this theorem to the family of nonstandard multigradings that we study.

Much interest has been paid to the important conjectures proposed in [19] and a number of them
have already been confirmed (see [8]). Therefore, Theorem A settles a hitherto remaining conjecture
from [19] and gives further evidence to the ubiquity of the SNP property in many ‘combinatorially
defined polynomials’. Theorem A also gives more evidence for the presence of the Lorentzian property
in double Schubert polynomials as conjectured in [12].
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The structure of the paper is as follows. We review the notion of multidegrees in Section 2 and recall
the connection between double Schubert polynomials and Schubert determinantal ideals in Section 3.
Section 4 contains our main results, in particular the proof of Theorem A.

2. A short recap on multidegrees

In this short section, we briefly recall the notion of multidegrees and some of its basic properties; for
more details the reader is referred to [18, 5].

Let k be a field and 𝑅 = k[𝑥1, . . . , 𝑥𝑛] be a Z𝑝-graded polynomial ring (for now, we do not assume
the grading to be positive). Let M be a finitely generated Z𝑝-graded module and 𝐹• be a Z𝑝-graded
free R-resolution 𝐹• : · · · → 𝐹𝑖 → 𝐹𝑖−1 → · · · → 𝐹1 → 𝐹0 of M. Let 𝑡1, . . . , 𝑡𝑝 be variables over Z
and consider the polynomial ring Z[t] = Z[𝑡1, . . . , 𝑡𝑝], where the variable 𝑡𝑖 corresponds with the i-th
elementary vector e𝑖 ∈ Z𝑝 . If we write 𝐹𝑖 =

⊕
𝑗 𝑅(−b𝑖, 𝑗 ) with b𝑖, 𝑗 = (b𝑖, 𝑗 ,1, . . . , b𝑖, 𝑗 , 𝑝) ∈ Z

𝑝 , then
we define the Laurent polynomial [𝐹𝑖]t :=

∑
𝑗 tb𝑖, 𝑗 =

∑
𝑗 𝑡

b𝑖, 𝑗,1
1 · · · 𝑡

b𝑖, 𝑗,𝑝
𝑝 . Then, the K-polynomial of M

is defined by

K(𝑀; t) :=
∑
𝑖

(−1)𝑖 [𝐹𝑖]t.

It turns out that, even if the grading of R is nonpositive and we do not have a well-defined notion of
Hilbert series, the above definition of K-polynomial is an invariant of the module M and it does not
depend on the chosen free R-resolution 𝐹• (see [18, Theorem 8.34]).

Definition 2.1. The multidegree polynomial of a finitely generated Z𝑝-graded R-module M is the
homogeneous polynomial C (𝑀; t) ∈ Z[t] given as the sum of all terms in

K(𝑀; 1 − t) = K(𝑀; 1 − 𝑡1, . . . , 1 − 𝑡𝑝)

having total degree codim(𝑀) = 𝑛 − dim(𝑀).

One case of particular interest is when R is a standard multigraded polynomial ring. We say that R
is standard Z𝑝-graded if the total degree of each variable 𝑥𝑖 is equal to one (i.e., for each 1 ≤ 𝑖 ≤ 𝑛,
we have deg(𝑥𝑖) = e𝑘𝑖 ∈ Z𝑝 with 1 ≤ 𝑘𝑖 ≤ 𝑝). The study of standard multigraded algebras is of utmost
importance as they correspond with closed subschemes of a product of projective spaces (see, e.g., [3]
and the references therein). Since the coefficients of the multidegree polynomial are nonnegative in the
standard multigraded case, it becomes natural to address the positivity of these coefficients. For each
subset 𝔍 = { 𝑗1, . . . , 𝑗𝑘 } ⊆ [𝑝] = {1, . . . , 𝑝}, denote by 𝑅(𝔍) the Z𝑘 -graded k-algebra given by

𝑅(𝔍) :=
⊕

𝑖1≥0,...,𝑖𝑝≥0
𝑖 𝑗=0if 𝑗∉𝔍

[𝑅] (𝑖1 ,...,𝑖𝑝) ,

and for any R-homogeneous ideal 𝐼 ⊂ 𝑅 we define 𝐼 (𝔍) as the contraction 𝐼 (𝔍) := 𝐼 ∩ 𝑅(𝔍) . The
following theorem completely characterizes the positivity of multidegrees and is our main tool to prove
Theorem A.

Theorem 2.2 [3]. Let 𝑅 = k[𝑥1, . . . , 𝑥𝑛] be a standard Z𝑝-graded polynomial ring. Let 𝐼 ⊂ 𝑅 be an
R-homogeneous prime ideal. Write the multidegree polynomial of C (𝑅/𝐼; t) as

C (𝑅/𝐼; t) =
∑

n∈N𝑝

|n |=codim(𝐼 )

𝑐ntn ∈ N[𝑡1, . . . , 𝑡𝑝] .
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Then, for all n = (𝑛1, . . . , 𝑛𝑝) ∈ N
𝑝 with |n| = codim(𝐼) = 𝑛 − dim(𝑅/𝐼), we have that 𝑐n > 0 if and

only if for each 𝔍 = { 𝑗1, . . . , 𝑗𝑘 } ⊆ [𝑝] the inequality 𝑛 𝑗1 +· · ·+𝑛 𝑗𝑘 ≥ codim
(
𝐼 (𝔍)

)
holds. Furthermore,

the support of C (𝑅/𝐼; t) is a discrete polymatroid.

Proof. Consider the standard Z𝑝-graded polynomial ring 𝑅′ = 𝑅[𝑥𝑛+1, . . . , 𝑥𝑛+𝑝] with deg(𝑥𝑛+𝑖) =
e𝑖 ∈ Z𝑝 , and notice that C (𝑅/𝐼; t) = C (𝑅′/𝐼𝑅′; t). Thus, we assume that I is a relevant prime (i.e.,
𝐼 ⊅

⊕
𝑖1≥1,...,𝑖𝑝≥1 [𝑅] (𝑖1 ,...,𝑖𝑝) ), and so MultiProj(𝑅/𝐼) ≠ ∅. We embed 𝑋 = MultiProj(𝑅/𝐼) as a

closed subscheme of a multiprojective space P := P𝑚1
k

×k · · ·×k P
𝑚𝑝

k
. From [3, Remark 2.9], we have that

n ∈ supp(C (𝑅/𝐼; t)) if and only if degm−n
P

(𝑋) > 0 where m − n = (𝑚1 − 𝑛1, . . . , 𝑚𝑝 − 𝑛𝑝). Then, [3,
Theorem A] implies that n ∈ supp(C (𝑅/𝐼; t)) if and only if |n| = codim(𝐼) and

∑
𝑗∈𝔍 𝑛 𝑗 ≥ codim

(
𝐼 (𝔍)

)
for each 𝔍 ⊆ [𝑝]. Equivalently, we obtain that n ∈ supp(C (𝑅/𝐼; t)) if and only if |n| = codim(𝐼) and

∑
𝑗∈𝔍

𝑛 𝑗 ≤ codim(𝐼) − codim
(
𝐼 ( [𝑝]\𝔍)

)
=

∑
𝑗∈𝔍

𝑚 𝑗 + 𝑟 ([𝑝] \ 𝔍) − 𝑟 ([𝑝])

for each 𝔍 ⊆ [𝑝], where 𝑟 : 2[𝑝] → N is the rank function 𝑟 (𝔍) := dim
(
MultiProj

(
𝑅(𝔍) /𝐼 (𝔍)

) )
(see [3,

Proposition 5.1]). Finally, we can check that 𝑠 : 2[𝑝] → N with 𝑠(𝔍) :=
∑

𝑗∈𝔍 𝑚 𝑗 + 𝑟 ([𝑝] \𝔍) − 𝑟 ([𝑝])
is a rank function (see, e.g., [20, §44.6f]), and so it follows that supp(C (𝑅/𝐼; t)) is a polymatroid. �

3. Schubert determinantal ideals

Here, we recall the connection between double Schubert polynomials and Schubert determinantal ideals
(for more details, the reader is referred to [18, Chapters 15, 16]).

First, we define matrix Schubert varieties and Schubert determinantal ideals by following [18, Chapter
15]. Let k be an algebraically closed field and 𝑀𝑝 (k) be the k-vector space of 𝑝× 𝑝 matrices with entries
in k. As an affine variety we define its coordinate ring as 𝑅 = k[𝑥𝑖, 𝑗 | (𝑖, 𝑗) ∈ [𝑝] × [𝑝]]. Furthermore,
we consider a (Z𝑝 ⊕ Z𝑝)-grading on 𝑅 by setting deg(𝑥𝑖, 𝑗 ) = e𝑖 ⊕ −e 𝑗 ∈ Z𝑝 ⊕ Z𝑝 , where e𝑖 ∈ Z𝑝

denotes the i-th elementary vector.

Definition 3.1 (see [18, Chapter 15]). Let 𝜋 be a permutation matrix. The matrix Schubert variety
𝑋𝜋 ⊂ 𝑀𝑝 (k) is the subvariety given by 𝑋𝜋 = {𝑍 ∈ 𝑀𝑝 (k) | rank(𝑍𝑚×𝑛) ≤ rank(𝜋𝑚×𝑛) forall 𝑚, 𝑛},
where 𝑍𝑚×𝑛 is the restriction to the first m rows and n columns. The Schubert determinantal ideal
𝐼𝜋 ⊂ 𝑅 is the 𝑅-homogeneous ideal generated by all minors in X𝑚×𝑛 of size 1 + rank(𝜋𝑚×𝑛) for all m
and n, where X = (𝑥𝑖, 𝑗 ) is the 𝑝 × 𝑝 matrix with the variables of 𝑅.

The following theorem collects several results of fundamental importance to our approach. In
particular, it shows that double Schubert polynomials equal the multidegree polynomial of matrix
Schubert varieties. To define multidegrees over 𝑅 with its (Z𝑝 ⊕ Z𝑝)-grading, we consider the polyno-
mial ring Z[t, s] = Z[𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝], where 𝑡𝑖 has degree e𝑖 ⊕ 0 ∈ Z𝑝 ⊕ Z𝑝 and 𝑠𝑖 has degree
0 ⊕ e𝑖 ∈ Z𝑝 ⊕ Z𝑝 .

Theorem 3.2. Let 𝜋 ∈ 𝒮𝑝 be a permutation, and denote also by 𝜋 the corresponding permutation
matrix. Then, the following statements hold:

1. 𝐼𝜋 is a prime ideal, and so it coincides with the ideal 𝐼 (𝑋𝜋) of polynomials vanishing on the matrix
Schubert variety 𝑋𝜋 . ([10], [18, Corollary 16.29])

2. 𝑅/𝐼𝜋 is a Cohen–Macaulay ring. ([10], [18, Corollary 16.44])
3. 𝔖𝜋 (t, s) = C (𝑅/𝐼𝜋 ; t, s). ([7],[14], [18, Theorem 15.40])

The next technical lemma will allow us to substitute the grading of 𝑅 which has negative components
for the degrees of the variables. Let 𝑅 = k[𝑥𝑖, 𝑗 | (𝑖, 𝑗) ∈ [𝑝] × [𝑝]] with induced (Z𝑝 ⊕ Z𝑝)-grading by
setting deg(𝑥𝑖, 𝑗 ) = e𝑖⊕e 𝑗 ∈ Z

𝑝⊕Z𝑝 . As for 𝑅, define multidegrees over R in the polynomial ringZ[t, s].
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Lemma 3.3. Let 𝐼 ⊂ 𝑅 be an 𝑅-homogeneous ideal, and denote also by I the correspond-
ing R-homogeneous ideal in R. Then we have C (𝑅/𝐼; 𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝) = C (𝑅/𝐼; 𝑡1, . . . , 𝑡𝑝 ,
−𝑠1, . . . ,−𝑠𝑝).

Proof. Notice that, if 𝐹• is a (Z𝑝 ⊕Z𝑝)-graded free 𝑅-resolution of 𝑅/𝐼 with 𝐹𝑖 =
⊕

𝑗 𝑅(−a𝑖, 𝑗 ,−b𝑖, 𝑗 ),
then there is a corresponding (Z𝑝⊕Z𝑝)-graded free R-resolution 𝐹• of 𝑅/𝐼 with 𝐹𝑖 =

⊕
𝑗 𝑅(−a𝑖, 𝑗 , b𝑖, 𝑗 ).

By definition, this yields the equality of K-polynomials

K(𝑅/𝐼; t, s) = K(𝑅/𝐼; 𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝) = K(𝑅/𝐼; 𝑡1, . . . , 𝑡𝑝 , 𝑠−1
1 , . . . , 𝑠−1

𝑝 ) = K(𝑅/𝐼; t, s−1).

From [18, Claim 8.54], we have K(𝑅/𝐼; 1 − t, 1 − s) = C (𝑅/𝐼; t, s) +𝑄(t, s), where 𝑄(t, s) is a polyno-
mial with terms of degree at least codim(𝐼)+1. Equivalently, we getK(𝑅/𝐼; t, s) = C (𝑅/𝐼; 1 − t, 1 − s)+
𝑄(1 − t, 1 − s). It then follows that

K(𝑅/𝐼; 1 − t, 1 − s) = C (𝑅/𝐼; 𝑡1, . . . , 𝑡𝑝 , 1 − 1
1−𝑠1

, . . . , 1 − 1
1−𝑠𝑝 ) + 𝑄(𝑡1, . . . , 𝑡𝑝 , 1 − 1

1−𝑠1
, . . . , 1 − 1

1−𝑠𝑝 ).

By expanding the right-hand side of the above equality, the result of the lemma is obtained. �

4. Standardization of ideals

In this section, we develop a process of standardization of ideals in a certain nonstandard multigrading.
This process will allow us to show that the support of the multidegree polynomial of any Cohen–
Macaulay prime ideal is a discrete polymatroid in the nonstandard multigradings that we consider. The
following setup is used throughout this section.

Setup 4.1. Let 𝑝 ≥ 1 be a positive integer and k be a field. Let R and S be the polynomial rings 𝑅 = k[x]
and 𝑆 = k[w, z] over the set of variables x = {𝑥𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝 , w = {𝑤𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝 and z = {𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝 .
We consider R and S as (Z𝑝 ⊕ Z𝑝)-graded rings by setting that

deg(𝑥𝑖, 𝑗 ) = e𝑖 ⊕ e 𝑗 , deg(𝑤𝑖, 𝑗 ) = e𝑖 ⊕ 0 and deg(𝑧𝑖, 𝑗 ) = 0 ⊕ e 𝑗 ,

where e𝑖 ∈ Z𝑝 denotes the i-th elementary vector and 0 ∈ Z𝑝 denotes the zero vector. We define the
k-algebra homomorphism

𝜙 : 𝑅 = k[x] −→ 𝑆 = k[w, z], 𝜙(𝑥𝑖, 𝑗 ) = 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 .

For an R-homogeneous ideal 𝐼 ⊂ 𝑅, we say that the extension 𝜙(𝐼)𝑆 is the standardization of I, as
𝜙(𝐼)𝑆 is an S-homogeneous ideal in the standard multigraded polynomial ring S. Let t = {𝑡1, . . . , 𝑡𝑝} and
s = {𝑠1, . . . , 𝑠𝑝} be variables indexing the (Z𝑝⊕Z𝑝)-grading, where 𝑡𝑖 corresponds with e𝑖⊕0 ∈ Z𝑝⊕Z𝑝

and 𝑠𝑖 corresponds with 0 ⊕ e𝑖 ∈ Z𝑝 ⊕ Z𝑝 . Given a finitely generated graded R-module M and a finitely
generated graded S-module N, by a slight abuse of notation, we consider both multidegrees C (𝑀; t, s)
and C (𝑁; t, s) as elements of the same polynomial ring Z[t, s] = Z[𝑡1, . . . , 𝑡𝑝 , 𝑠1, . . . , 𝑠𝑝].

First, we show some basic properties of the process of standardization.

Proposition 4.2. Assume Setup 4.1. Let 𝐼 ⊂ 𝑅 be an R-homogeneous ideal and 𝐽 = 𝜙(𝐼)𝑆 be its
standardization. Then, the following statements hold:

(i) codim(𝐼) = codim(𝐽).
(ii) C (𝑅/𝐼; t, s) = C (𝑆/𝐽; t, s).

(iii) If 𝑅/𝐼 is a Cohen–Macaulay ring, then 𝑆/𝐽 also is.
(iv) Let > be a monomial order on R and >′ be a monomial order on S which is compatible with 𝜙 (i.e.,

if 𝑓 , 𝑔 ∈ 𝑅 with 𝑓 > 𝑔, then 𝜙( 𝑓 ) >′ 𝜙(𝑔)). Then in>′ (𝐽) = 𝜙(in> (𝐼))𝑆.
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Proof. Let T be the polynomial ring 𝑇 = k[x, w, z] � 𝑅⊗k 𝑆 with its natural (Z𝑝 ⊕Z𝑝)-grading induced
from the ones of R and S. We now think of R and S as subrings of T. Consider the quotient ring 𝑇/𝐼𝑇 ,
and notice that {𝑥𝑖, 𝑗 − 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝 is a regular sequence of homogeneous elements over 𝑇/𝐼𝑇 . We
also have the following natural isomorphism

𝑇

𝐼𝑇 +
(
{𝑥𝑖, 𝑗 − 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝

) � 𝑆/𝐽.

As the natural inclusion 𝑅 ↩→ 𝑇 is a polynomial extension, we have that dim(𝑇/𝐼𝑇) = dim(𝑅/𝐼) +
dim(𝑆) = dim(𝑅) + dim(𝑆) − codim(𝐼) and that 𝑇/𝐼𝑇 is Cohen–Macaulay when 𝑅/𝐼 is. So, by cutting
out with the regular sequence described above, we obtain that dim(𝑆/𝐽) = dim(𝑇/𝐼𝑇) − dim(𝑅) =
dim(𝑆) − codim(𝐼) and that 𝑆/𝐽 is Cohen–Macaulay when 𝑇/𝐼𝑇 is. This completes the proofs of parts
(i) and (iii).

Let 𝐹• : · · ·
𝑓2
−→ 𝐹1

𝑓1
−→ 𝐹0 be a graded free R-resolution of 𝑅/𝐼. Since {𝑥𝑖, 𝑗 − 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝 is

a regular sequence on both T and 𝑇/𝐼𝑇 , it follows that Tor𝑇𝑘
(
𝑇/𝐼𝑇, 𝑇/({𝑥𝑖, 𝑗 − 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝)

)
= 0

for all 𝑘 > 0, and so 𝐺• = 𝐹• ⊗𝑅 𝑇/({𝑥𝑖, 𝑗 − 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑝) provides (up to isomorphism) a graded
free S-resolution of 𝑆/𝐽. The identification of 𝐺• as a resolution of S-modules is the same as 𝜙(𝐹•)

(more precisely, 𝐺• has the same shiftings as 𝐹• in the (Z𝑝 ⊕ Z𝑝)-grading and the i-th differential
matrix of 𝐺• is given by the substitution 𝜙( 𝑓𝑖) of 𝑓𝑖). Therefore, by definition, we obtain the equality
C (𝑅/𝐼; t, s) = C (𝑆/𝐽; t, s) that shows part (ii).

To show part (iv) we can use Buchberger’s algorithm (see, e.g., [6, Chapter 15]). Indeed, we can
perform essentially the same steps of the algorithm in a set of generators of I and the corresponding set
of generators for J. �

The following theorem provides the main result of this section. It shows that the support of the
multidegree polynomial is a discrete polymatroid for Cohen–Macaulay prime ideals in R. The proof is
carried out by performing a standardization process that allows us to invoke Theorem 2.2.

Theorem 4.3. Assume Setup 4.1. Let 𝐼 ⊂ 𝑅 be an R-homogeneous Cohen–Macaulay prime ideal. Then,
the support of the multidegree polynomial C (𝑅/𝐼; t, s) is a discrete polymatroid.

Proof. Let L = {(𝑖, 𝑗) | 𝑥𝑖, 𝑗 ∈ 𝐼} be the set of indices such that the corresponding variable belongs to I.
We consider the polynomial rings 𝑅′ = k[𝑥𝑖, 𝑗 | (𝑖, 𝑗) ∉ L] ⊂ 𝑅 and 𝑆′ = k[𝑤𝑖, 𝑗 , 𝑧𝑖, 𝑗 | (𝑖, 𝑗) ∉ L] ⊂ 𝑆.
Let 𝐼 ′ ⊂ 𝑅′ be the (unique) ideal that satisfies the condition 𝐼 = 𝐼 ′𝑅+

(
𝑥𝑖, 𝑗 | (𝑖, 𝑗) ∈ L

)
. By construction,

we have that 𝑥𝑖, 𝑗 ∉ 𝐼 ′ for all 𝑥𝑖, 𝑗 ∈ 𝑅′. Since 𝑅/𝐼 � 𝑅′/𝐼 ′, it follows that 𝐼 ′ is also a Cohen–Macaulay
prime ideal.

Let 𝐽 ′ = 𝜙(𝐼 ′𝑅)𝑆 ∩ 𝑆′. For any 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 ∈ 𝑆′, Proposition 4.2(i) and the fact that the corresponding
𝑥𝑖, 𝑗 does not belong to the prime 𝐼 ′ imply that

codim(𝐽 ′𝑆 + 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗𝑆) = codim(𝐼 ′𝑅 + 𝑥𝑖, 𝑗𝑅) = codim(𝐼 ′𝑅) + 1 = codim(𝐽 ′𝑆) + 1.

By Proposition 4.2(iii), 𝑆/𝐽 ′𝑆 is Cohen–Macaulay, and so it necessarily follows that 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 is a
nonzerodivisor over 𝑆/𝐽 ′𝑆 for all 𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 ∈ 𝑆′. Consequently, we obtain that 𝑆′/𝐽 ′ is a domain if
and only if (𝑆′/𝐽 ′)∏𝑤𝑖, 𝑗 𝑧𝑖, 𝑗 is a domain. Let 𝐵 = k[𝑤𝑖, 𝑗 , 𝑧𝑖, 𝑗 , 𝑧

−1
𝑖, 𝑗 | (𝑖, 𝑗) ∉ L], and consider the

automorphism given by

𝜓 : 𝐵 → 𝐵, 𝑤𝑖, 𝑗 ↦→
𝑤𝑖, 𝑗

𝑧𝑖, 𝑗
, 𝑧𝑖, 𝑗 ↦→ 𝑧𝑖, 𝑗 .

The ideal 𝜓(𝐽 ′𝐵) coincides with the extension of 𝐼 ′ in B under the ring homomorphism 𝑅′ → 𝐵, 𝑥𝑖, 𝑗 ↦→
𝑤𝑖, 𝑗 , and so it follows that 𝜓(𝐽 ′𝐵) and, consequently, 𝐽 ′𝐵 are prime ideals. We then conclude that 𝐽 ′ is
a prime ideal.
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Since the variables 𝑥𝑖, 𝑗 with indices in L form a regular sequence over 𝑅/𝐼 ′𝑅, we obtain the equation

C (𝑅/𝐼; t, s) =
∏

(𝑖, 𝑗) ∈L
(𝑡𝑖 + 𝑠 𝑗 ) · C (𝑅/𝐼 ′𝑅; t, s) (1)

(see, e.g., [18, Exercise 8.12]). To conclude the proof, it is now sufficient to show that the support of
C (𝑅/𝐼 ′𝑅; t, s) is a discrete polymatroid; indeed, we would obtain that the support of C (𝑅/𝐼; t, s) is a
Minkowski sum of a finite number of discrete polymatroids which in turn is also a discrete polymatroid
by [20, Corollary 46.2c]. Finally, this condition follows by applying Theorem 2.2 to the prime ideal 𝐽 ′𝑆
and exploiting the equality C (𝑅/𝐼 ′𝑅; t, s) = C (𝑆/𝐽 ′𝑆; t, s) from Proposition 4.2(ii). �

We are now ready to prove the main result of this paper.

Proof of Theorem A. As we already have all the necessary ingredients, the proof follows straightfor-
wardly by combining Theorem 3.2, Lemma 3.3 and Theorem 4.3. �

Furthermore, we determine the defining inequalities of the discrete polymatroids in Theorem 4.3
and, accordingly, in Theorem A. Similarly to Section 2, for any two subsets 𝔍1,𝔍2 ⊆ [𝑝], we denote
by 𝑅(𝔍1 ,𝔍2) ⊆ 𝑅 and 𝑆 (𝔍1 ,𝔍2) ⊆ 𝑆 the (Z |𝔍1 | ⊕ Z |𝔍2 | )-graded k-algebras obtained by restricting to the
positions in 𝔍1 for the first part Z𝑝 ⊕ 0 of the grading, and to the ones in 𝔍2 for the second part of the
grading 0 ⊕ Z𝑝 .

Theorem 4.4. Assume Setup 4.1. Let 𝐼 ⊂ 𝑅 be an R-homogeneous Cohen–Macaulay prime ideal. Then,
we have that the coefficient of trsc = 𝑡𝑟1

1 · · · 𝑡
𝑟𝑝
𝑝 𝑠𝑐1

1 · · · 𝑠
𝑐𝑝
𝑝 is nonzero in C (𝑅/𝐼; t, s) if and only if

(i)
∑

𝑗∈[𝑝] 𝑟 𝑗 +
∑

𝑗∈[𝑝] 𝑐 𝑗 = codim(𝐼)
(ii) For every 𝔍1,𝔍2 ⊆ [𝑝], we have that

∑
𝑗∈𝔍1 𝑟 𝑗 +

∑
𝑗∈𝔍2 𝑐 𝑗 ≥ codim

(
𝐼 (𝔍1 ,𝔍2)

)
, where 𝐼 (𝔍1 ,𝔍2) is the

contracted ideal 𝐼 (𝔍1 ,𝔍2) = 𝐼 ∩ 𝑅(𝔍1 ,𝔍2) .

Proof. By Theorem 4.3, we know that the Newton polytope of C (𝑅/𝐼; t, s) is a base polymatroid
polytope, and so, under the condition

∑
𝑗∈[𝑝] 𝑟 𝑗 +

∑
𝑗∈[𝑝] 𝑐 𝑗 = codim(𝐼), all its defining inequalities are

of the form ∑
𝑗∈𝔍1

𝑟 𝑗 +
∑
𝑗∈𝔍2

𝑐 𝑗 ≥ 𝐶 (𝔍1,𝔍2), (2)

for some constant 𝐶 (𝔍1,𝔍2) that depends on the subsets 𝔍1,𝔍2 ⊆ [𝑝]. We now determine 𝐶 (𝔍1,𝔍2).
We keep the same notation of the proof of Theorem 4.3, in particular, 𝐼 = 𝐼 ′𝑅 +

(
𝑥𝑖, 𝑗 | (𝑖, 𝑗) ∈ L

)
.

Equation (1) decomposes the Newton polytope of C (𝑅/𝐼; t, s) as the Minkowski sum of the Newton
polytopes of

∏
(𝑖, 𝑗) ∈L (𝑡𝑖 + 𝑠 𝑗 ) and C (𝑆/𝐽 ′𝑆; t, s), both of which are also base polymatroid polytopes.

So, we analyze the minimum of the sum in Equation (2) with the two contributions.

1. Newton(
∏

(𝑖, 𝑗) ∈L (𝑡𝑖 + 𝑠 𝑗 )) is determined by the equality
∑

𝑗∈[𝑝] 𝑟 𝑗 +
∑

𝑗∈[𝑝] 𝑐 𝑗 = |L| and the
inequalities

∑
𝑗∈𝔍1 𝑟 𝑗 +

∑
𝑗∈𝔍2 𝑐 𝑗 ≥



{(𝑖, 𝑗) ∈ L | 𝑖 ∈ 𝔍1and 𝑗 ∈ 𝔍2}


.

2. Due to Theorem 2.2, Newton(C (𝑆/𝐽 ′𝑆; t, s)) is determined by the equality
∑

𝑗∈[𝑝] 𝑟 𝑗 +
∑

𝑗∈[𝑝] 𝑐 𝑗 =
codim(𝐽 ′𝑆) and the inequalities

∑
𝑗∈𝔍1 𝑟 𝑗 +

∑
𝑗∈𝔍2 𝑐 𝑗 ≥ codim

(
(𝐽 ′𝑆) (𝔍1 ,𝔍2)

)
, where (𝐽 ′𝑆) (𝔍1 ,𝔍2) is

the contracted ideal (𝐽 ′𝑆) (𝔍1 ,𝔍2) = 𝐽 ′𝑆 ∩ 𝑆 (𝔍1 ,𝔍2) .

Notice that Proposition 4.2(i) yields the equality

codim
(
𝐼 (𝔍1 ,𝔍2)

)
= codim

(
𝐽(𝔍1 ,𝔍2)

)
= codim

(
(𝐽 ′𝑆) (𝔍1 ,𝔍2)

)
+


{(𝑖, 𝑗) ∈ L | 𝑖 ∈ 𝔍1 and 𝑗 ∈ 𝔍2}



.
Therefore, since we can split the value of 𝐶 (𝔍1,𝔍2) in terms of the sum of the defining inequalities of the
Newton polytopes of

∏
(𝑖, 𝑗) ∈L(𝑡𝑖 + 𝑠 𝑗 ) and C (𝑆/𝐽 ′𝑆; t, s), it follows that 𝐶 (𝔍1,𝔍2) = codim

(
𝐼 (𝔍1 ,𝔍2)

)
.

This concludes the proof of the theorem. �
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Finally, we perform a simple computation out of the six possible permutations in 𝒮3 (see [18,
Examples 15.4, 15.42]).

Example 4.5 (𝑝 = 3 and 𝜋 = (1, 3, 2)). The Schubert determinantal ideal and the double Schubert
polynomials are given by 𝐼132 =

(
𝑥1,1𝑥2,2 − 𝑥1,2𝑥2,1

)
and𝔖132 = 𝑡1 + 𝑡2 − 𝑠1 − 𝑠2. The standardization of

𝐼132 is the ideal 𝐽 =
(
𝑤1,1𝑤2,2𝑧1,1𝑧2,2 − 𝑤1,2𝑤2,1𝑧1,2𝑧2,1

)
∈ 𝑆. The ideal J is prime and S has a standard

(Z3 ⊕ Z3)-grading. One can compute that

C (𝑆/𝐽; t, s) = 𝑡1 + 𝑡2 + 𝑠1 + 𝑠2

(see [18, Exercise 8.12], or just utilize the built-in command multidegree on the computer algebra
system Macaulay2 [11]). Coinciding with the claim of Theorem 2.2, the support of C (𝑆/𝐽; t, s) is a
discrete polymatroid. Notice that 𝔖132 = 𝑡1 + 𝑡2 − 𝑠1 − 𝑠2 = C (𝑆/𝐽; t,−s), as shown by Lemma 3.3.

Remark 4.6. From the conjectures stated by Monical, Tokcan and Yong [19], a remaining open one
is to show that Grothendieck polynomials also satisfy the SNP property (see [19, Conjecture 5.5]). In
[4], we settled a particular case of this conjecture. More precisely, we showed that the support of a
Grothendieck polynomial is a generalized polymatroid when the Schubert polynomial is zero-one (see
[4, Theorem B]).
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