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The Index Theory Associated
to a Non-Finite Trace on a C

∗-Algebra

G. J. Murphy

Abstract. The index theory considered in this paper, a generalisation of the classical Fredholm index

theory, is obtained in terms of a non-finite trace on a unital C∗-algebra. We relate it to the index theory

of M. Breuer, which is developed in a von Neumann algebra setting, by means of a representation

theorem. We show how our new index theory can be used to obtain an index theorem for Toeplitz

operators on the compact group U(2), where the classical index theory does not give any interesting

result.

1 Introduction

Index theory for various classes of operators, such as pseudodifferential operators

and Toeplitz operators, forms a vast and important aspect of modern operator theory.

Usually, the index is the classical Fredholm index. Recall that a norm-bounded linear

operator T on a Hilbert space is a Fredholm operator if its range is closed and the

kernels of T and T∗ are finite-dimensional. In this case the index of T is defined to

be the difference

ind(T) = dim(ker(T)) − dim(ker(T∗)).

This idea has been generalised and other concepts of index are of increasing impor-

tance. We single out for special mention the extension of classical Fredholm theory

due to M. Breuer [3, 4], where the index is no longer an integer but may be an arbi-

trary real number. This index has been used in results of M. Atiyah and A. Connes

(see [6] for an exposition of some of this theory) and, as is especially relevant to

the considerations of this paper, in results of the author [10] and of L. Coburn,

R. G. Douglas, D. Schaeffer and I. M. Singer [5].

Nevertheless, even this more extended concept of index does not cover all cases

of interest. We develop in Section 3 an index theory for Toeplitz operators on the

compact unitary group U(2). If one uses the ordinary Fredholm index in this case,

then one gets a trivial theory, since the only such Toeplitz operators that are Fredholm

all have zero index, as was shown by C. A. Berger and L. A. Coburn in [1]. We exhibit

another index theory for these operators, where the index remains integer-valued,

but which is non-trivial in that there are Toeplitz operators that are Fredholm in the

more extended sense and that have non-zero index.

Our new index theory will, however, in general have real values rather than inte-

ger values. In this respect it is like the Breuer index theory and we show, in Proposi-

tion 2.2, that the theories are related; however, they are not the same, as is seen by the
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example of Toeplitz operators on the matrix group U(2) referred to in the preceding

paragraph. The fundamental feature of our theory is that it is defined in terms of a

trace on a C∗-algebra. We previously introduced the elements of this theory in an

earlier paper [11]. Here we develop and expand these ideas, relate the theory to the

Breuer theory, and give some applications.

2 The Index Associated to a Non-Finite Trace

Suppose that A is a unital C∗-algebra and let τ : A+ → [0,+∞] denote a trace on A.

The linear span of the elements a ∈ A+ such that τ (a) <∞ is a self-adjoint ideal Mτ

of A such that Mτ ∩ A+
= {a ∈ A+ | τ (a) <∞}, and there is a unique positive

linear extension of τ to Mτ that we denote by the same symbol τ . Moreover, if a ∈ A

and x ∈ Mτ , then τ (ax) = τ (xa).

In this setting, one can define the Fredholm index of an element of A by analogy

with the case of the C∗-algebra B(H), where H is an infinite-dimensional Hilbert

space, where the role of τ is played by the usual trace function τ = tr, and the new

theory one obtains reduces to the usual one in this case.

We recall the basic facts from [11]. Fix a unital C∗-algebra A and a trace τ on A.

We suppose that τ is not finite; that is, Mτ 6= A.

An element a of A is Fredholm relative to τ , or τ -Fredholm, if there exists an el-

ement b ∈ A such that 1 − ab and 1 − ba belong to Mτ . The element b is then a

partial inverse of a. The Fredholm index of a relative to τ , or τ -index of a, is defined

by setting indτ (a) = τ (ab − ba). This is easily seen to be well-defined. Observe that

although the trace can take on arbitrary complex values on Mτ (unless it is trivial),

this is not the case for the index, which is real-valued.

Let Kτ denote the closure of Mτ in A; of course, Kτ is a proper ideal in A. If

a ∈ A, then it is clear that a is τ -Fredholm if, and only if, it is invertible modulo Kτ .

Hence, if π is the quotient map from A to A/Kτ , the set Φ = Φ(A, τ ) of τ -Fredholm

elements of A is equal to π−1 Inv(A/Kτ ), where Inv(A/Kτ ) denotes the set of in-

vertible elements of A/Kτ . It follows immediately that Φ is open in the norm topol-

ogy of A and that it is closed under multiplication.

We also have the following results from [11]:

Let a, b ∈ Φ and let x ∈ Kτ . Then

1. indτ (ab) = indτ (a) + indτ (b);

2. indτ is locally constant;

3. indτ (a + x) = indτ (a);

4. indτ (a) = 0, if a = a∗.

In the classical Fredholm theory, a Fredholm operator of index zero is a compact

perturbation of an invertible operator. The analogue of this result does not extend to

the general theory.

There is another generalization of Fredholm index theory due to J. Phillips and

I. Raeburn that involves a trace, this time on a von Neumann algebra [12]. In the

case that the von Neumann algebra is a II∞-factor, this theory coincides with the

better known Fredholm theory of M. Breuer [3, 4] and, in fact, the Phillips–Raeburn

theory is obtained from Breuer’s theory by making some minor modifications, as is
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pointed out in [12]. We shall show now that, at least partially, the Phillips–Raeburn

theory is a special case of our theory.

Let R be a semi-finite von Neumann algebra on a Hilbert space H; that is, we sup-

pose that R admits a faithful, normal, semi-finite trace tr. A projection p in R is

tr-finite if tr(p) < ∞ and we write dim(p) = tr(p) for the generalized dimension of

p in this case.

Suppose now a is an element of R and a = u|a| is its polar decomposition, so

that the partial isometry u and the positive element |a| belong to R. If Ra is the

range projection of a (the projection onto the closure of a(H)), then Ra ∈ R, since

Ra = uu∗. Note also that Ra∗ = u∗u. If ker(a) denotes the projection onto the kernel

of a, then ker(a) = 1 − Ra∗ , so ker(a) ∈ R also.

In the Phillips–Raeburn theory an element a of R is Fredholm relative to tr if ker(a)

is tr-finite and there exists a tr-finite projection e in R such that (1 − e)(H) ⊆ a(H).

In this case ker(a∗) is also tr-finite and the Breuer–Raeburn–Phillips index is defined

by setting

indBPR(a) = dim(ker(a)) − dim(ker(a∗)).

It is a theorem of Phillips and Raeburn that an element a ∈ R is Fredholm in their

sense relative to tr if, and only if, it is invertible modulo Ktr . Hence, their definition

of Fredholmness relative to tr coincides with our definition of tr-Fredholmness. It

remains to show that their definition of the index also coincides with ours in this

case. First, we need to recall that they show that their index has similar properties

to the usual Fredholm index: indBPR (ab) = indBPR (a) + indBPR (b), if a and b are

tr-Fredholm elements, and indBPR (a + x) = indBPR (a), if x ∈ Ktr . Also, indBPR is

locally constant.

Now let a ∈ R be tr-Fredholm and let a = u|a| be its polar decomposition. If

π : R → R/Ktr is the quotient map, then π(a) = π(u)|π(a)|, so that invertibility

of π(a) implies invertibility of |π(a)| = π(|a|) and therefore of π(u). Hence, |a|
and u are tr-Fredholm. Moreover, since π(u) is a partial isometry (and invertible),

it is a unitary and therefore 1 − uu∗ and 1 − u∗u belong to Ktr . It follows, since

indtr (|a|) = 0, that indtr (a) = indtr (u) + indtr (|a|) = indtr(u) = tr(uu∗ − u∗u) =

tr((1 − u∗u) − (1 − uu∗)) = tr((1 − Ra∗) − (1 − Ra)) = tr(ker(a) − ker(a∗)) =

dim(ker(a)) − dim(ker(a∗)) = indBPR (a).

The preceding remarks have shown the following:

Proposition 2.1 Let R be a semi-finite von Neumann algebra and let tr be a faithful,

normal semi-finite trace on R. If a ∈ R, then a is Fredholm relative to tr in the sense of

Phillips and Raeburn if, and only if, a is tr-Fredholm in our sense. Moreover, in this case

indtr (a) = indBPR (a) = tr(ker(a)) − tr(ker(a∗)).

Now let us return to the case of a unital C∗-algebra A and a non-finite trace

τ : A+ → [0,∞].

We need to recall some definitions:

(1) τ is said to be lower semicontinuous if, for all t ∈ R+, the set

{a ∈ A
+ | τ (a) ≤ t}
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is closed in A+.

(2) τ is semi-finite if, for each element a ∈ A+, we have

τ (a) = sup{τ (b) | b ∈ A
+ & b ≤ a & τ (b) < +∞}.

Recall that a trace representation of a C∗-algebra A is a pair (π, tr) consisting of a

nondegenerate representationπ : A → B(H) of A on a Hilbert space H and a faithful,

normal trace tr on the von Neumann R = π(A) ′ ′ such that π(A)∩Ntr is weakly dense

in R (Ntr = {a ∈ R | tr(a∗a) < +∞}). These conditions imply tr is semifinite, so

that R is semifinite. The function τ = tr ◦π : A+ → [0,+∞] is then a lower semi-

continuous, semifinite trace on A. Conversely, every lower semicontinuous, semifi-

nite trace on A arises from a trace representation in this way. See [7, Section 6.6] for

details.

Our next result says that we can always realise our index theory relative to a trace

on a C∗-algebra in the special setting of a semi-finite von Neumann algebra con-

sidered by Phillips and Raeburn, provided the trace is semi-finite and lower semi-

continuous. Thus, the abstract Fredholm theory relative to the original trace can

be given a concrete representation in terms of operators on a Hilbert space and the

Fredholm elements then have kernels and co-kernels that are small in an appropri-

ate sense, with the difference of their dimensions giving the index, as occurs in the

classical theory of Fredholm operators.

Proposition 2.2 Let τ be a non-finite, semifinite, lower semicontinuous trace on a

unital C∗-algebra A and let (π, tr) be an associated trace representation (so τ (a) =

tr(π(a)), for all a ∈ A+). Let R = π(A) ′ ′. If a ∈ A is a τ -Fredholm element, then

π(a) is a Fredholm element of R relative to tr and

indτ (a) = indBPR(π(a)) = tr(kerπ(a)) − tr(kerπ(a∗)).

Proof It is clear that π(Kτ ) ⊆ Ktr . It follows that if a is a τ -Fredholm element of

A, then π(a) is an tr-Fredholm element of R. Moreover, choosing (as we may) an

element b ∈ A such that 1 − ab and 1 − ba belong to Mτ , then

indτ (a) = τ (ab − ba) = tr(π(a)π(b) − π(b)π(a)) = indtr (π(a)),

since 1 − π(a)π(b) and 1 − π(b)π(a) belong to Mtr . It now follows immediately

from the preceding proposition that indτ (a) = indBPR (π(a)) = tr(kerπ(a)) −
tr(kerπ(a∗)), as required.

There is an interesting, very simple, consequence of this representation. If a ∈ A

is normal, then indτ (a) = 0, since indτ (a) = tr(kerπ(a)) − tr(kerπ(a∗)) and

ker(π(a)) = ker(π(a∗)), because π(a) is normal. I do not know how to prove

indτ (a) = 0 directly (it may even be the case that it is not necessarily true if the

trace τ does not satisfy the hypothesis of the theorem).

We finish this section by pointing out the connection of our index theory with the

index coming from K-theory. Recall that if K is a closed ideal in a unital C∗-algebra
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A and π : A → C is the canonical map onto the quotient C∗-algebra C = A/K, the

index map ∂ : K1(C) → K0(K) is the connecting homomorphism associated to the

short exact sequence

0 → K → A → C → 0.

If Φ denotes the semigroup of elements in A that are invertible modulo K, the map

ι : Φ → K0(K), a 7→ ∂[π(a)]

has many of the characteristics one expects of a Fredholm-type index, such as ι(ab) =

ι(a) + ι(b) and ι(a + x) = ι(a), for all a, b ∈ Φ and x ∈ K. Now if τ : A+ → [0,+∞]

is a non-finite trace on A whose domain of definition Mτ is dense in K, then our

index indτ factors through the index ι. More precisely, if tr∗ is the usual extension of

tr to a homomorphism tr∗ : K0(K) → R, then indτ (a) = tr∗ ι(a), for all a ∈ Φ.

This observation fits our index theory within the framework of K-theory, but does

not appear to add any particular extra insight. The theory we have developed is, of

course, much more elementary than the K-theory index ∂ and also more concrete,

and does not require the (often difficult) computation of K-groups to calculate the

index.

The referee has kindly pointed out one way in which this factorisation of the tracial

index indτ through the K-theory index ∂ may be useful. It is known that ∂ may be

non-zero on a normal element a. If one can find such an a ∈ A and a suitable non-

finite trace such that tr∗ ι(a) 6= 0, then we would have indτ (a) 6= 0. Although I know

of no such example, this reasoning does seem to suggest that indτ (a) is not always

equal to zero for a normal.

3 Application to Toeplitz Operators on U(2)

To give some applications of these ideas we need to consider some preliminary con-

structions involving traces. We do not attempt to achieve maximal generality here;

rather, we prove results that are sufficient for our considerations.

Theorem 3.1 Let A be a separable C∗-algebra whose closed commutator ideal K is

proper. Then A admits a tracial state τ whose left kernel Nτ is equal to K.

Proof The quotient C∗-algebra A/K is non-zero, separable and commutative.

Hence, its character space is separable, admitting a dense sequence (τn)∞n=1
, say. Then,

if b ∈ A/K and τn(b) = 0, for all n ≥ 1, we have b = 0.

Now let π : A → A/K be the quotient ∗-homomorphism and define a tracial

positive linear functional τ : A → C by setting

τ (a) =

∞
∑

n=1

τn

(

π(a)
)

/2n,

for all a ∈ A. Clearly, τ (a∗a) = 0 if, and only if, τn

(

π(a∗a)
)

= 0, for all n ≥ 1 and

this is equivalent to π(a∗a) = 0; that is, a ∈ K. Thus, Nτ = K. By renormalising τ ,

we get a tracial state with the properties required by the theorem.
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Consider a C∗-algebra of the form A = K(H) ⊗ B, where K(H) denotes the

C∗-algebra of compact operators on a separable infinite-dimensional Hilbert space

H and B is a unital C∗-algebra, and the symbol ⊗ denotes the spatial (minimal)

C∗-tensor product. If (en)∞n=1
is an orthonormal basis for H, we denote by emn the

element of K(H) defined by setting

emn(x) = (x|en)em,

for all x ∈ H. It is well known that every element b in the multiplier algebra M(A)

can be written as a sum

b =

∞
∑

m,n=1

emn ⊗ bmn,

for unique elements bmn in B. The sum converges in the strict topology.

Now suppose τ is a tracial state on B. Then we define a trace τ̂ : M(A)+ →
[0,+∞] by setting

τ̂(a) =

∞
∑

m=1

τ (amm),

for all a ∈ M(A)+.

If T is a positive element of K(H) and b a positive element of B, then

τ̂(T ⊗ b) = tr(T)τ (b),

where tr is the canonical trace on K(H). For, in this case, T =
∑

∞

mn=1
Tmnemn, where

Tmn = (T(en)|em), and therefore

τ̂ (T ⊗ b) = τ̂
(

∑

mn

emn ⊗ Tmnb
)

=

∞
∑

m=1

τ (Tmmb) = tr(T)τ (b).

For this reason, we shall henceforth denote τ̂ by tr⊗τ and call it the tensor product

of the traces tr and τ .

We are going to apply these ideas now to the Toeplitz algebra of the unitary matrix

group U(2) of all unitary matrices of order 2. Let A denote the closed subalgebra of

C(U(2)) generated by the coordinate functions

Zi j : U(2) → C, u 7→ ui j ,

for i, j = 1, 2. Let L2(U(2)) denote the L2-space relative to the normalised Haar

measure of U(2) and let H2(U(2)) be the closure of A in L2(U(2)). If P is the pro-

jection of L2(U(2)) on H2(U(2)) and ϕ ∈ C(U(2)), we define the Toeplitz operator

Tϕ ∈ B
(

H2(U(2))
)

by setting Tϕ( f ) = P(ϕ f ), for all f ∈ H2(U(2)). The Toeplitz

algebra A = A(U(2)) is the C∗-subalgebra of B
(

H2(U(2))
)

generated by all Tϕ, for

ϕ ∈ C(U(2)).

This algebra and the operators Tϕ were studied intensively in [1], where some

surprising results were obtained. It was shown there (see Theorems 20 and 22 of [1])
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that although A contains Fredholm operators of arbitrary index, any Toeplitz oper-

ator Tϕ that is Fredholm necessarily has zero index and the symbol ϕ is of the form

eψ , for some function ψ ∈ C
(

U(2)
)

. Thus, the usual Fredholm theory is useless for

analysing the index theory of the operators Tϕ. We shall show, however, that there is

a certain trace on A relative to which the index theory of the Tϕ is very satisfactory.

Our first step in developing this index theory is to exhibit the special trace re-

ferred to. For this we shall need to recall some results of [1]. It is shown in [1,

Theorem 4] that there is faithful representation α of A on a Hilbert space tensor

product H1 ⊗ H2 that maps the closed commutator ideal K of A onto the C∗-tensor

product K(H1) ⊗ B, where B is a certain separable unital C∗-subalgebra of B(H2)

having K(H2) as its closed commutator ideal. Here H1 and H2 are the Hilbert spaces

H2(T) and L2(SU(2)), respectively, where H2(T) is the usual Hardy Hilbert space on

the unit circle T and L2(SU(2)) is the L2-space of the special unitary group SU(2) of

order 2. Although we shall not need it, let us note in passing that B is the C∗-algebra

on L2(SU(2)) generated by all the pseudo-differential operators of order zero.

Since the closed commutator ideal K(H2) in B is proper (and B is separable), we

may apply Theorem 3.1 to deduce that B admits a tracial state τ whose left kernel Nτ

is equal to K(H2). The tensor product trace tr ⊗ τ on M(K(H1) ⊗ B) then defines

a trace σ = (tr ⊗ τ )α on A. Note in passing that it is clear that tr ⊗ τ vanishes

on K(H1 ⊗ H2) = K(H1) ⊗ K(H2), so that tr ⊗ τ is not the canonical trace on

K(H1 ⊗H2). Note that if T is a positive, finite-rank operator on H1 and b ∈ B+, then

(tr ⊗ τ )(T ⊗ b) = tr(T)τ (b) < +∞. It follows easily from this, and the fact that

αK = K(H1) ⊗ B, that K ⊆ Kσ.

For the index theory we are developing we need K = Kσ to get the most definitive

result. However, it is not clear that this is true for the trace σ that we have constructed.

A simple trick gets around this problem: We simply redefine σ so that it remains

unchanged on K
+ and we set σ(a) = +∞, for all a ∈ A

+ \K
+. One easily checks then

that with this definition of σ, we have K = Kσ.

Now let ∆ : U(2) → C be the determinant function Z11Z22 −Z12Z21. In [1, Theo-

rem 3] it is shown thatα(T∆) = U ⊗1, where U is the unilateral shift on the standard

orthonormal basis of H1. Hence, α(T∆) is invertible modulo the ideal K(H1) ⊗ B,

since T∗

∆
T∆ = 1 and 1−α(T∆)α(T∗

∆
) = (1−UU ∗)⊗ 1. Therefore, T∆ is invertible

modulo Kσ. Also, − indσ(T∆) = σ(1 − T∆T∗

∆
) = (tr ⊗ τ )

(

(1 − UU ∗) ⊗ 1
)

=

tr(1 −UU ∗)τ (1) = 1; that is, indσ(T∆) = −1.

We now have sufficient preliminary material gathered to prove the following re-

sult:

Theorem 3.2 Let σ be the trace on AA(U(2)) constructed above. Let ϕ ∈ C(U(2)).

Then the Toeplitz operator Tϕ is Fredholm relative to σ if and only ifϕ never vanishes. In

this case, the corresponding Fredholm index of Tϕ is given by indσ(Tϕ) = −n, where n

is the unique integer such that ϕ = ∆
neψ , for some continuous function ψ ∈ C

(

U(2)
)

.

Proof First recall a theorem of Van Kampen [13], building on a result of Bohr [2],

that states that if ϕ is a non-vanishing continuous function on a compact, connected

group G, then ϕ = χeψ , for a unique continuous character χ : G → T and for

some continuous function ψ : G → C. Since the only continuous characters on
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the connected compact group U(2) are the powers ∆
n of the determinant ∆ (this

is easily verified), we can state the Van Kampen–Bohr result in this case as follows:

If ϕ : U(2) → C is continuous and never vanishes, then ϕ = ∆
neψ, for a unique

integer n and some continuous function ψ on U(2).

Since Kσ is equal to the closed commutator ideal K of A, if ϕ ∈ C(U(2)), then Tϕ
is Fredholm relative to σ if, and only if, Tϕ + K is invertible in A/K. However, the

map

C
(

U(2)
)

→ A/K, ϕ 7→ Tϕ + K,

is a ∗-isomorphism [1, Theorem 15]. Hence, Tϕ is Fredholm relative to σ if, and only

if, ϕ is invertible in C(U(2)); that is, ϕ never vanishes.

Now suppose that ϕ does not vanish and write ϕ = ∆
neψ , for some integer n and

some function ψ ∈ C(U(2)). To complete the proof of the theorem we have only

to show that indσ(Tϕ) = −n. In showing this, we may assume n ≥ 0 (otherwise

replace ϕ by ϕ̄). Then, indσ(Tϕ) = indσ(TeψTn
∆

), since ∆ ∈ A (it is easily checked

that for any f ∈ C(U(2)) and g ∈ A, T f g = T f Tg). Hence, indσ(Tϕ) = indσ(Teψ ) +

n indσ(T∆) = indσ(Teψ ) − n, since we saw already that indσ(T∆) = −1. We have

now only to show that indσ(Teψ ) = 0, but this is obvious from continuity and local

constancy of the index, since the map t 7→ indσ(Tetψ ) is a continuous locally constant

function on the (connected) closed interval [0,1] whose value at t = 0 is indσ(1) = 0.

If ϕ : T → C is a non-vanishing continuous function, then ϕ = zneψ , for a unique

integer n, where z : T → C is the inclusion function and ψ : T → C is some con-

tinuous function. Clearly, n = wn(ϕ), the winding number of ϕ around the origin.

The classical Gohberg–Krein index theorem asserts that a Toeplitz operator Tϕ on

the usual Hardy space H2(T) of the circle, with continuous symbol ϕ, is a Fred-

holm operator (in the usual sense) if and only if ϕ never vanishes, and in this case

ind(Tϕ) = −wn(ϕ) (see [8, Theorem 3.5.15]). This result is a prototype for the

Atiyah–Singer index theorem, in which an analytic (Fredholm) index of a pseudod-

ifferential operator is equated to a topological index of its symbol. We can cast The-

orem 3.2 into this format also if we define the topological index ind(ϕ) of a non-

vanishing continuous function ϕ : U(2) → C to be the unique integer n such that

ϕ = ∆
neψ, for some continuous function ψ : U(2) → C. We then get the following:

Theorem 3.3 Let σ be the trace on A(U(2)) constructed above. Let ϕ ∈ C(U(2)).

Then the Toeplitz operator Tϕ is Fredholm relative to σ if, and only if, ϕ never vanishes.

In this case, the corresponding Fredholm index of Tϕ is given by indσ(Tϕ) = − ind(ϕ).

Note that although, a priori, there is no reason to suppose that the index indσ
on A(U(2)) is integer-valued, this is, in fact, the case. This follows easily from the

fact that indσ is integer-valued on the Toeplitz operators. For, if T is an element of

A(U(2)), then we may write it in the form T = Tϕ+K, for some elementϕ ∈ C(U(2))

and some element K ∈ K [1, Theorem 15]. Hence, if T is σ-Fredholm, so is Tϕ and

indσ(T) = indσ(Tϕ) and the latter is an integer.
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The question of extending the index result of the preceding theorem to Toeplitz

operators on more general Hardy spaces (such as those considered in [9]) is a chal-

lenging one for the future. Two principal ingredients are needed: the existence of an

appropriate trace on the Toeplitz algebra and an appropriate concept of topological

index for the symbol of a Toeplitz operator. It is not at all clear that one or other

ingredient will be found in generality nor is it clear that if they are, an index theorem

can be proved. Nevertheless, the ideas of this section should provide some grounds

for optimism and also some pointers for tackling this very interesting question. (The

index theory developed in [10] also provides grounds for optimism.)
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