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Optimal Polynomial Recurrence

Neil Lyall and Ákos Magyar

Abstract. Let P ∈ Z[n] with P(0) = 0 and ε > 0. We show, using Fourier analytic techniques, that if

N ≥ exp exp(Cε−1 log ε−1) and A ⊆ {1, . . . ,N}, then there must exist n ∈ N such that

∣

∣A ∩
(

A + P(n)
)
∣

∣

N
>

( |A|

N

) 2
− ε.

In addition to this we show, using the same Fourier analytic methods, that if A ⊆ N, then the set

of ε-optimal return times

R(A, P, ε) =
{

n ∈ N : δ
(

A ∩
(

A + P(n)
)

)

> δ(A)2 − ε
}

is syndetic for every ε > 0. Moreover, we show that R(A, P, ε) is dense in every sufficiently long interval,

in particular we show that there exists an L = L(ε, P,A) such that

|R(A, P, ε) ∩ I| ≥ c(ε, P)|I|

for all intervals I of natural numbers with |I| ≥ L and c(ε, P) = exp exp(−C ε−1 log ε−1).

1 Introduction

1.1 Background

The study of recurrence properties of dynamical systems goes back to the beginnings

of ergodic theory. If A is a measurable subset of a probability space (X,M, µ) with

µ(A) > 0 and T is a measure preserving transformation, then it was already shown

by Poincaré [16] that µ(A ∩ T−nA) > 0 for some natural number n, and hence for

infinitely many.

Poincaré’s result was subsequently sharpened by Khintchine [8], who showed that

sets of positive measure not only return to intersect themselves infinitely often, but

in fact return “frequently” with “large” intersection. In order to be more precise we

recall that a set R ⊆ N is said to be syndetic if it has bounded gaps: there exists L ∈ N

such that every interval of length greater than L intersects R non-trivially. A precise

formulation of Khintchine’s result is that for every ε > 0, the set

(1) {n ∈ N : µ(A ∩ T−nA) > µ(A)2 − ε}
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is syndetic. Note that in general this lower bound is sharp, since µ(A ∩ T−nA) →
µ(A)2 as n → ∞ whenever T is a mixing transformation.

In [6], Furstenberg showed that the iterates of the transformation arising in Khint-

chine’s result can in fact be restricted to polynomial iterates, more precisely he estab-

lished the following result.

Theorem A (Furstenberg [6], see also [15] or [2]) Let (X,M, µ,T) be an invertible

measure preserving system, A ∈ M and P ∈ Z[n] with P(0) = 0. For every ε > 0, the

set

(2) {n ∈ N : µ(A ∩ T−P(n)A) > µ(A)2 − ε}

is syndetic.

It follows from Furstenberg’s correspondence principle (in fact, two different vari-

ants thereof) that Theorem A has the following two combinatorial consequences, in

infinite and finite setting respectfully, for subsets of the natural numbers.

Corollary B (Furstenberg [6], see Frantzikinakis and Kra [4]) Let A ⊆ N and P ∈
Z[n] with P(0) = 0. For every ε > 0, the set

(3)
{

n ∈ N : δ
(

A ∩
(

A + P(n)
))

> δ(A)2 − ε
}

is syndetic, where δ(A) = lim supN→∞ |A∩ [1,N]|/N denotes the upper density of any

given set A ⊆ N.

We remark that Corollary B (and Theorem 2 below) also holds if one replaces the

upper density δ with the upper Banach density δ∗ defined for A ⊆ N by δ∗(A) =

limN→∞ supx∈N
|A ∩ (x + [1,N])|/N.

Corollary C (Furstenberg [6], see Frantzikinakis and Kra [4]) Let P ∈ Z[n] with

P(0) = 0. For every ε > 0 there exists N1 = N1(ε, P) such that if N ≥ N1 and

A ⊆ [1,N], then there exists n ∈ N such that

(4)

∣∣A ∩
(

A + P(n)
) ∣∣

N
>

( |A|

N

) 2

− ε.

We note that Furstenberg’s correspondence principle unfortunately gives no ef-

fective quantitative bounds in the finite setting of Corollary C (other than the special

case when the polynomial is linear).

In this article we will be concerned with establishing, using Fourier analytic tech-

niques, quantitative refinements of both Corollaries B and C. In addition to this we

provide what is, to the best of our knowledge, the first incidence of Fourier analy-

sis being used to establish the syndeticity of a class of return times (results such as

Corollary B).
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1.2 Further remarks

Recently, far reaching generalizations of Furstenberg’s results (Theorem A and its

corollaries) have been obtained in the settings of multiple recurrence by Frantziki-

nakis and Kra [4]. Such results appear, however, to be inaccessible via current Fourier

analytic machinary. A study of the intermediate phenomenon of simultaneous sin-

gle polynomial recurrence was initiated by the authors in [13] (see also [10] and [11])

where we in particular establish, using Fourier analytic techniques and a standard de-

composition theorem, Corollary C with weak tower-type bounds for N1(ε, P). The

general method employed in [13] broadly follows a strategy outlined by Green and

Tao in [7], we note however that in addition to the weak quantitative bounds that

one obtains using this approach, these methods appears to be insufficient to establish

syndeticity of optimal return times, namely results such as Corollary B.

1.3 Statement of Main Results

As stated above, the purpose of this article is to establish, using Fourier analytic meth-

ods, the following quantitative versions of Corollaries C and B.

1.3.1 Quantitative Refinement of Corollary C

Theorem 1 Let A ⊆ [1,N], P ∈ Z[n] with P(0) = 0 and ε > 0, then

(5)
∣∣∣
{

n ∈ [0, L] :

∣∣A ∩
(

A + P(n)
) ∣∣

N
>

( |A|

N

) 2

− ε
}∣∣∣ ≥ c(ε, P)L

for all 1 ≤ L ≤ N1/k where k = deg(P) and c(ε, P) = 1/ exp exp(Cε−1 log ε−1).

In order to obtain a non-trivial conclusion from Theorem 1 we must have L ≥
c(ε, P)−1 and consequently also N ≥ c(ε, P)−k. In particular, this implies Corol-

lary C with N1(ε, P) = exp exp(Cε−1 log ε−1). We further note that Theorem 1

also gives more qualitative information as Corollary C only implies that the left side

of (5) is bounded below by c(ε, P,A)L with a constant that additionally depends on

the set A.

1.3.2 Quantitative Refinement of Corollary B

Theorem 2 Let A ⊆ N, P ∈ Z[n] with P(0) = 0 and ε > 0, then there exists

L = L(ε, P,A) such that

(6)
∣∣∣
{

n ∈ I : δ
(

A ∩
(

A + P(n)
))

> δ(A)2 − ε
}∣∣∣ ≥ c(ε, P)|I|

for all intervals I of natural numbers with |I| ≥ L and

c(ε, P) =
1

exp exp(C ε−1 log ε−1)
.
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Again, apart from the quantitative bounds, ergodic methods (Corollary B) imply

only that the left side of (6) is bounded below by c(ε, P,A)|I| with a constant again

depending on the set A. We do note however that the parameter L in Theorem 2 does

necessarily depend on the actual set A in question and not just on its density and

include a proof of this fact in Section 7.

1.3.3 Higher Dimensional Results

The strategy we will employ to prove Theorems 1 and 2 is to lift the problem in such

a way that we may then apply the following analogous higher dimensional results.

Theorem 3 Let B ⊆ [1,M]k, γ(n) = (n, n2, . . . , nk) and ε > 0, then

(7)
∣∣∣
{

n ∈ [0,K] :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

− ε
}∣∣∣ ≥ c(ε, k)K

for all 1 ≤ K ≤ M1/k with c(ε, k) = 1/ exp exp(Cε−1 log ε−1).

Theorem 4 Let B ⊆ Nk, γ(n) = (n, n2, . . . , nk) and ε > 0, then there exists K =

K(ε, k,B) such that

(8)
∣∣∣
{

n ∈ I : δ
(

B ∩
(

B + γ(n)
))

> δ(B)2 − ε
}∣∣∣ ≥ c(ε, k)|I|

for all intervals I of natural numbers with |I| ≥ K and

c(ε, k) =
1

exp exp(Cε−1 log ε−1)
.

Recall that for any given set B ⊆ Nk, it upper density δ(B) is defined to be

δ(B) = lim sup
M→∞

|B ∩ [1,M]k|/Mk.

1.4 Outline of the Paper

The bulk of the present paper is concerned with establishing Theorems 3 and 4, from

which Theorems 1 and 2 follow in an essentially straightforward manner. This ap-

proach was also used by the authors in [10] (see also [11]), however in this setting,

due to the optimal nature of the results we are trying to establish, the analogous ar-

guments are somewhat more delicate. These deductions are presented in Sections 6.1

and 6.2 respectively.

We will deduce Theorems 3 and 4 from a key dichotomy proposition, namely

Proposition 2. This dichotomy proposition roughly says that either the conclusion of

Theorem 3 holds for a particular interval I, or the L2 mass of the Fourier transform of

the set A is concentrated on a very thin interval depending on I. The proofs of The-

orems 3 and 4 are presented in Sections 3.1 and 3.2, respectively. The arguments in

these sections are close in spirit, and were influenced greatly by those of Bourgain [3]
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in his study of distance sets of measurable subsets of Euclidean spaces, which were

first adapted to the discrete settings by the second author in [14].

In Section 4 we introduce a smooth functional variant of Proposition 2 (a tech-

nique also employed by Bourgain), the proof of which we present in Section 5 based

on a certain decomposition of the indicator function of the set A. Such decomposi-

tions can in fact be obtained under very general settings via the so-called “arithmetic

regularity lemma” of Green and Tao [7], and indeed have been used to proving op-

timal versions of Szemerédi’s theorem on k-term arithmetic progressions for k = 3

and k = 4. We remark again that, while our situation is essentially simpler, results

obtained this way usually give tower type bounds and do not show that the optimal

return times are syndetic.

Finally, in Section 7, we include a short proof of the fact that the parameter L in

Theorem 2 necessarily depends on the actual set A in question and not just its density.

We begin our presentation below by recalling some basic properties of the Four-

ier transform on Zk. By observing how these properties can then be used to count

differences in B ⊆ [1,M]k of the form γ(t) will lead us naturally to the analysis of

certain variants of standard Weyl sums.

Remark on Notation We will use the letters C and c denote appropriately large or

small constants, which can change from line to line.

2 Preliminaries

2.1 Fourier Analysis on Zk

If f : Zk → C is a function for which
∑

m∈Zk | f (m)| <∞ we will say that f ∈ L1(Zk)

and define

‖ f ‖1 =

∑

m∈Zk

| f (m)|.

For f ∈ L1 we define its Fourier transform f̂ : Tk → C by

f̂ (α) =
∑

m∈Zk

f (m)e−2πim·α.

Note that the summability assumption on f ensures that the series defining f̂ con-

verges uniformly to a continuous function on Tk (which we will identify with the unit

cube [0, 1)k in Rk) and that the Fourier inversion formula and Plancherel’s identity,

namely

f (m) =

∫

Tk

f̂ (α)e2πim·αdα and

∫

Tk

| f̂ (α)|2dα =

∑

m∈Zk

| f (m)|2

are, in this setting, immediate consequences of the familiar orthogonality relation

∫

Tk

e2πim·αdα =

{
1 if m = 0

0 if m 6= 0.
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Defining the convolution of f and g to be

f ∗ g(m) =
∑

ℓ∈Zk

f (m − ℓ)g(ℓ)

it follows that if f , g ∈ L1 then f ∗ g ∈ L1 with

‖ f ∗ g‖1 ≤ ‖ f ‖1 ‖g‖1 and f̂ ∗ g = f̂ ĝ.

Finally, we remark that it follows from the Poisson Summation Formula that if

ϕ ∈ S(Rk), then

(9) ϕ̂(α) =
∑

ℓ∈Zk

ϕ̃(α− ℓ)

where

(10) ϕ̃(ξ) =

∫

Rk

ϕ(x)e−2πix·ξ dx

denotes the Fourier transform (on Rk) of ϕ.

2.2 Counting Differences of the Form γ(n) = (n, n2, . . . , nk)

Let B ⊆ [1,M]k and δ = |B|/Mk.

Let 1 ≤ µ ≤ λ be integers with λk ≤ M/2k. It is easy to verify, using the prop-

erties of the Fourier transform discussed above, that the average number of pairs of

elements in B whose difference is equal to γ(n) with n ∈ (λ, λ + µ] ∩ Z can be

expressed as follows:

1

µ

λ+µ∑

n=λ+1

∣∣B ∩
(

B + γ(n)
) ∣∣ = 1

µ

λ+µ∑

n=λ+1

∑

m∈Zk

1B(m)1B

(
m − γ(n)

)

=

∫

Tk

|1̂B(α)|2Sλ,µ(α) dα

(11)

where

(12) Sλ,µ(α) =
1

µ

λ+µ∑

n=λ+1

e2πiα·γ(n).

It is easy to see that

(13) Sλ,µ(α) =
λ + µ

µ
Sλ+µ(α) −

λ

µ
Sλ(α)
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where

(14) Sµ(α) =
1

µ

µ∑

n=1

e2πiα·γ(n)

denotes a classical (normalized) Weyl sum. Unfortunately, the rather simplistic rela-

tionship indicated in (13) will only be useful to us in the case where µ = λ. When

µ < λ we will make use of the following alternative:

(15) Sλ,µ(α) = e2πiα·γ(λ)Sµ(Tλα)

where Tλ is a k × k matrix whose entries are given by

(16) (Tλ)i j =

{(
j
i

)
λ j−i j ≥ i

0 j < i.

2.3 Standard Weyl Sum Estimates

It is clear that whenever |α j | ≪ µ− j there can be no cancellation in the Weyl sum

(14). In fact, it is easy to verify that the same is also true whenever each α j is close

to a rational with small denominator (there is no cancellation over sums in residue

classes modulo q).

We now state a precise formulation of the well known fact that this is indeed the

only obstruction to cancellation. For a proof of this result see either [10] or [11].

Lemma 1 Let η > 0 and µ ≥ η−C (with C sufficiently large depending on k). If for

some 1 ≤ j ≤ k we have

(17)
∣∣∣α j −

a

q

∣∣∣ > 1

ηkµ j

for all a ∈ Z and 1 ≤ q ≤ η−k, then

(18) |Sµ(α)| ≤ C1η.

Remark. It follows immediately from Lemma 1 and (15) that

(19) |Sλ,µ(α)| ≤ C1η

for any η > 0, where 1 ≤ µ ≤ λ are integers with µ ≥ η−C , provided that for some

1 ≤ j ≤ k

(20)
∣∣∣ (Tλα) j −

a

q

∣∣∣ > 1

ηkµ j
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for all a ∈ Z and 1 ≤ q ≤ η−k. In fact, it is easy to see that one can conclude from

Lemma 1 that estimate (19) also holds (under the same hypotheses as above with C1

replaced with say 2C1) for the “perturbed” Weyl sums

1

µ

∑

n∈(λ,λ+µ]∩Z

e2πiα·γ(n)

where 1 ≤ µ ≤ λ are now no longer assumed to take on integer values, provided C

is chosen sufficiently large.

We note that from Lemma 1, relationship (15) and the Plancherel identity, we may

conclude that
∫

Tk

|1̂B(α)|2Sλ,µ(α) dα =

∫

T−1
λ Mη,µ

|1̂B(α)|2Sλ,µ(α) dα + O(ηMk)

where

Mη,µ =

η−k⋃

q=1

{
α ∈ Tk :

∣∣∣α j −
a j

q

∣∣∣ ≤ 1

ηkµ j
(1 ≤ j ≤ k) for some a ∈ Zk

}
.

While in the case µ = λ it follows from (13) that

|Sλ,λ(α)| ≤ 3C1η

whenever α /∈ Mη,λ and as a consequence of this we can in fact make the rather more

favorable conclusion that
∫

Tk

|1̂B(α)|2Sλ,λ(α) dα =

∫

Mη,λ

|1̂B(α)|2Sλ,λ(α) dα + O(ηMk).

In order to carry out our Fourier analytic arguments it will be convenient to con-

sider the (nonisotropic) lattice

{( a1

qη
,

a2

q2
η

, . . . ,
ak

qk
η

)
∈ Tk : (a1, . . . , ak) ∈ Zk

}

of rational points where

(21) qη = lcm{1 ≤ q ≤ η−k}

as opposed to the much smaller, but alas more wildly distributed, set of rational

points that appear as the centers of the major boxes in Tk that constitute Mη,µ. Note

that it follows from elementary considerations involving the prime numbers that

(22) qη ≤ exp(Cη−k)

and this accounts for one of the exponentials in the bound in Theorems 3 and 4 (as

well as Theorems 1 and 2).
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3 Reduction to Dichotomy Propositions

We now separately present the statement of two key propositions (although as we

shall see the first of which follows immediately from the second) and demonstrate

how they can be used to prove Theorem 3 and Theorem 4 respectively.

For L > 1 and q ∈ N we define

(23) Mq,L =

{
α ∈ Tk :

∣∣∣α j −
a j

q j

∣∣∣ ≤ 1

L j
(1 ≤ j ≤ k) for some a ∈ Zk

}
.

Let 0 < η < 1 and 1 ≤ µ ≤ λ. We define

(24) Ωη,λ,µ = {α ∈ Tk : α ∈ Mqη ,ηkµ \ Mqη ,η−kλ}

where qη = lcm{1 ≤ q ≤ η−k} as before.

3.1 Proof of Theorem 3

Although this result can in fact be deduced from the second dichotomy proposi-

tion (Proposition 2 below), we feel that the reduction of Theorem 3 to the (simpler)

Proposition 1 is not only more direct and straightforward (by virtue of the fact that

we can take µ = λ), but that our decision to include it will also serve to illuminate

the deduction of Theorem 4 from Proposition 2.

Proposition 1 Let B ⊆ [1,M]k and ε > 0. Let ηε = exp(−Cε−1 log ε−1) and

qε = qηε .

If λ is an integer that satisfies λ ≥ η−k
ε qε and M ≥ C(η−k

ε λ)k then either

(25)
∣∣∣
{

n ∈ (λ, 2λ] ∩ Z :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

− ε
}∣∣∣ ≥ exp(−Cη−k

ε )λ

or

(26)

∫

Ω

|1̂B(α)|2 dα ≥ εMk/10

where Ω = Ωηε,λ,λ.

Proposition 1 (and Proposition 2 below) both express, in our setting, the basic

dichotomy that either B behaves as though it were a random set, or has arithmetic

structure as the Fourier transform 1̂B is concentrated (on small annuli) around a

fixed (nonisotropic) lattice of rational points.

Proof of Theorem 3 Let ε > 0, ηε = exp(−Cε−1 log ε−1) and qε = qηε . Suppose K

and M are integers that satisfy

exp(Cη−k
ε ) ≤ K ≤ M1/k
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and {λ j}
J
j=1 is a sequence of integers with J = ⌈10/ε⌉ with the property that λ1 ≥

η−k
ε qε, λ J = cηk

εK and

(27) η−2k
ε λ j ≤ λ j+1 ≤ Cη−2k

ε λ j

for 1 ≤ j ≤ J. That such a lacunary sequence of length J > 10/ε exists is ensured

by, by choosing C large enough, that K ≫ qε. It is also easy to see that (27) ensures

that the sets Ω j = Ωηε,λ j ,λ j
are disjoint.

Suppose, contrary to Theorem 3, that there does exists a set B ⊆ [1,M]k such that

(28)
∣∣∣
{

n ∈ [0,K] :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

− ε
}∣∣∣ < exp(−Cη−k

ε )K

for all C > 0. Since λ1 ≥ (Cη−2k
ε )1− J , it follows that K/λ j ≤ (Cηε)

−2k J ≪
exp(−Cη−k

ε ) for all 1 ≤ j ≤ J, and hence that

(29)
∣∣∣
{

n ∈ (λ j , 2λ j]∩Z :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

−ε
}∣∣∣ < exp(−Cη−k

ε )λ j

for all C > 0 and all 1 ≤ j ≤ J.

Proposition 1 allows us to conclude from this that

(30)

J∑

j=1

∫

Ω j

|1̂B(α)|2 dα ≥ JεMk/10 > Mk.

On the other hand, it follows from the disjointness property of the sets Ω j (which

we guaranteed by our initial choice of sequence {λ j}) and the Plancherel identity

that

(31)

J∑

j=1

∫

Ω j

|1̂B(α)|2 dα ≤

∫

Tk

|1̂B(α)|2 dα ≤ |B| ≤ Mk

giving us our desired contradiction.

3.2 Proof of Theorem 4

We now present the statement of our second (stronger) dichotomy proposition.

Proposition 2 Let B ⊆ [1,M]k and ε > 0. Let ηε = exp(−Cε−1 log ε−1) and

qε = qηε .

If 1 ≤ µ ≤ λ are any given pair of integers that satisfy µ ≥ η−k
ε qε and M ≥

C(η−k
ε λ)k then either

(32)
∣∣∣
{

n ∈ (λ, λ+µ]∩Z :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

−ε
}∣∣∣ ≥ exp(−Cη−k

ε )µ

or

(33)

∫

T−1
λ Ω

|1̂B(α)|2 dα ≥ εMk/10

where Ω = Ωηε,λ,µ.

https://doi.org/10.4153/CJM-2012-003-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-003-8


Optimal Polynomial Recurrence 181

The key to deducing Theorem 4 from Proposition 2 is the following combinatorial

result on the annuli Ωηε,λ,µ.

Lemma 2 (Overlapping Lemma) Let η > 0. Suppose {µ j} j∈N and {λ j} j∈N be

sequences such that µ1 ≥ η−kqη and

(34) µ j ≤ λ j ≤
1

3
η2kµ j+1

for all j ∈ N, then it follows that

α ∈ T−1
λ j

Ω j

for at most k different values of j, where Ω j = Ωη,λ j ,µ j
.

The proof of this result is given in Section 3.3 below.

Proof of Theorem 4 Let ε > 0, ηε = exp(−Cε−1 log ε−1) and qε = qηε . Suppose,

contrary to Theorem 4, that there exists a set B ⊆ Nk with δ = δ(B) > ε1/2 such that

for all K > 0, there exists an interval of natural numbers I with |I| ≥ K such that

(35)
∣∣∣
{

n ∈ I : δ
(

B ∩
(

B + γ(n)
))

> δ(B)2 − ε
}∣∣∣ < exp(−Cη−k

ε )|I|

for all C > 0. In this case there necessarily exists a sequence of intervals of natural

numbers I j = (λ j , λ j + µ j] with µ1 ≥ 4qη and µ j ր ∞ for which

(36)
∣∣∣
{

n ∈ I j : δ
(

B ∩
(

B + γ(n)
))

> δ(B)2 − ε
}∣∣∣ < exp(−Cη−k

ε )|I j |

for all C > 0 and all j ∈ N.

Since inequality (36) must then also hold for the right-half intervals I ′j = (λ ′
j , λ

′
j +

µ ′
j], where µ ′

j = µ j/2 and λ ′
j = λ j + µ ′

j , we see that we can further assume that

λ j → ∞. By passing to a subsequence, one may without loss in generality assume

that µ1 ≥ η−kqε and

µ j ≤ λ j ≤
1

3
η2kµ j+1

for all j ∈ N. We now fix an integer J > 40k/ε.

It follows from the definition of upper density that there must exist M ∈ N such

that

|B ∩ [1,M]k| ≥ (δ − ε/2)Mk

while ∣∣B ∩
(

B + γ(n)
)
∩ [1,M]k

∣∣ ≤ (δ2 − ε)Mk

for all n ∈
⋃ J

j=1 I j for which δ
(

B∩
(

B+γ(n)
))

≤ δ(B)2−ε. Letting B ′
= B∩[1,M]k

it follows that

∣∣∣
{

n ∈ I j :

∣∣B ′ ∩
(

B ′ + γ(n)
) ∣∣

Mk
>

( B ′

Mk

) 2

−
ε

4

}∣∣∣ < exp(−Cη−k
ε )|I j |
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for all C > 0 and all 1 ≤ j ≤ J.

Proposition 2 allows us to conclude from this that

(37)

J∑

j=1

∫

T−1
λ j

Ω j

|1̂B(α)|2 dα ≥ JεMk/40 > kMk.

On the other hand it follows from Lemma 2 (with Ω j = Ωηε,λ j ,µ j
) and the Plan-

cherel identity that

(38)

J∑

j=1

∫

T−1
λ j

Ω j

|1̂B(α)|2 dα ≤ k

∫

Tk

|1̂B(α)|2 dα ≤ k|B| ≤ kMk

giving us our desired contradiction.

3.3 Proof of the Overlapping Lemma

First we establish the following.

Lemma 3 Suppose that 0 < η < 1/4k2 and 0 < µ ≤ λ. If α ∈ T−1
λ Ω, where

Ω = Ωη,λ,µ, then there exist 1 ≤ i ≤ k and a ∈ Z such that

(39)
1

2

( ηk

λ

) i

≤
∣∣∣αi −

a

qi
η

∣∣∣ ≤ 3

2

( 1

ηkµ

) i

.

Proof of Lemma 3 Suppose that Tλα ∈ Ω, then for some 1 ≤ j ≤ k we have

(40)
∣∣∣ (Tλα) j −

a j

q
j
η

∣∣∣ ≥
( ηk

λ

) j

for all a ∈ Zk, while for all 1 ≤ j ≤ k we have

(41)
∣∣∣ (Tλα) j −

a ′
j

q
j
η

∣∣∣ ≤
( 1

ηkµ

) j

for some a ′ ∈ Zk. If we denote by i the largest integer from {1, . . . , k} for which

∣∣∣ (Tλα)i −
a

qi−1
η

∣∣∣ ≥
( ηk

λ

) i

for all a ∈ Z, then we must have

∣∣∣ (Tλα)i+1 −
a ′ ′

i

qi
η

∣∣∣ <
( ηk

λ

) i+1

https://doi.org/10.4153/CJM-2012-003-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-003-8


Optimal Polynomial Recurrence 183

for some a ′ ′ ∈ Zk. In light of the fact that for each 1 ≤ j ≤ k one can write

(Tλα) j = α j +

(
j + 1

j

)
λα j+1 + · · · +

(
k

j

)
λk− jαk = α j + c jλ(Tλα) j+1

where 0 < c j ≤ j(k − j) < k2, it therefore follows that

(42)
∣∣∣ (Tλα− α)i −

a ′ ′ ′
i

qi
η

∣∣∣ < 2c jη
k
( ηk

λ

) i

≤
1

2

( ηk

λ

) i

<
1

2

( 1

ηkµ

) i

for some a ′ ′ ′ ∈ Zk.

We note that it follows immediately from (42) and (41) that

∣∣∣αi −
ai

qi
η

∣∣∣ ≤ 3

2

( 1

ηkµ

) i

for some a ∈ Zk, while from (42) and (40) it follows that for all a ∈ Zk we have

∣∣∣αi −
ai

qi
η

∣∣∣ ≥ 1

2

( ηk

λ

) i

.

Proof of Lemma 2 If Tλ j
α ∈ Ω j , then Lemma 3 guarantees the existence of an inte-

ger 1 ≤ i j ≤ k such that

(43)
1

2

( ηk

λ j

) i j

≤
∣∣∣αi j

−
a

q

∣∣∣ ≤ 3

2

( 1

ηkµ j

) i j

for some a ∈ Z. Suppose there exists α ∈ Tk and distinct integers j1, . . . , jk+1 for

which

α ∈ T−1
λ j1

Ω j1
∩ · · · ∩ T−1

λ jk+1
Ω jk+1

.

It follows from the pigeonhole principle that there must exist integers j, j ′ ∈
{ j1, . . . , jk+1}, with j < j ′, for which i j = i j ′ . Inequality (43) and the fact that

µ1 ≥ η−kqη the forces the situation that

η2kµ j ′ < 3λ j

which contradicts (34).

4 Formulation of Smooth Variants of Propositions 1 and 2

We now formulate smooth functional variants of Propositions 1 and 2 that are better

suited to our Fourier analytic approach.
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4.1 Counting Function

For g, h : [1,M]k → [0, 1] and q, λ, µ ∈ N we define

(44) Λq,µ(g, h) =
q

µ

∑

n∈(λ,λ+µ]
q|n

∑

m∈Zk

g(m)h
(

m − γ(n)
)
.

With g = h = 1B this essentially gives a normalized count for the number of pairs of

elements in B whose difference is equal to γ(n) with n ∈ (λ, λ + µ] ∩ Z and q|n.

Note that it is natural to consider only those n ∈ N that are divisible by some

(large) natural number q. Indeed, as a consequence of the fact that our set B could

fall entirely into a subset ofZk of the form x+dZ×Zk−1 with 1 ≤ d ≤ ε−1/2, it follows

that if there were to exist n ∈ N such that B ∩
(

B + γ(n)
)
6= ∅ for an arbitrary set B,

then such n would necessarily have to be divisible by all 1 ≤ d ≤ ε−1/2 and hence by

the least common multiple of all 1 ≤ d ≤ ε−1/2, a quantity of size exp(Cε−1/2).

As before this can be expressed as a count on the transform side as

(45) Λq,µ(g, h) =

∫

Tk

ĝ(α)ĥ(α)Sλ,µ,q(α) dα

where

(46) Sλ,µ,q(α) =
q

µ

∑

n∈(λ,λ+µ]
q|n

e2πiα·γ(n).

Remark. If the integers λ and µ are both divisible by q, then one can easily verify that

(47) Sλ,µ,q(α) = Sλ/q,µ/q(q ◦ α)

where

(48) q ◦ α = (qα1, . . . , q
kαk)

and as such we can deduce estimates for these new exponential sums, via relations

(13) and (15), from those that are stated in Lemma 1. See in particular Lemma 6

below.

4.2 Smooth Variants of Our Dichotomy Propositions

Let ϕ : Rk → (0,∞) be a Schwartz function satisfying

ϕ̃(0) = 1 ≥ ϕ̃(ξ) ≥ 0 and ϕ̃(ξ) = 0 for |ξ| > 1

where ϕ̃ denotes the Fourier transform (on Rk) of ϕ, see (10).
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For a given q ∈ N and L > 1 we define

(49)

ϕq,L(x) =

{( q
L

) k(k−1)/2
ϕ
( qℓ1

L
, . . . , qkℓk

Lk

)
if x = (qℓ1, . . . , q

kℓk) for some ℓ ∈ Zk

0 otherwise.

It follows from the Poisson summation formula that the Fourier transform (on Zk)

of ϕq,L takes the form

(50) ϕ̂q,L(α) =
∑

ℓ∈Zk

ϕ̃

(
L
(
α1 −

ℓ1

q

)
, . . . , Lk

(
αk −

ℓk

qk

))
.

We now define

ψq,L(x) = ϕq,L(T∗−1

λ x)

where T∗
λ denotes the adjoint of Tλ, and note that

ψ̂q,L(α) = ϕ̂q,L(Tλα).

Note that ϕ̂q,L is supported on Mq,L (and hence ψ̂q,L is supported on T−1
λ Mq,L),

where Mq,L are the major boxes defined by (23), and that we may choose our cutoff

function ϕ so that

(51) ϕ̂qε,ηk
εµ
− ϕ̂qε,εη

−k
ε λ

will be essentially supported on Ωηε,λ,µ in the sense that

(52) |ϕ̂qε,ηk
εµ

(α) − ϕ̂qε,εη
−k
ε λ(α)| ≤ ε/10

whenever α /∈ Ωηε,λ,µ.

The smooth variant of Proposition 2 is then the following.

Proposition 3 (Smooth Variant of Proposition 2) Let f : [1,M]k → [0, 1] and set

δ = M−k
∑

m∈Zk f (m).

Let 0 < ε ≤ δ2 and 1 ≤ µ ≤ λ be any given pair of integers that satisfy µ ≥ η−k
ε qε

and M ≥ C(η−k
ε λ)k where qε = qηε with ηε = exp(−Cε−1 log ε−1). Then there exists

0 < η ≪ ε satisfying ηε ≤ εη, such that either

(53) Λq,µ( f , f ) > (δ2 − ε)Mk

or

(54)

∫

Tk

| f̂ (α)|2 |ψ̂q,L2
(α) − ψ̂q,L1

(α)| dα ≥ εMk/5

where L1 = η−kλ, L2 = ηkµ, and q = qη .
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Remark. We have chosen not to explicitly state the analogous smooth variant of

Proposition 1, since this would be simply Proposition 3 with µ set equal to λ and

ψ replaced with ϕ.

We finish this section by explicitly showing that Proposition 3 does indeed imply

Proposition 2. The same argument of course also establishes that Proposition 1 would

follow from its (unstated) analogous smooth variant.

Proof that Proposition 3 implies Proposition 2 Let f = 1B and q = qη , noting that

and q ≤ qε.

It is easy to see that if Λq,µ( f , f ) > (δ2 − ε)Mk, then

(55)
∣∣∣
{

n ∈ (λ, λ + µ] ∩ Z :
∣∣B ∩

(
B + γ(n)

) ∣∣ > (δ2 − 2ε)Mk
}∣∣∣ ≥ cε

q
µ ≥

cε

qε
µ

which immediately gives (32), with 2ε in place of ε, since qε ≤ exp(Cη−k
ε ).

While from the fact that q|qε it follows that

supp(ψ̂q,L2
− ψ̂q,L1

) ⊆ supp(ψ̂qε,ηk
εµ
− ψ̂qε,εη

−k
ε λ)

and hence from the remarks preceding Proposition 3 (in particular (52)) that (54)

implies (33).

5 Proof of Proposition 3

We now present the proof of Proposition 3, finally completing the proofs of Theo-

rems 3 and 4. As opposed to the usual Fourier proofs of Sárközy’s theorem, which are

based on density increment arguments, here we use an energy increment argument

(in fact a regularity lemma type decomposition) to obtain optimal recurrence.

Remark. We have already noted that in order to establish Theorem 3 we need only

prove Proposition 3 with µ = λ and ψ replaced with ϕ. Making these substitu-

tions in the proof below will indeed give a proof of the (unstated) smooth variant of

Proposition 1 (one must also, in the proof of Lemma 6, (naturally) replace Tλ with

the identity matrix and increase the size of some constants threefold).

5.1 Decomposition

Let f : [1,M]k → [0, 1] and δ = M−k
∑

m∈[1,M]k f (m).

We make the decomposition

(56) f = f1 + f2 + f3

where

(57) f1 = f ∗ ψq,L1
and f2 = f − f ∗ ψq,L2

which of course forces

(58) f3 = f ∗ (ψq,L2
− ψq,L1

).
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One should think of f1(m) (respectively f ∗ ψq,L2
(m)) as being essentially the av-

erage value of the function f over arithmetic grids of the form {qη ◦ ℓ : ℓ ∈ Zk} of

(total) size L1 × L2
1 × · · · × Lk

1 (respectively L2 × L2
2 × · · · × Lk

2) centered at m.

5.2 Proof of Proposition 3

Note that

(59)

Λq,µ( f , f ) = Λq,µ( f1, f1) + Λq,µ( f2, f1) + Λq,µ( f , f2)︸ ︷︷ ︸
(⋆)

+Λq,µ( f3, f1) + Λq,µ( f , f3)︸ ︷︷ ︸
(⋆⋆)

where both terms in (⋆) involve a f2 and both terms in (⋆⋆) involve a f3.

The proof of Proposition 3 will follow as an almost immediate consequence of the

following two lemmas.

Lemma 4 (Main Term) Let ε > 0. If 0 < η ≪ ε, then

(60) Λq,µ( f1, f1) ≥ (δ2 − ε/2)Mk

Lemma 5 (Error Term) Let ε > 0, then there exists η > 0 satisfying

exp(−Cε−1 log ε−1) ≤ η ≪ ε

such that

(61)

∫

Tk

| f̂ (α)|2
∣∣ (1 − ψ̂q,L2

(α)
)

Sλ,µ,q(α)
∣∣ dα ≤ (ε/20)Mk

and hence

(62) |Λq,µ( f2, f1) + Λq,µ( f , f2)| ≤ (ε/10)Mk.

Proof of Proposition 3 If Λq,µ( f , f ) ≤ (δ2 − ε)Mk, then it follows from Lemma 4

that

|Λq,µ( f , f ) − Λq,µ( f1, f1)| ≥ (ε/2)Mk.

Since

|Λq,µ( f3, f1) + Λq,µ( f , f3)| ≥ |Λq,µ( f , f ) −Λq,µ( f1, f1)| − |Λq,µ( f2, f1) + Λq,µ( f , f2)|,

it consequently follows from Lemma 5 that

|Λq,µ( f3, f1) + Λq,µ( f , f3)| ≥ (2ε/5)Mk.

The proposition then follows from the observation that

(63) max{|Λq,µ( f3, f1)|, |Λq,µ( f , f3)|} ≤

∫

Tk

| f̂ (α)|2
∣∣ ψ̂q,L2

(α) − ψ̂q,L1
(α)

∣∣ dα.

which follows from standard properties of convolutions under the action of the Four-

ier transform, identity (45), and trivial bounds for the exponential sum Sλ,µ,q.
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5.3 Proof of Lemma 4

Let q = qη . If q|n and λ < n ≤ λ+µ (and hence n ≤ 2ηkL1), then it is straightforward

to see thatϕ can be chosen so that f1 is essentially invariant under translation by γ(n)

in the the sense that

∣∣ f1(m) − f1

(
m − γ(n)

) ∣∣

=

( q

L1

) k(k−1)/2 ∑

ℓ∈Zk

∣∣∣ϕ
( qℓ1 − n

L1
, . . . ,

qkℓk − nk

Lk
1

)
− ϕ

( qℓ1

L1
, . . . ,

qkℓk

Lk
1

)∣∣∣

≤ cηk

(64)

for some constant c > 0.

Therefore, provided η is chosen so that cηk ≤ ε/4, we have

(65) Λq,µ( f1) ≥
∑

m∈Zk

f1(m)2 −
ε

4

∑

m∈Zk

f1(m).

Since ψq,L1
is L1-normalized it follows that

(66)
∑

m∈Zk

f1(m) =
∑

m,ℓ∈Zk

f (m − ℓ)ψq,L1
(ℓ) =

∑

m∈Zk

f (m) = δMk.

Using Cauchy–Schwarz, one obtains

(67)∑

m∈Zk

f1(m)2 ≥
∑

−σM≤m j≤M+σM

f1(m)2 ≥
1

(1 + 2σ)kMk

( ∑

−σM≤m j≤M+σM

f1(m)
) 2

.

Since f is supported on [1,M]k (and ψq,L1
is L1-normalized) it follows that

(68)
∑

−σM≤m j≤M+σM

f1(m) ≥
∑

m∈Zk

f (m)
(

1 −
∑

|ℓ j |≥σM

ψq,L1
(ℓ)

)
≥ δMk(1 − σ)

as ϕ can be chosen so that
∑

|ℓ j |≥σM ψq,L1
(ℓ) ≤ σ whenever M ≫ L1.

Note that
(1 − σ)2

(1 + 2σ)k
≥ (1 − σ)2(1 − 2σk) ≥ 1 − 4kσ

provided 2σk < 1. Hence taking σ = ε/16k completes the proof.

5.4 Proof of Lemma 5

It is in establishing Lemma 5 that we finally exploit the arithmetic properties of the

curve γ(n). In particular, we will make use of the following “minor arc” estimates for

the exponential sums Sλ,µ,q.

https://doi.org/10.4153/CJM-2012-003-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-003-8


Optimal Polynomial Recurrence 189

Lemma 6 (Corollary of Lemma 1) Let η0 > 0. If 0 < η ′ < η < 1 with η ′
= η0η,

then

(69) ‖(1 − ψ̂q ′,L ′

2
)Sλ,µ,q‖∞ ≤ 2C1η0

where q ′
= qη ′ and L ′

2 = η ′kµ.

Proof Let α ∈ Tk be fixed. If there exists a ∈ Zk such that

∣∣∣ (Tλα)i −
a

q ′i

∣∣∣ ≤ η0

(η ′kµ)i
,

for all 1 ≤ i ≤ k, then (as in (52) above) we note that ϕ can be chosen such that

(70) |1 − ψ̂q ′,L ′

2
(α)| ≤ η0.

While if for some 1 ≤ i ≤ k we have

∣∣∣ (Tλα)i −
a

q ′i

∣∣∣ > η0

(η ′kµ)i

for all a ∈ Zk, then ∣∣∣qi(Tλα)i −
a

qi
0

∣∣∣ > qi

(ηk
0µ)i

for all a ∈ Zk, since qq0|q
′ where q0 = qη0

.

Since

q ◦ (Tλα) = Tλ/q(q ◦ α)

it follows from (47) that

Sλ,µ,q(α) =
1

µ ′

∑

s∈(λ ′+q−1,λ ′+µ ′]∩Z

e2πiγ(s)·(q◦α)

where λ ′
= λ/q and µ ′

= µ/q and the remark preceding Lemma 1 that

(71) |Sλ,µ,q(α)| ≤ 2C1η0.

Proof of Lemma 5 We first construct the number η > 0. Choosing a lacunary se-

quence {η j} for which

(72) η1 ≪ ε and η j+1 ≤ (ε/80C1)η j

for each j ≥ 1 it is easy to see that

sup
α∈Tk

∞∑

j=1

|ψ̂q j+1,ηk
j+1µ

(α) − ψ̂q j ,ηk
jµ

(α)| ≤ C2
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where q j = qη j
, as the terms have essentially disjoint supports. It follows that there

exist 1 ≤ j ≤ 40C2/ε such that

(73)

∫

Tk

| f̂ (α)|2 |ψ̂q j+1,ηk
j+1µ

(α) − ψ̂q j ,ηk
jµ

(α)| dα ≤ (ε/40)Mk.

We set η = η j and η ′
= η j+1 for this value of j and note that η satisfies the inequality

exp(−Cε−1 log ε−1) ≤ η ≪ ε.

Lemma 5 now follows immediately from Lemma 6 and (73), since

|(1 − ψ̂q,L2
)(α)Sλ,µ,q(α)| ≤ |(1 − ψ̂q ′,L ′

2
)(α)Sλ,µ,q(α)|

+
∣∣ ( ψ̂q,L2

(α) − ψ̂q ′,L ′

2
(α)

)
Sλ,µ,q(α)

∣∣
(74)

and η ′/η ≤ ε/80C1.

Indeed, arguing as in the proof of Proposition 3 above, we obtain

max{|Λq,µ( f2, f1)|, |Λq,µ( f , f2)|} ≤

∫

Tk

| f̂ (α)|2
∣∣ (1 − ψ̂q,L2

(α)
)

Sλ,µ,q(α)
∣∣ dα

≤ ‖(1 − ψ̂q ′,L2
)Sλ,µ,q‖∞Mk + (ε/40)Mk

where the last inequality follows from Plancherel and the fact that ‖ f ‖2
2 ≤ ‖ f ‖1 ≤

Mk.

6 The Proofs of Theorems 1 and 2

In both of the proofs below we fix a polynomial P(n) with integer coefficients, namely

P(n) = c1n + · · · + cknk

and let P : Zk → Z denote the mapping given by

P(b) = c1b1 + · · · + ckbk.

Furthermore, given any set A ⊆ Z we define

A j = {a ∈ A : a ≡ j mod m} = A ∩ (mZ + j)

for each 0 ≤ j ≤ m − 1 where

m = gcd(c1, . . . , ck).
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6.1 Deduction of Thereom 1 from Theorem 3

Let ε > 0 and A ⊆ [1,N] with δ = |A|/N satisfying 0 < ε ≤ δ2. We suppose that

∣∣A ∩
(

A + P(n)
) ∣∣ ≤ (δ2 − ε)N

for some n ∈ N. Without loss in generality we will make the convenient additional

assumption that m|N.

It is easy to see that there necessarily exists 0 ≤ j ≤ m − 1 such that

∣∣A j ∩
(

A j + P(n)
) ∣∣ ≤ (δ2

j − ε)N/m

with δ j = m|A j |/N. If we now let

B ′
= {b ∈ Zk : P(b) ∈ A j − j} ∩ Q

where

Q = P
−1(mZ ∩ [1,N]) ∩ [−N ′,N ′]k

and N ′ is some suitably large multiple of N (depending only on the coefficients of P)

then it follows that

δ j = |B ′|/|Q|

and ∣∣B ′ ∩
(

B ′ + γ(n)
) ∣∣

|Q|
=

∣∣A j ∩
(

A j + P(n)
) ∣∣

N/m
.

We now set M = ηN/m for some suitably small η > 0,

X = {x ∈ (MZ)k : x + [1,M]k ⊆ Q}

and

Q ′
=

⋃

x∈X

(x + [1,M]k),

noting that we can clearly choose η ≪ ε to ensure that

|Q \ Q ′|

|Q|
≤

ε

10
⇐⇒

|Q|

|Q ′|
≤ 1 +

ε

9
.

Thus, if we set B ′ ′
= B ′ ∩ Q ′ and β = |B ′ ′|/|Q ′|, it follows that

β ≥ δ j − ε/10

and ∣∣B ′ ′ ∩
(

B ′ ′ + γ(n)
) ∣∣

|Q ′|
≤

∣∣B ′ ∩
(

B ′ + γ(n)
) ∣∣

|Q|

|Q|

|Q ′|
≤ β2 − ε/2.

It follows that there must exist x ∈ X such that if we set

B = B ′ ′ ∩ (x + [1,M]k)
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then ∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
≤

( |B|

Mk

) 2

− ε/2.

In summary we have shown that for any given set A ⊆ [1,N] and ε > 0 there

exists a set B ⊆ [1,M]k with M ≪ εN/m such that

{
n ∈ N :

∣∣B ∩
(

B + γ(n)
) ∣∣

Mk
>

( |B|

Mk

) 2

− ε/2
}

⊆
{

n ∈ N :

∣∣A ∩
(

A + P(n)
) ∣∣

N
>

( |A|

N

) 2

− ε
}
,

hence Theorem 1 now follows from Theorem 3.

6.2 Deduction of Theorem 2 from Theorem 4

Let ε > 0 and A ⊆ N with δ = δ(A) satisfying 0 < ε ≤ δ2. We suppose that

δ
(

A ∩
(

A + P(n)
))

≤ δ2 − ε

for some n ∈ N. It follows from the definition of upper density that there exists a

sequence of intervals {Ii} with |Ii | = Ni , where {Ni} ⊆ mN and Ni ր ∞, such that

∣∣ (A ∩ Ii) ∩
(

(A ∩ Ii) + P(n)
) ∣∣

Ni
≤ δ2 − ε/2

while
|A ∩ Ii |

Ni
≥ δ − ε/10.

If we define δi = |A ∩ Ii |/Ni , it therefore follows that

∣∣ (A ∩ Ii) ∩
(

(A ∩ Ii) + P(n)
) ∣∣

Ni
≤ δ2

i − ε/5.

Note that (A ∩ Ii) j = A j ∩ Ii . If we set δi j = m|A j ∩ Ii |/Ni , then

δi =
1

m

m−1∑

j=0

δi j

and as a consequence of the Cauchy–Schwarz inequality we have

δ2
i ≤

1

m

m−1∑

j=0

δ2
i j .
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It therefore follows immediately from the fact that

m−1∑

j=0

∣∣ (A j∩Ii)∩
(

(A j∩Ii)+P(n)
)∣∣ =

∣∣ (A∩Ii)∩
(

(A∩Ii)+P(n)
)∣∣ ≤ 1

m

m−1∑

j=0

(δ2
i j−ε/5)Ni

that for each i there must exist 0 ≤ j ≤ m − 1 for which

∣∣ (A j ∩ Ii) ∩
(

(A j ∩ Ii) + P(n)
) ∣∣ ≤ (δ2

i j − ε/5)Ni/m.

We will assume (by refining our collection {Ii} if necessary) that the same j is

selected for each i. Since (A ∩ Ii) j = A j ∩ Ii it follows, from the definition of upper

density, that

δ(A j) ≥ δi j/m

and

δ
(

A j ∩
(

A j + P(n)
))

≤ (δ2
i j − ε/5)/m.

If we now define

B = {b ∈ Zk : P(b) ∈ A j − j}

it follows immediately that

δ(B) = mδ(A j)

δ
(

B ∩
(

B + γ(n)
))

= mδ
(

A j ∩
(

A j + P(n)
))

and consequently

δ
(

B ∩
(

B + γ(n)
))

≤ δ(B)2 − ε/5.

In summary we have shown that for any given set A ⊆ N with δ(A) > 0 and ε > 0

there exists a set B ⊆ Zk with δ(B) > 0 such that

{
n ∈ Nδ

(
B ∩

(
B + γ(n)

))
> δ(B)2 − ε/5

}

⊆
{

n ∈ N : δ
(

A ∩
(

A + P(n)
))

> δ(A)2 − ε
}
,

hence Theorem 2 follows immediately from Theorem 4.

7 The Parameter L in Theorem 2 Necessarily Depends on the Set A

In this final section we construct an example to show that the parameter L in Theo-

rem 2 necessarily depends on the actual set A and not just on its density.

Proposition 4 Let P ∈ Z[n] with P(0) = 0 and L ∈ N, then there exist A ⊆ N

with δ(A) = 1/3 and an unbounded increasing sequence {λ j} with the property that

A ∩
(

A + P(n)
)
= ∅ whenever n ∈

⋃∞
j=0[λ j , λ j + L].
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Proof Without loss in generality we assume that the leading coefficient of P is posi-

tive. Set M = P(aL) with a ∈ N chosen so that P is increasing and 2P(aL) ≥ P
(

(a +

1)L
)

. We definine A ⊆ N such that A = A + 3M and A ∩ [1, 3M] = [M + 1, 2M].

Since P(n) = P(m) (mod 3M) whenever n = m (mod 3M), it is easy to see that

if λ j = j3M + aL, then the fact that A ∩
(

A + P(n)
)
= ∅ whenever n ∈ [λ j , λ j + L]

for some j, follows from the fact that this holds for j = 0 (as can be easily verified by

the reader).
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[14] Á. Magyar, On distance sets of large sets of integer points. Israel J. Math. 164(2008), 251–263.
http://dx.doi.org/10.1007/s11856-008-0028-z

[15] R. McCutcheon, Elemental methods in ergodic Ramsey theory. Lecture Notes in Math. 1722,
Springer-Verlag, Berlin, 1999.
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