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Abstract
A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that
if G1, . . . ,Gm are nearly disjoint graphs of maximum degree at most D, then the following holds. For every
fixed C, if each vertex v ∈ ⋃m

i=1 V(Gi) is contained in at most C of the graphs G1, . . . ,Gm, then the (list)
chromatic number of

⋃m
i=1 Gi is at most D+ o(D). This result confirms a special case of a conjecture of

Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded
maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus
implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring
result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.
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1. Introduction
A proper colouring of a graph G is an assignment of colours to the vertices of G such that no two
vertices assigned the same colour are adjacent, and the chromatic number of G, denoted χ(G), is
the minimal number of colours needed to properly colour G. A list assignment for a graph G is a
map Lwhose domain is the vertex setV(G) ofGwhere L(v) is a finite set called the ‘list of available
colours for v’, and an L-colouring of G is a proper colouring φ of G such that φ(v) ∈ L(v) for every
v ∈V(G). If G has an L-colouring, then G is L-colourable. The list chromatic number of G, denoted
χ�(G), is the minimum k ∈N such that G is L-colourable for every list assignment L satisfying
|L(v)| ≥ k for all v ∈V(G).

We say graphs G1, . . . ,Gm are nearly disjoint if |V(Gi)∩V(Gj)| ≤ 1 for all distinct i, j ∈ [m]. In
this paper, we prove an asymptotically optimal bound on the (list) chromatic number of a union of
nearly disjoint graphs of bounded maximum degree (see Theorem 1.1), which confirms a special
case of a conjecture of Vu (see Conjecture 1.2) and generalizes several well-known results on
hypergraph edge-colouring. We derive our bound from a more general result (see Theorem 1.3)
concerning L-colourings when L is a list assignment for a union of nearly disjoint graphs such that
L has bounded maximum colour degree. This result also implies a result of Reed and Sudakov [25].
We also prove a bound on the chromatic number of a union of nearly disjoint graphs of bounded
chromatic number (see Theorem 1.4).
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1.1 Line graphs of linear hypergraphs and nearly disjoint graph unions
A hypergraphH is a pairH= (V , E) whereV is a set whose elements are called vertices and E⊆ 2V
is a set of subsets of V whose elements are called edges. A proper edge-colouring of a hypergraph
H is an assignment of colours to the edges of H such that no two edges of the same colour share
a vertex, and the chromatic index of H, denoted χ ′(H), is the minimum number of colours used
by a proper edge-colouring ofH. The line graph of a hypergraphH is the graph G where V(G) is
the edge set ofH, and e, f ∈V(G) are adjacent in G if e∩ f 	= ∅. Note that the chromatic index of
a hypergraph is the chromatic number of its line graph. The list chromatic index of a hypergraph
H, denoted χ ′

�(H), is the list chromatic number of its line graph.
A hypergraph H is linear if every two distinct edges of H intersect in at most one vertex and

k-bounded if every edge of H has size at most k. A celebrated result of Pippenger and Spencer
[22] implies that k-bounded linear hypergraphs of maximum degree at most D have chromatic
index at most D+ o(D) for fixed k as D→ ∞, and a similarly influential result of Kahn [14]
generalizes the Pippenger–Spencer theorem to list colouring. (Both of these results apply more
generally to hypergraphs of small codegree, and not only to linear hypergraphs.) An intermediate
result of Kahn [13, Theorem 3] was also crucial to proving the Erdős–Faber–Lovász conjecture
asymptotically. This conjecture states that a nearly disjoint union of n complete graphs, each on at
most n vertices, has chromatic number at most n, and it was recently confirmed for all large n by
Kang, Methuku, and the authors [17]. Note that the line graph of a k-bounded linear hypergraph
is a union of nearly disjoint complete graphs, such that at most k of them contain any given vertex.
Thus, the following result strengthens both the Pippenger–Spencer theorem and Kahn’s list edge-
colouring theorem for the case of linear hypergraphs.

Theorem 1.1. For every C, ε > 0, the following holds for all sufficiently large D. If G1, . . . ,Gm
are nearly disjoint graphs of maximum degree at most D, such that each vertex v ∈ ⋃m

i=1 V(Gi)
is contained in at most C of them, then χ�

(⋃m
i=1 Gi

) ≤ (1+ ε)D.

Theorem 1.1 also confirms a special case of the following conjecture of Vu [27], and (as our
discussion shows) it recovers several of its significant consequences.

Conjecture 1.2 (Vu [27]). For every ζ , ε > 0, the following holds for all sufficiently large D. If G
is a graph of maximum degree at most D and every two distinct vertices have at most ζD common
neighbours in G, then χ�(G)≤ (ζ + ε)D.

Indeed, Conjecture 1.2, if true, implies Theorem 1.1 with 1/C and C(D+ C2) playing the roles
of ζ and D, respectively. If G1, . . . ,Gm are nearly disjoint graphs of maximum degree at most D,
such that each vertex v ∈ ⋃m

i=1 V(Gi) is contained in at most C of them, then every two distinct
vertices in G := ⋃m

i=1 Gi have at most D+ C2 common neighbours, and G has maximum degree
at most CD. Vu [27] initially observed that a similar argument shows that Conjecture 1.2 implies
Kahn’s [14] bound on the list chromatic index of linear hypergraphs of boundedmaximumdegree,
and this was a major motivation for the conjecture: ‘The bound in [Conjecture 1.2], if valid, would
be an amazing result. For instance, it would immediately imply a deep theorem of Kahn on the
list chromatic index of [linear] hypergraphs.’ [27, p. 109]. The only other nontrivial result towards
Vu’s conjecture so far was recently obtained by Hurley et al. [12], who proved a bound on the
chromatic number of graphs as in Conjecture 1.2. Their result confirms the weaker version of the
conjecture that considers the chromatic number rather than the list chromatic number, in the case
when ζ > 1− o(ε2/3). We remark that even finding an independent set of the required size is still
an open problem (which was already raised by Vu [27]).

1.2 colour degrees
Our main result in this paper is actually a generalization of Theorem 1.1 that also implies a result
of Reed and Sudakov [25]. For a graph G with list assignment L, we define the colour degree of
each v ∈V(G) and c ∈ L(v) to be dG,L(v, c) := |{u ∈NG(v) : c ∈ L(u)}| and the maximum colour
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degree of G and L to be�(G, L) := maxv∈V(G) maxc∈L(v) dG,L(v, c). Note that�(G, L)≤�(G). The
following is our main result.

Theorem 1.3. For every C, ε > 0, the following holds for all sufficiently large D. Let G1, . . . ,Gm be
graphs that

(i) are nearly disjoint and
(ii) satisfy |{i ∈ [m] : v ∈V(Gi)}| ≤ C for every v ∈ ⋃m

i=1 V(Gi).

If L is a list assignment for G := ⋃m
i=1 Gi satisfying

(iii) �(Gi, L|V(Gi))≤D for every i ∈ [m] and
(iv) |L(v)| ≥ (1+ ε)D for every v ∈V(G),

then G is L-colourable.

Note that Theorem 1.1 immediately follows from Theorem 1.3.
Theorem 1.3 actually holds more generally for correspondence colouring, also known as DP-

colouring (see Theorem 5.2), and this result also implies the recent result ofMolloy and Postle [19],
that k-bounded linear hypergraphs of maximum degree at most D have correspondence chromatic
index at most D+ o(D). A proof of Theorem 5.2 can be obtained with only minor modifications
to our argument used to prove Theorem 1.3. Thus, for the sake of presentation, we choose to first
provide a complete proof of Theorem 1.3 for list colouring. Then, in Section 5, we describe the
modifications necessary to prove Theorem 5.2, its correspondence colouring generalization.

The casem= 1 (or equivalently,C = 1) in Theorem 1.3 is a result of Reed and Sudakov [25]. For
every C ∈N, let fC(D) denote the smallest integer for which the following holds: If G1, . . . ,Gm are
graphs satisfying (i) and (ii), and if L is a list assignment for G := ⋃m

i=1 Gi satisfying (iii) such that
|L(v)| ≥D+ fC(D) for every v ∈V(G), then G is L-colourable. Clearly, fC(D)≥ 1. Theorem 1.3
implies that fC(D)= o(D), but it would be interesting to prove better asymptotics. A bound of
fC(D)≤D1−1/C forC ≥ 2 wouldmatch the best known bound on the list chromatic index of linear
hypergraphs due to Molloy and Reed [20]. Reed [24] conjectured that f1(D)= 1 for every D ∈N.
Bohman and Holzman [4] disproved this conjecture, and Reed and Sudakov [25] asked whether
f1(D)=O(1). Another interesting direction would be to generalize Theorem 1.3 so as to also imply
the generalization of the Reed–Sudakov result in which the maximum colour degree condition
is replaced with an average one, proved by Glock and Sudakov [10] and Kang and Kelly [18].
For other related results and open problems involving list colouring and colour degrees, see for
example [1–3, 6]. More generally, for a recent survey on colouring results and open problems
obtained via nibble methods, see [16].

1.3 colouring nearly disjoint graphs of bounded chromatic number
Erdős proposed several variations of the Erdős–Faber–Lovász conjecture. For example, relaxing
the condition of nearly disjointness, Erdős [8, Problem 9] asked for the largest possible chromatic
number of a union of n complete graphs, each on at most n vertices, that pairwise intersect in
at most t vertices. Building on the methods of [17], this problem was recently solved by Kang,
Methuku, and the authors [15]. Here we discuss a problem related to a question of Erdős [9, p.
26] on bounds on the chromatic number of a union of nearly disjoint graphs Gi if we know their
chromatic number (rather than their maximum degree as in Section 1.1).

Accordingly, for a family G of graphs and m ∈N, let f (m, G) be the largest possible chromatic
number of the union of at mostm nearly disjoint graphs in G. Recall that the Erdős–Faber–Lovász
conjecture states that a nearly disjoint union of n complete graphs, each on at most n vertices,
has chromatic number at most n. Thus, the Erdős–Faber–Lovász conjecture can be expressed as
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follows: For all n ∈N, we have f (n, {K1, . . . ,Kn})≤ n, where Kt denotes the complete graph on
t vertices. However, it is straightforward to show that f (n, {K1, . . . ,Kn})≤max{n, f (n, {Kn−1})},
and it is well-known that f (n, {Kn−1})≥ n for n≥ 3. Hence, the Erdős–Faber–Lovász conjecture
can be reduced to the seemingly weaker statement that f (n, {Kn−1})≤ n for every n ∈N.

Erdős [9, p. 26] proposed the following variation of the Erdős–Faber–Lovász conjecture: ‘Let
G1, . . . ,Gm be m graphs each of chromatic number n. Assume that no two G’s have an edge in
common. What is the smallest m for which

⋃m
i=1 Gi has chromatic number greater than n? Perhaps

one can further demand that any two G’s have at most one vertex in common.’ It turns out the
answers to these two questions are ‘two’ and ‘three’ respectively. (For the former, observe that a
complete graph on n+ 1 vertices can be expressed as the union of a complete graph on n vertices
and a star with no edges in common; for the latter, see Theorem 1.4(ii) below.) The latter question
can also be expressed as follows: What is the smallest m for which f (m, Gχn )> n, where Gχn is the
set of graphs of chromatic number at most n? Although this question is straightforward to answer,
we believe that further analysis of the function f (m, Gχn ) itself is warranted (which was probably
the original intention of the above question of Erdős). In this direction, we prove the following.

Theorem 1.4.

(i) The following holds for all m, n ∈N with m+ n sufficiently large: If G1, . . . ,Gm are nearly
disjoint graphs, each of chromatic number at most n, then χ

(⋃m
i=1 Gi

) ≤m+ n− 2.
(ii) For every n≥ 2, there exist nearly disjoint graphs G1,G2,G3, each of chromatic number at

most n, such that χ(G1 ∪G2 ∪G3)≥ n+ 1.

Theorem 1.4(i) implies that f (m, Gχn )≤m+ n− 2 when m+ n is sufficiently large, and
Theorem 1.4(ii) implies that this bound is tight for m= 3. However, this bound can likely be
improved for larger m. In particular, it is tempting to conjecture that f

(
n, Gχn−1

) ≤ n, which by
the discussion above, would imply the Erdős–Faber–Lovász conjecture if true; however, this was
disproved by Postle [23], as follows.

Theorem 1.5 (Postle [23]). For every m ∈N divisible by three and n≥m− 1, there exist nearly
disjoint graphs G1, . . . ,Gm, each of chromatic number at most n, such that χ

(⋃m
i=1 Gi

) ≥ n+m/6.

Because of the connection to the Erdős–Faber–Lovász conjecture, we find it most interesting
to study the function f

(
n, Gχn−1

)
. Theorems 1.4(i) and 1.5 imply that for large n we have

7n− 8
6

≤ f
(
n, Gχn−1

) ≤ 2n− 3. (1)

We think it would be interesting to determine limn→∞ f
(
n, Gχn−1

)
/n, assuming the limit exists.

By (1), it would be in the range [7/6, 2].
Considering Theorem 1.1, it is natural to also ask for f

(
n, G�n−1

) (
or f

(
n, G�n−2

))
, where G�n

is the set of graphs of maximum degree at most n. However, it is straightforward to show that
f
(
n, G�n−1

) = f (n, {Kn})= f (n, {Kn−1})= f
(
n, G�n−2

)
for every n≥ 3.

1.4 Outline of the paper
Sections 2–4 are devoted to the proof of Theorem 1.3. We prove Theorem 1.3 using a semi-
random colouring procedure (also referred to as the ‘nibble method’). Each step of this procedure
is obtained by an application of Lemma 2.1, which is proved in Section 4. Section 3 provides
some probabilistic tools needed in the proof of Lemma 2.1. In Section 2, we prove Theorem 1.3
(assuming Lemma 2.1). As mentioned, Theorem 1.3 holds more generally for correspondence
colouring. In Section 5, we formally state this generalization and describe how to modify the proof
of Theorem 1.3 to prove it. In Section 6, we prove Theorems 1.4 and 1.5.
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2. Proof of Theorem 1.3
In this section we prove Theorem 1.3, assuming the following lemma. Given k ∈Z, we write
logk D := ( logD)k, where the logarithm is base e. Given�,D, C, p ∈R, we also define

�E(�,D, C, p) :=
(
1− p

�

)DC
� and

DE(�,D, C, p) :=
(
(1− p)

(
1− p

�

)D(C−1) + p
(
1−

(
1− p

�

)DC))
D.

Lemma 2.1. For every C, ε > 0, there exists D5.3 such that the following holds for every D≥D(5.3).
Let G1, . . . ,Gm be graphs, and let L be a list assignment for G := ⋃m

i=1 Gi satisfying (i)–(iv) (of
Theorem 1.3). If |L(v)| = ��� for every v ∈V(G), where (1+ ε)D≤�≤ 10CD, and if log−1 D≥
p≥ log−2 D, then there exist X ⊆V(G), an L|X-colouring φ of G[X], and a list assignment L′ for
G− X satisfying L′(v)⊆ L(v) \ {φ(u) : u ∈NG(v)∩ X} for every v ∈V(G) \ X, such that
(2.1.1) |L′(v)| = ⌈

�E(�,D, C, p)−�4/5⌉ for every v ∈V(G) \ X and
(2.1.2) �(Gi − X, L′|V(Gi−X))≤DE(�,D, C, p)+D4/5 for every i ∈ [m].

We prove Lemma 2.1 in Section 4 by analysing a random colouring procedure, but we already
explain some of the ideas involved in the proof now. In our random colouring procedure, we
randomly assign each vertex v ∈V(G) a colour ψ(v) ∈ L(v) uniformly at random from its list, and
we ‘activate’ vertices independently at random with probability p. (We really only need to assign
colours to activated vertices, but for technical reasons it is convenient to define the procedure
this way.) For each vertex, we remove any colour from its list assigned to an activated neighbour,
and we let X be the set of activated vertices whose colour was not assigned to any of its activated
neighbours. We obtain L′ by further truncating each vertex’s list to have the desired size, and we
show that with nonzero probability, X, L′, and φ := ψ |X satisfy (2.1.1) and (2.1.2).

To that end, assuming without loss of generality that dGi,L(v, c)=D for every i ∈ [m] and
v ∈V(Gi) with c ∈ L(v) (see Proposition 4.1), it is straightforward to show that a vertex ‘keeps’
a given colour in its list with probability (1− p/�)DC (see Proposition 4.2). Thus, after applying
this procedure, �E(�,D, C, p) is the expected number of remaining available colours for each
vertex, and DE(�,D, C, p) is an upper bound on the expected colour degree of each pair of ver-
tex and colour from its list (see (4) and Lemma 4.3). We show that with very high probability (at
least 1− exp

(−D1/4) – see Lemma 4.5), the number of remaining colours available for a given
vertex, and the colour degree in G− X of a given pair of vertex and colour, are not significantly
larger than �E(�,D, C, p) and DE(�,D, C, p), respectively. We complete the proof by applying
the Lovász Local Lemma.

To prove Theorem 1.3, we iteratively apply Lemma 2.1 O(Cε−1 logD) times, each time reap-
plying the lemma with p= log−1 D and with G1 − X, . . . ,Gm − X and L′ playing the roles of
G1, . . . ,Gm and L, respectively, before completing the colouring with Lemma 2.3 below. The
requirement L′(v)⊆ L(v) \ {φ(u) : u ∈NG(v)∩ X} ensures that adjacent vertices are not assigned
the same colour in different iterations, so each iteration extends a proper partial colouring of G.

This approach – known as the ‘nibble method’ or the ‘semi-random method’ – has led to
numerous important developments in graph colouring (see [16, 21]). Our random colouring pro-
cedure was in fact already used by Reed and Sudakov [25] to prove the special case of Theorem 1.3
when C = 1; however, our analysis of the procedure is different even in this special case, drawing
ideas from a recent proof of Kang and Kelly [18], and we need new ideas to analyse the proce-
dure for C> 1. Recall that Theorem 1.3 also implies Kahn’s [14] bound on the chromatic index
of linear uniform hypergraphs and that Theorem 5.2 implies Molloy and Postle’s [19] generaliza-
tion of Kahn’s result to correspondence colouring. These edge-colouring results are also proved
with a semi-random approach, but the random colouring procedures used in these proofs are
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slightly different from ours. Since vertices may lose colours unnecessarily in our procedure – it
would suffice to only remove colours from a vertex’s list that were assigned to a neighbour in X,
but this version of the procedure would be more challenging to analyse – Reed and Sudakov [25]
called the procedure ‘wasteful’ (see also [21, Chapter 12]). Nevertheless, this wastefulness is negli-
gible because our activation probability p is small. However, Kahn [14] did not consider activation
probabilities and consequently could not afford to use a wasteful variant of his procedure. Molloy
and Postle’s [19] proof does consider activation probabilities but is still different from ours, even
in the special case of edge-colouring; in particular, vertices (of the line graph) may be assigned
multiple colours in their colouring procedure.

Let us now explain how we use Lemma 2.1 to prove Theorem 1.3. Crucially, (2.1.1) and (2.1.2)
together imply that after each iteration of Lemma 2.1, the ratio of the number of remaining avail-
able colours for each vertex to the maximum remaining colour degree in each Gi, while initially
only 1+ ε, improves by a factor of at least 1+ εp/4. Moreover, the number of available colours
does not decrease too much in each iteration. The following proposition makes this calculation
precise.

Proposition 2.2. For every C ≥ 1 and 0< ε < 1 there exists D2.2 such that the following holds for
every D≥D2.2. If log−1 D≥ p≥ log−2 D and 10CD≥�≥ (1+ ε)D, then

�E(�,D, C, p)−�4/5

DE(�,D, C, p)+D4/5 ≥ (1+ εp/4)
�

D
(2)

and

DE(�,D, C, p)≥ (1− pC)D. (3)

Proof. First we prove (3). Clearly,

(1− p)
(
1− p

�

)D(C−1)
D≥ (1− p)(1− p(C − 1))D≥ (1− pC)D,

and (3) follows immediately, since p
(
1− (

1− p/�
)DC)

> 0.
Now we prove (2). By (3), since�≤ 10CD and log−1 D≥ p≥ log−2 D,

�4/5

DE(�,D, C, p)+D4/5 ≤ 10CD4/5

(1− pC)D
≤ εp

100
· �
D
.

Let

W := (1− p)
(
1− p

�

)−D + p
((

1− p
�

)−DC − 1
)

+
(
1− p

�

)−DC
D−1/5,

and note that
�E(�,D, C, p)

DE(�,D, C, p)+D4/5 = 1
W

· �
D
.

Since 1+ x≤ (1+ x/n)n for x≤ |n| and�≥ (1+ ε)D, we have

W ≤ 1− p
1− p/(1+ ε)

+ p
(

1
1− pC/(1+ ε)

− 1
)

+ D−1/5

1− pC/(1+ ε)
≤ 1− p+ p

1+ ε
+O(p2)

≤ 1− pε
3
.
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Since (1− pε/3)−1 ≥ 1+ pε/3, by combining the inequalities above, we have that the left side of
(2) is at least

(
1+ pε/3− εp/100

) �
D

≥ (1+ εp/4)
�

D
,

as desired. �
We apply Lemma 2.1 iteratively until the ratio of the number of remaining available colours to

the maximum remaining colour degree reaches 8CD: (2) will imply that this ratio improves by a
factor of at least 1+ ε/(4 logD), so that we only need at most 33Cε−1 logD iterations, and (3) will
ensure that carrying out this many iterations is indeed possible. After this process, we can finish
with the following result of Reed [24] (which is proved via a simple application of the Lovász Local
Lemma).

Lemma 2.3 (Reed [24]). Let G be a graph with list assignment L. If |L(v)| ≥ 8D for every v ∈V(G)
and�(G, L)≤D, then G is L-colourable.

Now we prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, we may assume that ε < 1. Let p := log−1 D,
D0 := D and�0 := (1+ ε)D0, and for each integer 0≤ i≤ 33C/(εp), let

�i+1 := �E(�i,Di, C, p)−�
4/5
i and

Di+1 := DE(�i,Di, C, p)+D4/5
i .

Applying Proposition 2.2 inductively, for every integer 0≤ i≤ 33C/(εp), by (3) we have

Di ≥
(
1− pC

)33C/(εp) D0 ≥ e−33C2/ε(1− 33C3p/ε)D0 ≥ e−34C2/εD0,

where the second inequality uses that (1+ x/n)n ≥ ex(1− x2/n) for |x| ≤ n. By (2),

�i
Di

≥
(
1+ εp

4

) �i−1
Di−1

.

Moreover, we have

���33C/(εp)��
D�33C/(εp)�

≥
(
1+ εp

4

)�33C/(εp)� �0
D0

≥ 8C.

In particular, there exists an integer 0< i∗ ≤ 33C/(εp) such that ��i∗�/Di∗ ≥ 8C and
��i∗−1�/Di∗−1 < 8C. We may assume D is sufficiently large so that Di∗ ≥D2.1.

By (iv), we may assume without loss of generality that |L(v)| = ��0� for every v ∈V(G), since
we can truncate each list until equality holds. Now let Gj,0 := Gj for each j ∈ [m], letH0 := G, and
let L0 := L. Due to the above calculations, inductively by Lemma 2.1, for each integer 0≤ i< i∗,
there is a set Xi ⊆V(Hi) and an Li|Xi-colouring φi ofHi[Xi] and a list assignment Li+1 forHi+1 :=
Hi − Xi satisfying Li+1(v)⊆ Li(v) \ {φi(u) : u ∈NHi(v)∩ Xi} such that

• �
(
Gj,i+1, Li+1|V(Gj,i+1)

)
≤Di+1 for each j ∈ [m] and

• |Li+1(v)| = ��i+1� ≥ (1+ ε)Di+1,

where Gj,i+1 := Gj,i − Xi.
Let X := ⋃i∗−1

i=1 Xi, let φ(v) := φi(v) if v ∈ Xi for some integer 0≤ i< i∗, let G′ := Hi∗ , and let
L′ := Li∗ . By construction, φ is an L|X-colouring of G[X], and by the choice of i∗, we have
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• |L′(v)| ≥ 8CDi∗ and

• �(G′, L′)≤ Cmax{�
(
Gj,i∗ , Li∗ |V(

Gj,i∗
)
)
:j ∈ [m]} ≤ CDi∗ .

Therefore by Lemma 2.3, G′ has an L′-colouring φ′, and we can combine φ and φ′ to obtain an
L-colouring of G, as desired. �

3. Probabilistic tools
In this section we provide some probabilistic tools used in the proof of Lemma 2.1 in Section 4.
The first such tool is the Lovász Local Lemma.

Lemma 3.1 (Lovász Local Lemma [7]). Let p ∈ [0, 1) andA a finite set of events such that for every
A ∈A,

• P [A]≤ p, and
• A is mutually independent of a set of all but at most d other events inA.

If 4pd ≤ 1, then the probability that none of the events inA occur is strictly positive.

Next we need a concentration inequality of Bruhn and Joos [5], derived from Talagrand’s
inequality [26]. To that end, we introduce the following definition.

Definition 3.2. Let ((�i,�i, Pi)) be probability spaces, and let (�,�, P) be their product space.
We say a random variable X :� →R has upward (s, δ)-certificates with respect to a set of excep-
tional outcomes �∗ ⊆ � if for every ω ∈ � \ �∗ and every t> 0, there exists an index set I of size
at most s so that X(ω′)≥X(ω)− t for every ω′ ∈ � \ �∗ for which the restrictions ω|I and ω′|I
differ in at most t/δ coordinates.

Theorem 3.3 (Bruhn and Joos [5]). Let ((�i,�i, Pi)) be probability spaces, let (�,�, P) be their
product space, and let �∗ ∈ � be a set of exceptional outcomes. Let X :� →R be a non-negative
random variable, let M := max{sup X, 1}, and let δ ≥ 1. If P

[
�∗] ≤M−2 and X has upward (s, δ)-

certificates, then for t> 50δ
√
s,

P [|X−E [X]| ≥ t]≤ 4 exp
(

− t2

16δ2s

)
+ 4P

[
�∗].

4. Proof of Lemma 2.1
This section is devoted to the proof of Lemma 2.1. It will be convenient to assume that equality
holds in (ii) and (iii) of Theorem 1.3 and that moreover dGi,L(v, c)=D for every v ∈V(G) and
c ∈ L(v), so we first prove the following proposition which enables us to consider an embedding
of G for which these properties hold.

Proposition 4.1. Let C,�,D ∈N, let G1, . . . ,Gm be nearly disjoint graphs, and let L be a list
assignment for G := ⋃m

i=1 Gi. If |{i ∈ [m] : v ∈V(Gi)}| ≤ C and |L(v)| =� for every v ∈V(G) and
�(Gi, L|V(Gi))≤D for every i ∈ [m], then there exist nearly disjoint graphs G′

1, . . . ,G
′
m′ for some

m′ ≥m and a list assignment L′ for G′ := ⋃m′
i=1 G′

i such that

(4.1.1) Gi ⊆G′
i for every i ∈ [m],

(4.1.2) L′(v)= L(v) for every v ∈V(G),
(4.1.3) |{i ∈ [m′] : v ∈V(G′

i)}| = C for every v ∈V(G′),
(4.1.4) |L′(v)| =� for every v ∈V(G′), and
(4.1.5) dG′

i,L′(v, c)=D for every i ∈ [m′] and v ∈V(G′
i) with c ∈ L′(v).

https://doi.org/10.1017/S0963548323000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000299


Combinatorics, Probability and Computing 187

The proof of Proposition 4.1 can be found in the appendix. For the remainder of this section,
we let C, ε > 0, and we let D be sufficiently large, we let p satisfy log−1 D≥ p≥ log−2 D, and we
let G := ⋃m

i=1 Gi with list assignment L satisfying the hypotheses of Lemma 2.1. For convenience,
we assume � and D are integers where it does not affect the argument. By Proposition 4.1, we
may assume without loss of generality that |{i ∈ [m] : v ∈V(Gi)}| = C for every v ∈V(G) and that
dGi,L(v, c)=D for every i ∈ [m] and v ∈V(G) with c ∈ L(v).

For every pair (A,ψ) satisfying A⊆V(G) and ψ(v) ∈ L(v) for each v ∈V(G),

• let LA,ψ (v) := L(v) \ {ψ(u) : u ∈NG(v)∩A} for every v ∈V(G), and
• let XA,ψ := {v ∈A :ψ(v) ∈ LA,ψ (v)}.

Note that XA,ψ =A \ ⋃
v∈A{u ∈NG(v) :ψ(u)=ψ(v)}.

We will consider the probability space (�,�, P) of such pairs (A,ψ) where

• each vertex in G is in A independently and uniformly at random with probability p and
• ψ(v) ∈ L(v) is chosen independently and uniformly at random for each v ∈V(G).

Note that (�,�, P) is the product space of
(
�act

v ,�act
v , Pact

v
)
and

(
�col

v ,�col
v , Pcol

v

)
taken over all

v ∈V(G), where
(
�act

v ,�act
v , Pact

v
)
models whether v ∈A and

(
�col

v ,�col
v , Pcol

v

)
models the choice

of ψ(v). We will use this fact to apply Theorem 3.3.
We will use the Lovász Local Lemma to show that with nonzero probability, X = XA,ψ and

L′ = LA,ψ |V(G)\X (with lists possibly truncated) satisfy the lemma with φ =ψ |X . To that end, we
define the following random variables for each vertex v ∈V(G) and c ∈ L(v) and i ∈ [m]:

• �v(A,ψ) :=
∣∣LA,ψ (v)∣∣,

• Dv,c,i(A,ψ) :=
∣∣{u ∈NGi(v) : c ∈ LA,ψ (u)

} \ XA,ψ
∣∣,

• Yv,c,i(A,ψ) :=
∣∣{u ∈NGi(v)∩A : c ∈ L(u)

} \ XA,ψ
∣∣,

• Rv,c,i(A,ψ) :=
∣∣∣{u ∈NGi(v) \A : c ∈ L(u)

} \ ⋃
u∈A\V(Gi) :ψ(u)=c NG(u)

∣∣∣.
Note that
Dv,c,i(A,ψ)=Yv,c,i(A,ψ)− |{u ∈ (NGi(v)∩A) \ XA,ψ : c ∈ L(u)} \

⋃
u∈A :ψ(u)=c

NG(u)}|

+ |{u ∈NGi(v) \A : c ∈ L(u)} \
⋃

u∈A :ψ(u)=c
NG(u)}| ≤Yv,c,i(A,ψ)+Rv,c,i(A,ψ).

(4)
To apply the Lovász Local Lemma, we first show that for each v ∈V(G), we have that �v is at least
the quantity in (2.1.1) with high probability, and for each c ∈ L(v) and i ∈ [m] such that v ∈V(Gi),
we have that Dv,c,i is at most the quantity in (2.1.2) with high probability. To that end, we first
compute the expectation of these random variables and then apply Theorem 3.3. However, it is
not possible to apply Theorem 3.3 to Dv,c,i directly to obtain any meaningful bound. (Consider
the case C =m= 1 when G1 is complete. Either no vertex in A is assigned c, in which case c ∈
LA,ψ (u) for every vertex u, or some vertex in A is assigned c, in which case c /∈ LA,ψ (u) for all
u ∈V(G).) Nevertheless, we can apply Theorem 3.3 to both Yv,c,i and Rv,c,i and moreover show
that Yv,c,i +Rv,c,i is at most the quantity in (2.1.2) with high probability. Hence, (4) implies the
required bound forDv,c,i as well.

In order to compute the expected values of �v, Yv,c,i, and Rv,c,i, we need the following simple
proposition.
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Proposition 4.2. For every i ∈ [m], v ∈V(Gi), and c ∈ L(v),

P
[	 ∃u ∈NGi(v)∩A such that ψ(u)= c

] =
(
1− p

�

)D
. (5)

Moreover, for every v ∈V(G) and c ∈ L(v),

P
[
c ∈ LA,ψ (v)

] =
(
1− p

�

)DC
. (6)

Proof. First we prove (5). For each u ∈NGi(v) with c ∈ L(u), we have P [u ∈A]= p and
P [ψ(u)= c]= 1/�, and the events that u ∈A and thatψ(u)= c are independent.Moreover, these
events are mutually independent for all such u, so

P
[	 ∃u ∈NGi(v)∩A s.t. ψ(u)= c

] =
∏

u∈NGi (v) : c∈L(u)
(1− P [u ∈A] · P [ψ(u)= c])=

(
1− p

�

)D
,

as desired.
Now we prove (6). For every v ∈V(G) and c ∈ L(v), we have c ∈ LA,ψ (v) if and only if there is

no u ∈NGi(v)∩A with ψ(u)= c for every i for which v ∈V(Gi). By (i), these events are mutually
independent for all such i (of which there are C by (ii)), so by (5),

P
[
c ∈ LA,ψ (v)

] =
∏

i∈[m] : v∈V(Gi)
P

[	 ∃u ∈NGi(v)∩A s.t. ψ(u)= c
] =

(
1− p

�

)DC
,

as desired. �
Now we compute the expectations of our random variables.

Lemma 4.3. Every vertex v ∈V(G) satisfies

E [�v]=
(
1− p

�

)DC
�=�E(�,D, C, p). (7)

Moreover, for every i ∈ [m], v ∈V(Gi), and c ∈ L(v),

E
[
Yv,c,i

] = p
(
1−

(
1− p

�

)DC)
D and (8)

E
[
Rv,c,i

] = (1− p)
(
1− p

�

)D(C−1)
D. (9)

Proof. By the linearity of expectation, we have E [�v]= ∑
c∈L(v) P

[
c ∈ LA,ψ (v)

]
, so (7) follows

from (6).
Again by the linearity of expectation, we have

E
[
Yv,c,i

] =
∑

u∈NGi (v) : c∈L(u)
P

[
u ∈A and u /∈ XA,ψ

]
.

Note that P
[
u ∈A and u /∈ XA,ψ

] = P
[
u ∈A and ψ(u) /∈ LA,ψ (u)

]
, and the events that u ∈A

and that ψ(u) /∈ LA,ψ (u) are independent. We have P [u ∈A]= p and P
[
ψ(u) /∈ LA,ψ (u)

] = 1−(
1− p/�

)DC by (6), so (8) follows from the equation above.
By the linearity of expectation, we have

E
[
Rv,c,i

] =
∑

u∈NGi (v) : c∈L(u)
P

[
u /∈A and ψ(w) 	= c∀w ∈NGj(u)∩A, j ∈ [m] \ {i}

]
.
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By (5), P
[
ψ(w) 	= c∀w ∈NGj(u)∩A, j ∈ [m] \ {i}

]
= (

1− p/�
)D(C−1). Since the events that u /∈

A and ψ(w) 	= c∀w ∈NGj(u)∩A, j ∈ [m] \ {i} are independent, (9) follows from the equation
above. �

Now we need to show that the random variables in Lemma 4.3 are close to their expectation
with high probability. We use Theorem 3.3, the ‘exceptional outcomes’ version of Talagrand’s
Inequality. To that end, we define an exceptional outcome for each vertex and show that it is
unlikely. First, for each vertex v ∈V(G) and c ∈ L(v) and i ∈ [m], we define the random variable

• Fv,c,i(A,ψ) :=
∣∣{u ∈NGi(v) :ψ(u)= c

}∣∣.
Then, for each vertex v ∈V(G) and i ∈ [m], we define

• �∗
v,i = {(A,ψ) : ∃u ∈ {v} ∪NGi(v)∪N2

Gi
(v), ∃c ∈ L(u), Fu,c,i(A,ψ)≥ logD},

where N2
Gi
(v) is the set of vertices at distance two from v in Gi. To apply Theorem 3.3 to Yv,c,i, we

will show that Yv,c,i has upward (s, δ)-certificates with respect to exceptional outcomes �∗
v,i with

s= 4D and δ = logD. It turns out that we need to consider these exceptional outcomes because,
for example, if there is a set of more than logD vertices inNGi(v)∩A that are all assigned the same
colour, then changing the outcome of a single trial (in particular the trial determining either ψ(u)
or whether u ∈A for some u ∈ {v} ∪NGi(v)∪N2

Gi
(v) for which Fu,c,i(A,ψ)≥ logD for some c ∈

L(u)) can affect the value of Yv,c,i by more than logD (see the final part of the proof of Lemma 4.5
for more details). We remark that the event �∗

v,i contains more outcomes than is necessary; it is
simplymore convenient to consider�∗

v,i, and the argument adapts more easily for correspondence
colouring in Section 5.

Now we bound the probability of these exceptional events. For this, we assume without loss of
generality that uv ∈ E(G) only if L(u)∩ L(v) 	= ∅, so each Gi has maximum degree at most�D.

Proposition 4.4. Every vertex v ∈V(G) and i ∈ [m] satisfies

P
[
�∗

v,i
] ≤ 113C3D5 (

logD
)− logD .

Proof. First we bound the probability that Fu,c,i is too large for each u ∈V(G) and c ∈ L(u), as
follows:

P
[
Fu,c,i ≥ logD

] ≤
D∑

i=�logD�

(
D
i

) (
1
�

)i
≤

D∑
i=�logD�

(
eD
i�

)i
≤

D∑
i=�logD�

(e
i

)i
.

Since each term in the sum is at most (e/ logD)logD and there are at most D terms, it follows
that

P
[
Fu,c,i ≥ logD

] ≤D2 (
logD

)− logD .

Thus, combining the above inequality with the Union Bound, we have P
[
�∗

v,i
] ≤�(1+�D+

�2D2)
(
logD

)− logD ≤ 113C3D5 (
logD

)− logD, as desired. �
Combining Theorem 3.3 and Proposition 4.4, we show that �v, Yv,c,i, and Rv,c,i are close to

their expectation with high probability in the following lemma.

Lemma 4.5. Every vertex v ∈V(G) satisfies

P
[|�v −E [�v]|>D2/3] ≤ exp

(−D1/4) . (10)
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Moreover, if v ∈V(Gi) and c ∈ L(v), then

P
[∣∣Yv,c,i −E

[
Yv,c,i

]∣∣>D2/3] ≤ exp
(−D1/4) and (11)

P
[∣∣Rv,c,i −E

[
Rv,c,i

]∣∣>D2/3] ≤ exp
(−D1/4) . (12)

Proof. First we prove (10). We apply Theorem 3.3 with exceptional outcomes �∗ = ∅. To that
end, we show that �− �v has upward (s, δ)-certificates with respect to �∗, where s= 2� and
δ = 1. Let (A,ψ) ∈ �. For every c ∈ L(v) \ LA,ψ (v), there is at least one neighbour u ∈NG(v) of v
such that u ∈A and ψ(u)= c. Choose one such neighbour, and denote it by uc. Let IA,ψ index the
trials determining whether uc ∈A and ψ(uc)= c for each c ∈ L(v) \ LA,ψ (v). Now if (A′,ψ ′) ∈ �

differs from (A,ψ) in at most t of the trials indexed by IA,ψ (and differs arbitrarily for trials not
indexed by IA,ψ ), then all but at most t colours in L(v) \ LA,ψ (v) are also in L(v) \ LA′,ψ ′(v). Hence,
�− �v(A′,ψ ′)≥�− �v(A,ψ)− t, and since IA,ψ ≤ 2�= s, it follows that�− �v has upward
(s, δ)-certificates, as desired. Therefore by Theorem 3.3 with t =D2/3,

P
[|�v −E [�v]|>D2/3] ≤ 4 exp

(
−D4/3

32�

)
≤ exp

(−D1/4) ,
as desired.

Now we prove (12). We apply Theorem 3.3 with exceptional outcomes �∗ = ∅. To that end,
we show that D−Rv,c,i has upward (s, δ)-certificates with respect to �∗, where s= 3D and δ = 1.
Let (A,ψ) ∈ �, and note that

D−Rv,c,i(A,ψ)= |{x ∈NGi(v) : c ∈ L(x)} ∩ (A∪
⋃

w∈A\V(Gi) :ψ(w)=c
NG(w))|.

For every u ∈ {x ∈NGi(v) : c ∈ L(x)} ∩ ⋃
w∈A\V(Gi) :ψ(w)=c NG(w), there is at least one neighbour

w ∈NGj(u) of uwhere j ∈ [m] \ {i} such thatw ∈A andψ(w)= c. Choose one such neighbour, and
denote it bywu. By (i), the verticeswu are distinct for different choices of u. Let IA,ψ index the trials
determining whether u ∈A for each u ∈ {x ∈NGi(v) : c ∈ L(x)} and whetherwu ∈A andψ(wu)= c
for each u ∈ {x ∈NGi(v) : c ∈ L(x)} ∩ ⋃

w∈A\V(Gi) :ψ(w)=c NG(w). Now if (A′,ψ ′) ∈ � differs from
(A,ψ) in at most t of the trials indexed by IA,ψ (and differs arbitrarily for trials not indexed
by IA,ψ ), all but at most t vertices in {x ∈NGi(v) : c ∈ L(x)} ∩ (A∪ ⋃

w∈A\V(Gi) :ψ(w)=c NG(w))
are in {x ∈NGi(v) : c ∈ L(x)} ∩ (A′ ∪ ⋃

w∈A′\V(Gi) :ψ ′(w)=c NG(w)). Hence,D−Rv,c,i(A′,ψ ′)≥D−
Rv,c,i(A,ψ)− t, and since IA,ψ ≤ 3D= s, it follows that Rv,c,i has upward (s, δ)-certificates, as
desired. Therefore by Theorem 3.3 with t =D2/3,

P
[∣∣Rv,c,i −E

[
Rv,c,i

]∣∣>D2/3] ≤ 4 exp
(

−D4/3

48D

)
≤ exp

(−D1/4) ,
as desired.

Finally, we prove (11). We apply Theorem 3.3 with exceptional outcomes �∗ = �∗
v,i. To that

end, we show that Yv,c,i has upward (s, δ)-certificates with respect to �∗, where s= 4D and
δ = logD. Let (A,ψ) ∈ � \ �∗. For every u ∈ {x ∈NGi(v)∩A : c ∈ L(x)} \ XA,ψ , there is at least
one neighbour w ∈NG(u) of u such that w ∈A and ψ(w)=ψ(u). Choose one such neighbour,
and denote it by wu. Let IA,ψ index the trials determining whether u ∈A, whether wu ∈A, and
the assignment of ψ(u) and ψ(wu) for each u ∈ {x ∈NGi(v)∩A : c ∈ L(x)}. Since (A,ψ) /∈ �∗

v , the
multi-set {wu : u ∈ (NGi(v)∩A) \ XA,ψ , c ∈ L(u)} hasmaximummultiplicity at most logD (as oth-
erwise, if w appears more than logD times in this multi-set, then Fw,ψ(w),i(A,ψ)> logD). Hence,
if (A′,ψ ′) ∈ � differs from (A,ψ) in at most t/ logD of the trials indexed by IA,ψ (and differs
arbitrarily for trials not indexed by IA,ψ ), then all but at most t vertices in {x ∈NGi(v)∩A : c ∈
L(x)} \ XA,ψ are in {x ∈NGi(v)∩A′ : c ∈ L(x)} \ XA′,ψ ′ . Hence, Yv,c,i(A′,ψ ′)≥Yv,c,i(A,ψ)− t, and
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since IA,ψ ≤ 4D= s, it follows that Yv,c,i has upward (s, δ)-certificates, as desired. Therefore by
Theorem 3.3 with t =D2/3 and Proposition 4.4,

P
[∣∣Yv,c,i −E

[
Yv,c,i

]∣∣>D2/3] ≤ 4 exp
(

− D4/3

64D log2 D

)
+ 443C3D5 (

logD
)− logD ≤ exp

(−D1/4) ,
as desired. �

Finally we can prove Lemma 2.1, using Lemmas 4.3 and 4.5.

Proof of Lemma 2.1. First, rather than showing (2.1.1), it suffices to show that |L′(v)| ≥(
1− p/�

)DC
�−�4/5 for every v ∈V(G) \ X, since we can truncate each list until equality holds.

We consider (A,ψ) chosen randomly as described earlier, and we define the following set of
bad events for each vertex v ∈V(G) and c ∈ L(v) and i ∈ [m]:

Av = {
(A,ψ) :�v(A,ψ)<E [�v]−�4/5} ,

Av,c,i =
{
(A,ψ) :Yv,c,i >E

[
Yv,c,i

] +D4/5/2
}
, and

A′
v,c,i =

{
(A,ψ) :Rv,c,i(A,ψ)>E

[
Rv,c,i

] +D4/5/2
}
.

Letting A be the union of all such bad events, note that each event in A is mutually independent
of all but at most (���CD)4 ≤ (11C2D2)4 other events in A. By Lemma 4.5, every event in A
occurs with probability at most exp

(−D1/4). Therefore by the Lovász Local Lemma, there exists
(A,ψ) /∈A.

Now we show that X := XA,ψ and L′ := LA,ψ |V(G)\X satisfy the lemma with φ := ψ |X . Indeed,
φ is an L|X-colouring of G[X] and since X ⊆A, we have L′(v)⊆ L(v) \ {φ(u) : u ∈NG(v)∩
X}, as required. Moreover, for every v ∈V(G), since (A,ψ) /∈Av, by (7), we have |L′(v)| ≥(
1− p/�

)DC
�−�4/5, as desired, and if v ∈V(Gi) and c ∈ L(v), then since (A,ψ) /∈Av,c,i ∪A′

v,c,i,
by (4), (8), and (9), we have (2.1.2), as desired. �

5. Correspondence colouring
In this section we introduce correspondence colouring and describe how to generalize Theorem 1.3
to this setting.

Definition 5.1. Let G be a graph with list assignment L.

• IfM is a map with domain E(G) where for each e= uv ∈ E(G),M(e) is a matching of {u} ×
L(u) and {v} × L(v), we say (L,M) is a correspondence assignment for G.

• An (L,M)-colouring of G is a map φ with domain V(G) such that φ(u) ∈ L(u) for every
u ∈V(G), and every e= uv ∈ E(G) satisfies (u, φ(u))(v, φ(v)) /∈M(e). If G has an (L,M)-
colouring, then we say G is (L,M)-colourable.

• The correspondence chromatic number ofG, also called the DP-chromatic number,
denoted χDP(G), is the minimum k such that G is (L,M)-colourable for every correspon-
dence assignment (L,M) satisfying |L(v)| ≥ k for all v ∈V(G).

For convenience, if uv ∈ E(G), c1 ∈ L(u), c2 ∈ L(v), and (u, c1)(v, c2) ∈M(uv), we will just write
c1c2 ∈M(uv). For each v ∈V(G) and c ∈ L(v), we will let NG,(L,M)(v, c) := {(u, c′) : uv ∈ E(G), cc′ ∈
M(uv)}, and we omit the subscript in NG,(L,M)(v, c) when it is clear from the context. Note that
if for each e= uv ∈ E(G) and c ∈ L(u)∩ L(v), we have cc ∈M(uv), then an (L,M)-colouring is an
L-colouring. Hence, every graph G satisfies χ�(G)≤ χDP(G).

For a graph G with correspondence assignment (L,M), we define the colour degree of each
v ∈V(G) and c ∈ L(v) to be dG,(L,M)(v, c) := |NG,(L,M)(v, c)| and the maximum colour degree to be
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�(G, (L,M)) := maxv∈V(G) maxc∈L(v) dG,(L,M)(v, c). With only minor modifications to the argu-
ment used to prove Theorem 1.3, which we describe below, we can strengthen Theorem 1.3 to the
setting of correspondence colouring, as follows.

Theorem 5.2. For every C, ε > 0, the following holds for all sufficiently large D. Let G1, . . . ,Gm be
graphs that

(i) are nearly disjoint and
(ii) satisfy |{i ∈ [m] : v ∈V(Gi)}| ≤ C for every v ∈ ⋃m

i=1 V(Gi).

If (L,M) is a correspondence assignment for G := ⋃m
i=1 Gi satisfying

(iii) �(Gi, (L|V(Gi),M|E(Gi))≤D for every i ∈ [m] and
(iv) |L(v)| ≥ (1+ ε)D for every v ∈V(G),

then G is (L,M)-colourable.

As mentioned, Theorem 5.2 implies that Corollary 1.1 actually holds for the correspon-
dence chromatic number, which in turn implies the main result of [19], that linear and uniform
hypergraphs of maximum degree at most D have correspondence chromatic index at most D+
o(D).

To prove Theorem 5.2, we use the argument presented in Section 2, but with Lemmas 2.1 and
2.3 replaced with the following lemmas, respectively.

Lemma 5.3. For every C, ε > 0, there exists D5.3 such that the following holds for every D≥D5.3.
Let G1, . . . ,Gm be graphs, and let (L,M) be a correspondence assignment for G := ⋃m

i=1 Gi satis-
fying (i)–(iv) (of Theorem 5.2). If |L(v)| = ��� for every v ∈V(G), where (1+ ε)D≤�≤ 10CD,
and if log−1 D≥ p≥ log−2 D, then there exist X ⊆V(G), an (L|X ,M|E(G[X]))-colouring φ of G[X],
and a correspondence assignment L′ for G− X satisfying L′(v)⊆ {c ∈ L(v) : (v, c) ∈ ({v} × L(v)) \⋃

u∈X N(u, φ(u))} for every v ∈V(G), such that

(5.3.1) |L′(v)| = ⌈
�E(�,D, C, p)−�4/5⌉ for every v ∈V(G) \ X and

(5.3.2) �(Gi − X, (L′|V(Gi−X),M|E(Gi−X)))≤DE(�,D, C, p)+D4/5 for every i ∈ [m].

Lemma 5.4. Let G be a graph with correspondence assignment L. If |L(v)| ≥ 8D for every v ∈V(G)
and�(G, (L,M))≤D, then G is (L,M)-colourable.

Lemma 5.4, like Lemma 2.3, can be proved with a straightforward application of the Lovász
Local Lemma. A stronger result (with ‘|L(v)| ≥ 8D’ replaced by ‘|L(v)| ≥ 2D’) also follows easily
from a well-known result of Haxell [11] on independent transversals.

Therefore it remains to describe how the argument presented in Section 4 to prove Lemma 2.1
can be modified to obtain Lemma 5.3. We consider the same probability space (�,�, P) of pairs
(A,ψ), but we instead define LA,ψ (v) := {c ∈ L(v) : (v, c) ∈ ({v} × L(v)) \ ⋃

u∈A N(u,ψ(u))}. The
definition ofXA,ψ and of�v(A,ψ) remains the same, but we replace the definitions ofDv,c,i(A,ψ),
Yv,c,i(A,ψ), and Rv,c,i(A,ψ) with the following:

• Dv,c,i(A,ψ) :=
∣∣∣{(u, c′) ∈NGi,(L|V(Gi),M|E(Gi))(v, c) : u /∈ XA,ψ , c′ ∈ LA,ψ (u)

}∣∣∣,
• Yv,c,i(A,ψ) :=

∣∣∣{(u, c′) ∈NGi,(L|V(Gi),M|E(Gi))(v, c) : u ∈A \ XA,ψ
}∣∣∣, and

• Rv,c,i(A,ψ) :=
∣∣∣{(u, c′) ∈NGi,(L|V(Gi),M|E(Gi))(v, c) : u /∈A

}
\ ⋃

u∈A\V(Gi) NG,(L,M)(u,ψ(u))
∣∣∣.
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The definition of �∗
v,i remains the same, but we replace the definition of Fv,c,i(A,ψ) with the

following:

• Fv,c,i(A,ψ) :=
∣∣∣{(u, c′) ∈NGi,(LV(Gi),ME(Gi))(v, c) :ψ(u)= c′

}∣∣∣.
The remainder of the proof can be obtained via straightforward modifications, so we omit the
details. This completes the proof of Lemma 5.3 and in turn implies Theorem 5.2.

6. Proof of Theorems 1.4 and 1.5
In this section, we prove Theorems 1.4 and 1.5. Recall that f (m, G) is the largest possible chromatic
number of the union of at most m nearly disjoint graphs in G, and Gχn is the set of graphs of
chromatic number at most n. We begin by providing the construction that certifies that f (3, Gχn )≥
n+ 1.

Proof of Theorem 1.4(ii). LetH1 andH2 be complete graphs on n+ 1 vertices such thatV(H1)∩
V(H2)= {v} for some vertex v, let u ∈V(H1) \ {v}, let w ∈V(H2) \ {v}, let G1 := H1 − uv, let
G2 := H2 −wv, and let G3 be the graph consisting of the single edge uw. It is straightforward
to check that

• G1, G2, and G3 are nearly disjoint,
• χ(Gi)≤ n for every i ∈ [3], and
• χ(G1 ∪G2 ∪G3)= n+ 1,

as desired. �
To prove Theorem 1.4, it remains to prove the bound f (m, Gχn )≤m+ n− 2 when m+ n is

sufficiently large. First we note the following immediate consequence of the main result in [17]
(namely that the Erdős–Faber–Lovász conjecture holds for all sufficiently large n).

Theorem6.1 ([17]). The following holds for all sufficiently large C: If G1, . . . ,Gm are nearly disjoint
graphs satisfyingmax {m, |V(G1)|, . . . , |V(Gm)|} ≤ C, then χ

(⋃m
i=1 Gi

) ≤ C.

Proof of Theorem 1.4(i). Suppose to the contrary, and let G1, . . . ,Gm be nearly disjoint graphs,
each of chromatic number at most n, such that χ

(⋃m
i=1 Gi

)
>m+ n− 2 and |V (⋃m

i=1 Gi
) | is

minimum. Note that n≥ 2 as otherwise χ
(⋃m

i=1 Gi
) = 1. By Theorem 6.1 with n+m− 2 playing

the role of C, there exists i ∈ [m] such that |V(Gi)|>m+ n− 2, and we may assume without loss
of generality that i= 1. Let X := V(G1) \ ⋃m

i=2 V(Gi). Since G1, . . . ,Gm are nearly disjoint,

|X| ≥ |V(G1)| − (m− 1)≥ n. (13)

Since χ(G1)≤ n, there is a partition I1, . . . , In of V(G1) into independent sets. By (13) and the
pigeonhole principle, there exists some j ∈ [n] such that either |Ij ∩ X|> 1 or both Ij ∩ X and
Ij \ X are nonempty. We may assume without loss of generality that j= 1, so there exist dis-
tinct vertices u, v ∈ I1 such that u ∈ X. Let G′

1 be the graph obtained from G1 by identifying u
and v into a single new vertex. Crucially, G′

1,G2, . . . ,Gm are nearly disjoint, χ(G′
1)≤ n, and

χ(G′
1 ∪ ⋃m

i=2 Gi)≥ χ
(⋃m

i=1 Gi
)
, contradicting the choice of G1, . . . ,Gm to have |V (⋃m

i=1 Gi
) |

minimum. �
Now we prove Theorem 1.5. In this proof, we use a Latin square to construct a graph of large

chromatic number. An order-n Latin square is an n× n array of n symbols where each row and
column contains each symbol exactly once. That is, for an order-n Latin square L, with rows,
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columns, and symbols indexed by A, B, and C, respectively, we have {L(a, b) : b ∈ B} = C for every
a ∈A and {L(a, b) : a ∈A} = C for every b ∈ B.

Proof of Theorem 1.5. First, let G∼=Km, and since 3 |m, there exist sets A, B, C ⊆V(G) of size
m/3 that partition V(G). Since n≥m− 1, we can let G′ be the multigraph obtained from G by
adding n− (m− 1)+m/3 loops to each vertex in A∪ B and n− (m− 1) loops to each vertex in
C, and we let H be the line graph of G′. Let L be an order-(m/3) Latin square with rows, columns,
and symbols indexed by A, B, and C, respectively, and for each a ∈A and b ∈ B, let eab1 denote
the edge in H with ends ab and ac, and let eab2 denote the edge in H with ends ab and bc, where
c= L(a, b). Let

H′ := H −
⋃

(a,b)∈A×B

{
eab1 , eab2

}
.

We prove that H′ has chromatic number at least n+m/6 and is a nearly disjoint union of m
graphs of chromatic number n, as desired.

To that end, for each v ∈V(G), let Gv := H′[{e ∈ E(G′) : e � v}]. By construction, the graphs in
{Gv : v ∈V(G)} are nearly disjoint, and H′ = ⋃

v∈V(G) Gv. Moreover, Gv is isomorphic to Kn+m/3
with a matching of sizem/3 removed for every v ∈A∪ B and is isomorphic to Kn for every v ∈ C,
so χ(Gv)= n for every v ∈V(G), as required.

To prove that χ(H′)≥ n+m/6, we let φ be a proper colouring of H′ using at most k colours,
and we show that k≥ n+m/6, as follows. First, let

Ba := {b ∈ B : φ(ab)= φ(ac), where c= L(a, b)} for every a ∈A and
Ab := {a ∈A : φ(ab)= φ(bc), where c= L(a, b)} for every b ∈ B.

We claim that the following holds:

(a) |Ba| ≥ n+m/3− k for every a ∈A,
(b) |Ab| ≥ n+m/3− k for every b ∈ B, and

(c)
∑

a∈A |Ba| + ∑
b∈B |Ab| ≤ m2

9 .

Altogether, a)–(c) imply that (2m/3)(n+m/3− k)≤m2/9. Rearranging terms in this inequal-
ity, we have k≥ n+m/6, as desired. Thus, it remains to prove (c)–(c).

To prove (a), fix some a ∈A. Since φ is a proper colouring, the colours assigned to {ab : b ∈ Ba}
and the colours assigned to vertices of Ga not incident to an edge of

{
eab1 : b ∈ Ba

}
are distinct.

Thus, since at most k colours are used in total, |Ba| + n+m/3− 2|Ba| ≤ k. Rearranging terms in
this inequality, we have |Ba| ≥ n+m/3− k, as desired. The proof of (b) is essentially the same, so
we omit the details.

To prove (c), suppose to the contrary that
∑

a∈A |Ba| + ∑
b∈B |Ab|>m2/9. In this case, there is

a pair (a, b) ∈A× B such that a ∈Ab and b ∈ Ba. Letting c= L(a, b), since a ∈Ab, we have φ(ab)=
φ(bc), and since b ∈Aa, we have φ(ab)= φ(ac). However, since φ is a proper colouring, φ(bc) 	=
φ(ac), a contradiction. �
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