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Abstract
This paper studies dynamic reinsurance contracting and competition problems under model ambiguity in a rein-
surance market with one primary insurer and n reinsurers, who apply the variance premium principle and who are
distinguished by their levels of ambiguity aversion. The insurer negotiates reinsurance policies with all reinsurers
simultaneously, which leads to a reinsurance tree structure with full competition among the reinsurers. We model
the reinsurance contracting problems between the insurer and reinsurers by Stackelberg differential games and the
competition among the reinsurers by a non-cooperative Nash game. We derive equilibrium strategies in semi-closed
form for all the companies, whose objective is to maximize their expected surpluses penalized by a squared-error
divergence term that measures their ambiguity. We find that, in equilibrium, the insurer purchases a positive amount
of proportional reinsurance from each reinsurer. We further show that the insurer always prefers the tree structure
to the chain structure, in which the risk of the insurer is shared sequentially among all reinsurers.

1. Introduction
Reinsurance is an essential tool adopted by insurers to help mitigate risk exposure and to help stabilize
business profits. It is common in the literature to design optimal reinsurance policies from the perspective
of one contracting side, either insurers (i.e., reinsurance buyers) or reinsurers (i.e., reinsurance sellers);
see, for example, Borch (1960a, 1969) for seminal works in this area and Cai and Chi (2020) for a recent
survey. A shortcoming of the aforementioned model is that the participation of the other side is uncon-
ditionally assumed. To address this issue, researchers adopt methods from game theory to study optimal
reinsurance contracting problems, in which the interests of both contracting sides are considered. The
use of game theory to model reinsurance negotiations has a long history dating back to Karl Borch. One
line of research views reinsurance contracting as a cooperative game; see, Borch (1960b), Hürlimann
(2011), Cai et al. (2013, 2016), and Boonen et al. (2016), among others. Alternatively, reinsurance con-
tracting can naturally be modeled as a non-cooperative game because insurers and reinsurers often have
conflicting interests. Along this line of research, a popular formulation is a Stackelberg game (i.e., a
leader–follower game), which we discuss next.

In a Stackelberg reinsurance game between an insurer and a reinsurer, the reinsurer acts as the game’s
leader by offering the reinsurance premium first, the insurer acts as the game’s follower by determining
the optimal indemnity in response to the given premium, and finally the reinsurer, knowing the insurer’s
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optimal response, chooses its optimal premium. The popularity of this model relies on the fact that the
global reinsurance market is dominated by a few giant reinsurers, such as Munich Re, Swiss Re, and
Hannover Re, and, thus, it is reasonable to assume that reinsurers possess more bargaining power in the
contracting process and act as the leader in a Stackelberg game. The work of Chen and Shen (2018) is
arguably the first to study such a Stackelberg reinsurance game in a continuous-time model in which both
parties maximize the expected utility of their terminal surpluses. Their work is later extended in various
directions, including, for instance, by Chen and Shen (2019) and Li and Young (2022) who consider
mean-variance objectives, by Gu et al. (2020) and Cao et al. (2022a) who introduce model ambiguity,
and by Yang et al. (2022) who incorporate information delay. The Stackelberg game model is also applied
frequently in static settings, in which the reinsurance policy arising in equilibrium is called the Bowley
solution; see, for example, Chan and Gerber (1985) for early contributions, and Cheung et al. (2019), Li
and Young (2021), Boonen et al. (2021), Boonen and Ghossoub (2022), among others, for some recent
developments.

All the papers mentioned in the previous paragraph consider only one reinsurer, but in practice,
there usually exist multiple reinsurers in a reinsurance market, and insurers often negotiate with several
reinsurers simultaneously to best suit their business objectives. There is a growing body of literature
on optimal reinsurance design with multiple reinsurers in the market. See, for example, Chi and Meng
(2014), Meng et al. (2016), and (2016) for studies from an insurer’s point of view, and see Asimit et al.
(2018) and Boonen et al. (2021) for papers in cooperative game settings. However, to date, the literature
that applies the Stackelberg framework to model reinsurance contracting with multiple reinsurers is
scarce, including, to the best of our knowledge, only Lin et al. (2022) and Cao et al. (2023a), despite the
naturalness in formulating the problem this way. Although differing in several major aspects (see Cao
et al., 2023a for a summary of the differences), both papers (i.e., Lin et al., 2022 and Cao et al., 2023a)
investigate reinsurance contracting between one insurer and two reinsurers, assuming the reinsurers
compete for the reinsurance business, and they find that the insurer benefits from the competition. This
work raises two further questions: Will the insurer, in general, benefit when the number of competing
reinsurers increases? If the answer is yes, what are the fundamental reasons behind it? To address these
questions, it is necessary to consider a reinsurance market consisting of n reinsurers, with n ≥ 2 being
an arbitrary integer.

While the above questions may be answered from various perspectives, we focus on the effect of
ambiguity in this paper. Ambiguity is a concept that is at least as important as risk in making reinsurance
decisions. Regarding risk, finance literature supports the assumption that insurers and reinsurers are risk
neutral (see, e.g., Rothschild and Stiglitz, 1986); however, they are to some extent uncertain about the
underlying risk exposure due to reasons such as imperfect information and insufficient data; thus, they are
ambiguity averse (see Hansen and Sargent, 2001). To account for ambiguity, robust optimal reinsurance
problems are studied in, for instance, Li et al. (2018) and Hu et al. (2018a,b). We follow the ambiguity
model in Cao et al. (2023a) to study robust reinsurance contracting and competition in a reinsurance
market with one primary insurer and multiple (i.e., possibly more than 2) reinsurers in a continuous-time
model. The insurer negotiates reinsurance policies with all reinsurers simultaneously, leading to a tree
structure, and the reinsurers compete with each other. All companies are ambiguous about the insurance
risk assumed by the insurer, aiming to maximize their expected terminal surplus over a random time
horizon, plus a squared-error penalty term reflecting ambiguity.

Similar to Cao et al. (2023a), and Lin et al. (2022), we model the reinsurance contracting problems
between the insurer and reinsurers by Stackelberg differential games and the competition among rein-
surers by a non-cooperative Nash game. Unlike these two papers, in which the two reinsurers are mainly
distinguished by their premium principles, here we assume the reinsurers all apply the variance pre-
mium principle and are distinguished only by their ambiguity aversion parameters. There are several
advantages for such a modeling choice. First, this allows us to consider the general case of n reinsurers,
with an arbitrary n, and further study how the market size n affects the insurer and reinsurers’ equi-
librium decisions. However, neither of these is possible, if we were to follow Cao et al. (2023a) and
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Lin et al. (2022) to differentiate reinsurers by premium principles, because only a limited number of
such principles are available and the effect of adding one reinsurer on the existing players’ decisions is
hard, if not impossible, to analyze. Second, we are able to isolate the impact of ambiguity on equilibrium
in the setup in this paper. Note that such a task is challenging in Cao et al. (2023a) because the choice
of premium principles (expected-value vs. variance) also affects the equilibrium controls.

We next discuss the main contributions of the paper. First, to the best of our knowledge, this is the
first paper to study reinsurance contracting and competition in a continuous-time model with an arbitrary
number of reinsurers. We obtain equilibrium strategies for all players in semi-closed form and find that
the insurer buys a positive amount of proportional reinsurance from each reinsurer (see Theorem 3.3).

Second, we examine the effect of increasing the market size n and show that the premiums offered
by reinsurers decrease when n increases, that is, competition drives down the reinsurance premium.
Moreover, as n increases, the insurer buys more reinsurance in total. In other words, the insurer benefits
from a larger reinsurance market with more intense competition and lower prices and, therefore, cedes
a larger portion of risk in aggregate to the reinsurers.

Third, this paper and our previous work Cao et al. (2023a) are the only ones, to our awareness, that
investigate the optimality of reinsurance structures. Here, a structure refers to the way a reinsurance
market of one insurer and n reinsurers is formed; recall that the first part of our analysis assumes a
priori that the reinsurance market forms a tree structure, with the insurer buying reinsurance from n
reinsurers simultaneously. In the second part, we also consider an alternative structure, namely, a chain
structure,1 in which the risk of the primary insurer is shared sequentially among all n reinsurers, and
we compare the tree and chain structures from the insurer’s perspective. A structure is preferred if it
leads to a higher equilibrium value function for the insurer. Comparing the tree and chain structures is
interesting because they represent two extreme cases, that is, the one with full competition (the tree)
and the one with no competition (the chain). We first solve the n Stackelberg reinsurance games under
the chain structure and obtain all equilibrium controls explicitly; see Theorem 4.1. Next, we show in
Theorem 4.2 that, among all n! possible chains, the optimal chain is the one in which the reinsurers are
arranged according to their ambiguity parameters in an increasing order.2 Last, we prove that the insurer
always prefers the tree structure to the chain structure, by showing the equilibrium value function under
the tree structure is greater than that under the optimal chain structure; see Theorem 4.3. Note that such
a definite preference result is not available in Cao et al. (2023a), in which there exist certain scenarios
for which the chain structure is preferable to the tree structure.

The remainder of the paper is organized as follows. In Section 2, we formulate the robust reinsurance
contracting and competition problems. In Section 3, we derive the equilibrium under the tree structure
in semi-closed form and conduct a comparative statics analysis with respect to the ambiguity aversion
parameters. In Section 4, we derive the equilibrium under the chain structure and subsequently show
that the primary insurer prefers the tree over the chain. Section 5, then, concludes the paper. Proofs for
Sections 3 and 4 are placed in Appendices A and B, respectively.

2. Reinsurance tree: model
2.1. Reinsurance market
We consider a reinsurance market consisting of n + 1 players, labeled by i = 0, 1, . . . , n; player 0 is
the primary insurer and the remaining n players are reinsurers. Throughout this paper, we assume
that n is at least 2. The insurer negotiates reinsurance policies with all n reinsurers simultaneously,

1As pointed out by Gerber (1984), a chain structure is “frequently encountered in practice”; see, for example, Lemaire and
Quairiere (1986) for formulations of reinsurance chains in static models, and see Chen et al. (2020) and Cao et al. (2022b) for
continuous-time models.

2The reinsurance chain is considered optimal among possible reinsurance chains in the sense that it allows each ceding (re)insurer
to choose its accepting reinsurer to maximize its objective; see Theorem 4.2.
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forming a reinsurance tree. On a fixed probability space
(
�, F , F= {F(t)}t≥0, P

)
, we model the insurer’s

uncontrolled surplus by:

dU(t) = c dt −
∫ ∞

0

zN(dz, dt), (2.1)

in which c > 0 is the income rate and N(·, ·) is a Poisson random measure whose associated Lévy measure
ν satisfies ∫ ∞

0

(z ∨ z2)ν(dz) < ∞.

Without loss of generality, assume ν does not place all its mass at z = 0.
The primary insurer transfers part of its risk to the n reinsurers via per-claim reinsurance. For i =

1, 2, . . . , n, let Ii represent the indemnity that the insurer purchases from reinsurer i, and we assume
Ii = Ii(z) is a deterministic function of the claim size z and is time-independent.3 The insurer’s admissible
indemnities are defined as follows.

Definition 2.1 (Admissible indemnities). An n-tuple of indemnities I := (I1, I2, . . . , In) is admissible if
(i) Ii, for i = 1, 2, . . . , n, is a nonnegative, Borel-measurable function of z ∈R+, and (ii)

∑n
i=1 Ii(z) ≤ z

for all z ∈R+. Let I denote the set of admissible I.

We assume all n reinsurers apply the variance premium principle in pricing their policies, with
possibly different loadings. Specifically, reinsurer i charges premiums at a continuous rate given by:

πi(Ii) =
∫ ∞

0

{
Ii(z) + ηi

2
I2

i (z)
}

ν(dz),

in which ηi denotes the reinsurer i’s premium loading and is assumed to be a nonnegative constant. If ηi

were allowed to be a deterministic function of the claim size z, then the optimal ηi would be a constant;
see Theorem 3.2 in Cao et al. (2023a). Therefore, to simplify notation, we assume ηi is a constant from
the outset, for all i = 1, 2, . . . , n. We also assume that each reinsurer knows the other’s premium rule,
although they do not cooperate in choosing their premium loadings. Indeed, we assume the reinsurers
compete with each other in choosing their premium loadings.

In the following, we write 	η = (η1, η2, . . . , ηn) to denote the n-tuple of premium loadings for all
reinsurers, and we write 	η(i) to denote the (n − 1)-tuple of premium loadings that excludes ηi, for
i = 1, 2, . . . , n.

Remark 2.1. Reinsurers can be distinguished by premium rules; see, for example, Meng et al. (2016)
and Lin et al. (2022). Especially, Cao et al. (2023a) consider a reinsurance tree structure with two rein-
surers, in which one reinsurer adopts the expected-value premium principle and the other adopts the
variance premium principle. In certain cases, distinguishing reinsurers by premium rules is necessary
to guarantee the existence of equilibrium. For example, if all reinsurers apply the expected-value pre-
mium principle, then no equilibrium exists. In that case, one can show that the Nash equilibrium dictates
that all the premium loadings θs are equal, but that means the insurer buys (z − θ/ε0)+ in total, and the
reinsurers are not able to find their optimal value of θ because any allocation of (z − θ/ε0)+ among the
reinsurers is possible.4 However, if all the reinsurers apply the variance premium principle, an equilib-
rium does exist. We will see later that, in equilibrium, the insurer purchases a positive amount from each
reinsurer, even though each reinsurer uses the same type of premium rule.

3The deterministic assumption of Ii is consistent with the industry practice and includes stop-loss and proportional reinsurance
treaties as special cases; see Cao et al. (2022a) for further discussion. We omit possible dependence of Ii upon time t because our
previous work Cao et al. (2022a) indicates that the equilibrium indemnity will be time-independent, even when time-dependent
indemnities are allowed.

4ε0 denotes the insurer’s ambiguity aversion as in (2.6).
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We further incorporate model uncertainty into the reinsurance market by assuming that all n + 1
players are ambiguous about the Poisson random measure N , which captures the insurer’s original risk,
as given in (2.1). To that end, we introduce a probability distortion φ = φ(z), and define a new probability
measure Qφ by dQφ

dP

∣∣
F (t)

=: 	φ(t),5 in which

ln 	φ(t) =
∫ t

0

∫ ∞

0

ln (1 + φ(z))Ñφ(dz, ds) + t
∫ ∞

0

(
(1 + φ(z)) ln (1 + φ(z)) − φ(z)

)
ν(dz).

In the above, Ñφ is a Qφ-compensated random measure with compensator (1 + φ(z))ν(dz)dt under Qφ

and is defined by:

Ñφ(dz, dt) := N(dz, dt) − (
1 + φ(z)

)
ν(dz)dt. (2.2)

Definition 2.2 (Admissible probability distortions). A probability distortion φ is admissible if (i) φ is
a nonnegative, Borel-measurable function of z ∈R+ and (ii) φ satisfies the conditions:∫ ∞

0

(
(1 + φ(z)) ln (1 + φ(z)) − φ(z)

)
ν(dz) < ∞,

and ∫ ∞

0

z
(
1 + φ(z)

)
ν(dz) < ∞.

Let 
 denote the set of admissible probability distortions φ.

Let φi and Xi = {Xi(t)}t≥0 denote the probability distortion and the surplus process of player i, respec-
tively, for i = 0, 1, 2, . . . , n. The dynamics of the primary insurer’s surplus X0 = {X0(t)}t≥0 under Qφ0 is
given by:

dX0(t) = c dt −
∫ ∞

0

{
z −

n∑
i=1

Ii(z)

}
Ñφ0 (dz, dt) −

∫ ∞

0

{
z −

n∑
i=1

Ii(z)

} (
1 + φ0(z)

)
ν(dz)dt

−
∫ ∞

0

{
n∑

i=1

(
Ii(z) + ηi

2
I2

i (z)
)}

ν(dz)dt. (2.3)

Next, the surplus process of reinsurer i, Xi = {Xi(t)}t≥0, follows the Qφi -dynamics:

dXi(t) = −
∫ ∞

0

Ii(z)Ñφi (dz, dt) +
∫ ∞

0

{ηi

2
I2

i (z) − φi(z)Ii(z)
}

ν(dz)dt, (2.4)

for i = 1, 2, . . . , n. In both (2.3) and (2.4), Ñφi is defined by (2.2) under the corresponding φi.

2.2. Problem formulation
Because all players are for-profit (re)insurance companies, we assume each is risk-neutral under its
respective distorted probability measure, that is, player i aims to maximize its expected surplus under
Qφi , for all i = 0, 1, . . . , n (see Remark 2.2 in Cao et al., 2023b for justifications of this objective). To
account for model ambiguity, a penalty term is added to each player’s objective; here, we follow Cao
et al. (2022a,b, 2023a) and use squared-error divergence to measure the deviation from the reference
model P due to its interpretability and tractability (see Remark 2.3 in Cao et al., 2022a for a detailed
discussion). We formulate all reinsurance games under the same random horizon τ , which, for instance,
can be interpreted as the insurer’s next regulatory assessment time. We assume τ is an F-measurable

5For a given distortion φ, Qφ is locally equivalent to P on F (t) for all t ≥ 0, and this implicitly assumes that the underlying
filtration F is not complete; see Jacod and Protter (2010).
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random variable, independent of the Poisson random measure N , and has a deterministic hazard rate
ρ(t) > 0, with

P(τ > t) =Qφ(τ > t) = e− ∫ t
0 ρ(s)ds, (2.5)

for t ≥ 0 and φ ∈ 
, in which the first equality is due to the independence assumption. Finally, we assume
EP(τ ) < ∞.

We are now ready to present the primary insurer’s robust reinsurance problem. Given an n-tuple of
premium loadings 	η from the n reinsurers, the insurer seeks optimal indemnities I∗( · ; 	η) and optimal
distortion φ∗

0 ( · ; 	η) by solving

V0(x0, t; 	η) = sup
I∈I

inf
φ0∈


Eφ0
x0,t

(
X0(τ ) + τ − t

2ε0

∫ ∞

0

φ2
0 (z) ν(dz)

∣∣∣∣ τ > t

)
, (2.6)

in which Eφ0
x0,t denotes conditional expectation under Qφ0 given X0(t−) = x0,6 ε0 > 0 is the insurer’s

coefficient of ambiguity aversion, and the surplus process X0 is defined by (2.3).
We next formulate the reinsurers’ robust reinsurance problems. Upon knowing the other reinsurers’

premium loadings 	η(i), reinsurer i (for i = 1, 2, . . . , n) obtains its optimal premium loading η̄i(	η(i)) and
optimal probability distortion φ̄i(	η(i)) by solving

Vi(xi, t; 	η(i)) = sup
ηi≥0

inf
φi∈


Eφi
xi ,t

(
Xi(τ ) + τ − t

2εi

∫ ∞

0

φ2
i (z) ν(dz)

∣∣∣∣ τ > t

)
, (2.7)

in which Eφi
xi ,t

denotes conditional expectation under Qφi given Xi(t−) = xi, εi > 0 is the coefficient of
ambiguity aversion of reinsurer i, and Xi follows the process in (2.4) with Ii replaced by the optimal
indemnity I∗

i ( · ; 	η) from (2.6).
We model the reinsurance contracting problem between the primary insurer and reinsurer i by a

Stackelberg differential game, in which the reinsurer is the leader and the insurer is the follower. Due
to this setup, the insurer’s optimal strategies from solving (2.6) are known to all reinsurers, justify-
ing the replacement of Ii by I∗

i ( · ; 	η) in (2.7). The n reinsurers compete for business from the insurer,
and this competition is reflected in two places. First, the insurer’s optimal indemnity with reinsurer i,
I∗

i ( · ; 	η), depends not only on the reinsurer i’s loading ηi but also on other reinsurers’ loadings 	η(i); sec-
ond, reinsurer i solves (2.7) to find its optimal strategies based on other reinsurers’ premium loadings
	η(i). We formally model the reinsurance competition problem among n reinsurers by a non-cooperative
Nash game. In consequence, a Nash equilibrium is achieved if 	η is a fixed point of the mapping
	η 
→ (

η̄1(	η(1)), η̄2(	η(2)), . . . , η̄n(	η(n))
)
, in which η̄i(	η(i)) is the optimizer of (2.7) for i = 1, 2, . . . , n. To sum-

marize, we apply a two-layer game framework to study the reinsurance contracting and competition in a
tree structure: the n parallel reinsurance contracting problems between the insurer and n reinsurers are
modeled by n Stackelberg differential games, and the reinsurance competition among n reinsurers is set-
tled by a non-cooperative Nash game. Please refer to Cao et al. (2023a) for a more detailed description
of a similar game framework.

Definition 2.3 (Equilibrium). The equilibrium of the reinsurance contracting and competition games is
the following collection of controls: the Nash equilibrium of premium loadings 	η∗ = (η∗

1, η∗
2, . . . , η∗

n)
is given by η∗

i = η̄i(	η∗
(i)) ≥ 0 for i = 1, 2, . . . , n, in which η̄i( · ) is obtained from solving (2.7);

φ∗
i = φ∗

i ( · ; 	η∗) ∈ 
 for i = 1, 2, . . . , n, which achieves the infimum in (2.7); I∗ = (
I∗

1 ( · ; 	η∗), I∗
2 ( ·

; 	η∗), . . . , I∗
n ( · ; 	η∗)

) ∈ I, which achieves the supremum in (2.6); and, φ∗
0 = φ∗

0 ( · ; I∗, 	η∗) ∈ 
, which
achieves the infimum in (2.6). We also define the insurer’s equilibrium value function by V0(x0, t) :=
V(x0, t; 	η∗) and reinsurer i’s equilibrium value function by Vi(xi, t) = Vi(xi, t; 	η∗

(i)) for i = 1, 2, . . . , n.

6From previous work (see, e.g., Proposition 2.1 in Cao et al., 2022a), we know that the insurer’s objective in (2.6) depends only
on x0 and not on the reinsurers’ initial surpluses x1, x2, . . . , xn. Therefore, we only need to condition on X0(t−) = x0 in (2.6). The
same also applies to the reinsurers’ objectives in (2.7) below.
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3. Reinsurance tree: equilibrium
In this section, we obtain the equilibrium controls for all the players (one insurer and n reinsurers)
semi-explicitly. To improve readability, we place all the proofs of this section in Appendix A.

First, we solve the insurer’s problem in (2.6) and obtain its optimal strategies given 	η, as summarized
in the following theorem.

Theorem 3.1. Given an n-tuple of positive premium loadings 	η = (η1, η2, . . . , ηn), the insurer’s optimal
probability distortion equals

φ∗
0 (z; I, 	η) = ε0

(
z −

n∑
i=1

Ii(z; 	η)

)
. (3.1)

The optimal collection of indemnities equals I∗(z; 	η) = (
I∗

1 (z; 	η), I∗
2 (z; 	η), . . . , I∗

n (z; 	η)
)
, in which

I∗
i (z; 	η) =

ε0
ηi

1 +∑n
j=1

ε0
ηj

z. (3.2)

Theorem 3.1 presents the solution of the insurer’s problem in (2.6) when all premium loadings
are positive (that is, ηi > 0 for all i = 1, 2, . . . , n) and omits the cases for which ηi = 0 for some
i = 1, 2, . . . , n. Note that the optimal indemnities I∗

i (z; 	η) in (3.2) are only well defined when all loadings
are positive. If some loadings equal 0, a more involved analysis is required to derive I∗

i (z; 	η), which we
show in Appendix A.1. However, if ηi = 0 were allowed, then we would find, from solving the reinsur-
ers’ problem in (2.7), that it is never optimal for a reinsurer to offer reinsurance with a zero loading
(see Proposition A.1). The optimal indemnities I∗

i (z; 	η) in (3.2) are of proportional type for all i and are
consistent with the findings in Cao et al. (2023a), in which the insurer buys proportional reinsurance
from the reinsurer who adopts a variance premium principle.

Next, we study reinsurer i’s problem (2.7) and present its solution in the following theorem.

Theorem 3.2. Given an n-tuple of positive premium loadings 	η = (η1, η2, . . . , ηn), the optimal proba-
bility distortion of reinsurer i, for i = 1, 2, . . . , n, equals

φ∗
i (z; 	η) = εiI

∗
i (z; 	η), (3.3)

in which I∗
i (z; 	η) is given by (3.2). Moreover, given an (n − 1)-tuple of positive premium loadings 	η(i) =

(η1, . . . , ηi−1, ηi+1, . . . , ηn), the optimal premium loading η̄i(	η(i)) of reinsurer i, for i = 1, 2, . . . , n, equals

η̄i(	η(i)) = ε0 + 2εi

1 +∑
j �=i

ε0
ηj

. (3.4)

The reinsurance market in consideration is perfect, in the sense that reinsurer i observes other rein-
surers’ loadings 	η(i) and chooses its optimal loading η̄i(	η(i)) by (3.4). In our formulation, the reinsurance
competition among the n reinsurers is modeled by a non-cooperative Nash game, and its equilibrium
	η∗ is a fixed point of η∗

i = η̄i(	η∗
(i)) for all i = 1, 2, . . . , n, as stated in Definition 2.3. The next theorem

finds such an equilibrium of premium loadings 	η∗; other equilibrium controls, such as I∗
i , can be easily

obtained by replacing 	η with 	η∗ and, thus, are not stated. See Appendix A.3 for the theorem’s proof.

Theorem 3.3. The equilibrium premium loading of reinsurer i, for i = 1, 2, . . . , n, equals

η∗
i = 2ε0εi

ε0 + εi(1 + ε0α∗) −√
ε2

0 + ε2
i (1 + ε0α∗)2

, (3.5)

in which α∗ =∑n
i=1

1
η∗

i
is the unique positive zero of the function h defined by:

h(α) = n

2ε0

+ n − 2

2
α + 1

2

n∑
i=1

⎛⎝ 1

εi

−
√

1

ε2
i

+
(

1

ε0

+ α

)2
⎞⎠ . (3.6)
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Then, the equilibrium value function of reinsurer i, for i = 1, 2, . . . , n, equals

Vi(xi, t) = xi + vi(t),

in which

vi(t) = η∗
i − εi

2

(
ε0
η∗

i

1 +∑n
j=1

ε0
η∗

j

)2 ∫ ∞

0

z2ν(dz) ·E(τ − t|τ > t).

The sum of the insurer’s equilibrium indemnities equals

I∗(z) :=
n∑

i=1

I∗
i (z) = ε0α

∗

1 + ε0α∗ z. (3.7)

Moreover, the insurer’s equilibrium value function equals

V0(x0, t) = x0 + v0(t), (3.8)

in which

v0(t) =
∫ ∞

0

(
c − z − ε0

2(1 + ε0α∗)
z2
)
ν(dz) ·E(τ − t|τ > t). (3.9)

We end this section with several remarks about the equilibrium found in Theorem 3.3.

• If εi = ε > 0 for all i = 0, 1, . . . , n, then all reinsurers will adopt the same equilibrium loading
η∗, which is given by:

η∗ = 4ε(n − 1)

n − 4 + √
n2 + 8

.

We easily see that, as the ambiguity aversion ε increases, the equilibrium loading η∗ increases.
If we further treat n, the number of competing reinsurers, as a variable, we find that η∗ is
a decreasing function of n. As a result, when reinsurance competition intensifies, reinsurers
lower their premium loadings. From (3.7) and (3.9), we see that, when n increases, both I∗(z)
and V0 increase, implying that the insurer benefits from the reinsurance competition and prefers
a larger reinsurance market. In the limit case,

lim
n→∞

η∗ = ε and lim
n→∞

I∗(z) = z,

suggesting that the insurer will cede all of its risk to reinsurers.
• Next, continue to assume εi = ε for all i = 1, 2, . . . , n, but allow ε0 to differ. In other words, all

reinsurers have the same ambiguity aversion, but the insurer might have a different ambiguity
aversion. Again, by (3.4), we conclude that all n reinsurers will have the same equilibrium
loading ηi = η∗, which is the positive solution of η2 − (

(n − 2)ε0 − 2ε
)
η − 2(n − 1)ε0ε = 0 and

can be obtained explicitly. Given ε = 0.1, we plot in Figure 1 the graphs of the equilibrium
loading η∗ as ε0 varies over (0, 0.5), for different values of n (here we consider n = 3, 5, 10).
By comparing the three curves, we see that η∗ decreases as n increases; in consequence, the
economic explanations about n that we made above apply here as well. Next, for a fixed value
of n, one can show that η∗ increases as ε0 increases. Thus, when the insurer is more ambiguity
averse about the risk, all reinsurers will increase their premium loadings, and the magnitude of
adjustment is more significant when n is small.

• We continue our study by assuming εi = ε for i = 1, 2, . . . , n − 1 and by allowing both εn and
ε0 to differ from ε. To understand this case, consider a reinsurance market with n − 1 homoge-
neous reinsurers, all with the same ambiguity aversion ε; then, a new reinsurer with ambiguity
aversion εn, referred to as reinsurer n, joins the reinsurance market. In this case, the equilibrium
loadings of reinsurers 1 to n − 1 equal, denoted by η∗ (or η∗|n to emphasize the market size),
but reinsurer n’s equilibrium loading η∗

n is possibly different from η∗. To see how εn impacts
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Figure 1. Equilibrium loading η∗ when εi = 0.1 for i = 1, 2, . . . , n.

0 0.05 0.1 0.15 0.2
n

0.1

0.2

0.3

0.4

E
qu

ili
br

iu
m

 lo
ad

in
gs

n
* |

n=5

i
*|

n=5
, i=1,...,4

*|
n=4

Figure 2. Equilibrium loadings η∗
n of reinsurer n and η∗

i of reinsurer i.

the equilibrium loadings, we fix εi = 0.1 for i = 0, 1, . . . , n − 1 with n = 5. In Figure 2, we plot
the equilibrium loadings as εn varies over (0, 0.2). We first consider the “original” market with
n − 1 homogeneous reinsurers and calculate the equilibrium loading η∗|n=4 = 0.2449, which
corresponds to the horizontal line in dotted black in Figure 2. Next, we consider the “new”
market with reinsurer n, whose ambiguity aversion εn might be different from the existing rein-
surers’ ε. In this new market, we plot η∗

n|n=5 in blue and η∗
i |n=5 in red, for i = 1, 2, 3, 4. The most

important finding is that the (n − 1) existing reinsurers will always lower their equilibrium load-
ing, regardless of the new reinsurer’s ambiguity aversion εn, which is a direct consequence of
competition. Therefore, our earlier conclusion still holds, that is, the insurer prefers a larger
reinsurance market. We also notice the intersection point at εn = 0.1, meaning if reinsurer n
shares the same ambiguity aversion as the rest n − 1 reinsurers, their equilibrium loadings will
be the same as well. Figure 2 also shows that, when εn increases, both η∗

n and η∗ increase,
although they react at dramatically different scales.
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4. Reinsurance chain
In this section, we study the chain structure for these n + 1 players. The primary insurer (player 0) pur-
chases a reinsurance policy from reinsurer 1; reinsurer 1 then acts as the ceding company and purchases
a reinsurance policy from reinsurer 2; this reinsurance chain continues until the last reinsurance con-
tract between reinsurer n − 1 and reinsurer n. The surplus dynamics of the primary insurer and the n
reinsurers under the chain structure differs from (2.3) and (2.4) under the tree structure. For this reason,
we add an overhead hat to notation under the chain structure; for example, X̂i denotes the surplus pro-
cess of player i under the chain structure. The surplus process of the insurer X̂0 = {X0(t)}t≥0 follows the
Qφ0 -dynamics:

dX̂0(t) = c dt −
∫ ∞

0

(
z − I1(z)

)
Ñφ0 (dz, dt) −

∫ ∞

0

(
z − I1(z)

)(
1 + φ0(z)

)
ν(dz)dt

−
∫ ∞

0

{
I1(z) + η1(z)

2
I2

1 (z)

}
ν(dz)dt,

in which I1 is the indemnity function of the first game, between the primary insurer and reinsurer 1.
The surplus process of intermediate reinsurer i, Xi = {Xi(t)}t≥0, for i = 1, 2, . . . , n − 1, follows the Qφi -
dynamics:

dX̂i(t) = −
∫ ∞

0

(
Ii(z) − Ii+1(z)

)
Ñφi (dz, dt) +

∫ ∞

0

{
ηi(z)

2
I2

i (z) − φi(z)Ii(z)

}
ν(dz)dt

−
∫ ∞

0

{
ηi+1(z)

2
I2

i+1(z) − φi(z)Ii+1(z)

}
ν(dz)dt, (4.1)

In (4.1), reinsurer i sells indemnity Ii to (re)insurer i − 1 and purchases indemnity Ii+1 from reinsurer
i + 1. Finally, the terminal reinsurer’s surplus process Xn = {Xn(t)}t≥0 follows the Qφn-dynamics:

dX̂n(t) = −
∫ ∞

0

In(z)Ñφn (dz, dt) +
∫ ∞

0

{
ηn(z)

2
I2

n (z) − φn(z)In(z)

}
ν(dz)dt.

Instead of requiring
∑n

i=1 Ii(z) ≤ z for all z ≥ 0 as in Definition 2.1, we require that admissible indemni-
ties in this setting satisfy 0 ≤ In(z) ≤ In−1(z) · · · ≤ I2(z) ≤ I1(z) ≤ z for all z ≥ 0. These inequalities arise
as the “intersection” of the standard indemnity conditions for n sequential reinsurance problems. Label
the admissible indemnities by Î.

The primary insurer’s robust optimal reinsurance problem is

V̂0(x0, t; η1) = sup
I1∈Î

inf
φ0∈


Eφ0
x0,t

(
X̂0(τ ) + τ − t

2ε0

∫ ∞

0

φ2
0 (z) ν(dz)

∣∣∣∣ τ > t

)
. (4.2)

For i = 1, 2, . . . , n − 1, intermediate reinsurer i’s robust optimal reinsurance and contracting problem
is

V̂i(xi, t; ηi+1) = sup
Ii+1∈Î

sup
ηi≥0

inf
φi∈


Eφi
xi ,t

(
X̂i(τ ) + τ − t

2εi

∫ ∞

0

φ2
i (z) ν(dz)

∣∣∣∣ τ > t

)
, (4.3)

Finally, the terminal reinsurer’s robust optimal contracting problem is

V̂n(xn, t) = sup
ηn≥0

inf
φn∈


Eφn
xn ,t

(
X̂n(τ ) + τ − t

2εn

∫ ∞

0

φ2
n(z) ν(dz)

∣∣∣∣ τ > t

)
. (4.4)

Next, we define equilibrium for n linked Stackelberg games under the chain structure.

Definition 4.1 (Stackelberg equilibrium under the chain structure). The Stackelberg equilibrium of the
reinsurance chain is the following collection of controls: η̂n ∈P , which achieves the supremum in (4.4);
φ̂n = φn( · ; η̂n) ∈ 
, which achieves the infimum in (4.4). For i = 1, 2, . . . , n − 1, Îi+1 = Îi+1( · ; η̂i+1) ∈ Î,
which achieves the outer supremum in (4.3); η̂i = η̂i( · ; Îi+1, η̂i+1) ∈P , which achieves the inner supre-
mum in (4.3); φ̂i = φ̂i( · ; Îi+1, η̂i, η̂i+1) ∈ 
, which achieves the infimum in (4.3). Î1 = Î1( · ; η̂1) ∈ Î, which
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achieves the supremum in (4.2); φ̂0 = φ̂0( · ; Î1, η̂1) ∈ 
, which achieves the infimum in (4.2). We also
define the insurer’s equilibrium value function by V̂0(x0, t) := V̂(x0, t; η̂1) and intermediate reinsurer i’s
equilibrium value function by V̂i(xi, t) = V̂i(xi, t; η̂i+1) for i = 1, 2, . . . , n − 1.

Although Cao et al. (2022b) study a similar chain structure in which all reinsurers adopt a generalized
mean-variance premium principle, the work in this section is not a special case of that paper because,
in equilibrium, the generalized mean-variance principle reduces to a generalized expected-value prin-
ciple with the loading on the variance identically zero. By contrast, the variance loading in this paper
is nonzero in equilibrium because the expected-value loading is forced to be zero. We also considered
Stackelberg reinsurance games under the chain structure in Cao et al. (2023a); the market therein con-
sists of two reinsurers, one applying the expected-value premium principle and the other adopting the
variance premium principle. By comparison, there are n reinsurers in this paper, and all of them apply
the same variance premium principle (with differing loadings on the variance in equilibrium).

We compute the Stackelberg equilibrium under the chain structure in Theorem 4.1 below; see
Appendix B.1 for its proof. Define

βi =
1
εi∑i

j=0
1
εj

, (4.5)

for i = 0, 1, 2, . . . , n. We will frequently use the fact that 1 − βi = εiβi

εi−1βi−1
.

Theorem 4.1. The equilibrium controls for all players in the Stackelberg reinsurance chain are given
by the following expressions:

1. Equilibrium indemnity: if we define În+1 ≡ 0, then Îi satisfies recursion:

Îi(z) = βi

2i
z + εiβi

εi−1βi−1

Îi+1(z), (4.6)

for i = 1, 2, . . . , n, or equivalently,

Îi(z) = 1

εi−1βi−1

n∑
j=i

εj−1βj−1βj

2j
z. (4.7)

2. Equilibrium premium loadings:

η̂n = 2εn + εn−1βn−1 = εn

2 − βn

1 − βn

,

and for i = 1, 2, . . . , n − 1,

η̂i = εi−1βi−1

εi + η̂i+1

{
εi +

(
2

βi

− 1

)
η̂i+1

}
, (4.8)

or equivalently,

η̂i = εi−1βi−1

{
εi−1βi−1

2i−1
∑n

j=i
εj−1βj−1βj

2j

− 1

}
. (4.9)

3. Equilibrium probability distortions: if we define φ̂n+1(z) = εnβn

2n+1 z, then

φ̂i(z) = εiβi

2i+1
z + φ̂i+1(z), (4.10)

for i = 0, 1, 2, . . . , n, or equivalently,

φ̂i(z) =
{

n∑
j=i

εjβj

2j+1
+ εnβn

2n+1

}
z. (4.11)
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4. Equilibrium value function:

V̂i(xi, t) = xi +
∫ ∞

0

pi(z)ν(dz) ·E(τ − t|τ > t), (4.12)

in which

pi(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c − z − φ̂0(z)

2
z, i = 0,

εi−1βi−1

2i+1
Îi(z)z = 1

2i+1

(
εi−1βi−1

2i
z − φ̂i(z)

)
z, i = 1, 2, . . . , n.

(4.13)

In the following, we study the effect of reordering two “neighboring” reinsurers in the chain, which
will help us determine the optimal chain structure. Consider two reinsurance chains, which we call chain
1 and chain 2. The ambiguity aversions in chain 1 are labeled by ε1,i, i = 0, 1, . . . , n. We obtain chain 2,
whose ambiguity aversions are labeled by ε2,i, by switching the order of reinsurer k and reinsurer k + 1
in chain 1 for some k = 1, 2, . . . , n − 1. Specifically,

ε1,k = ε2,k+1, ε1,k+1 = ε2,k, ε1,i = ε2,i, i �= k, k + 1.

We label the equilibrium controls and value functions similarly. For example, V̂1,i and V̂2,i denote the
equilibrium value functions for player i in chain 1 and chain 2, respectively. The next proposition presents
the effect of switching two reinsurers; see Appendix B.2 for its proof.

Proposition 4.1. The following statements are equivalent:

1. ε1,k < ε2,k = ε1,k+1.
2. φ̂1,i(z) < φ̂2,i(z) for i = 0, 1, . . . , k and z > 0.
3. V̂1,i > V̂2,i for i = 0, 1, . . . , k.
4. V̂1,k+1 < V̂2,k+1.
5.

∑n
i=0 V̂1,i >

∑n
i=0 V̂2,i.

Moreover, φ̂1,i = φ̂2,i for i = k + 1, . . . , n, and V̂1,i = V̂2,i for i = k + 2, . . . , n.

When ε1,k < ε2,k = ε1,k+1, player k − 1 in chain 2 purchases reinsurance from reinsurer k with a higher
level of ambiguity aversion, compared to reinsurer k in chain 1. From (4.11), an increase in the ambiguity
aversion of any player increases player i’s ambiguity φ̂i about the Poisson random measure N for all i;
thus, one expects φ̂2,k > φ̂1,k. This effect induces player k − 1 and thereby all previous players in chain 2 to
adjust their ambiguity about N upward, which results in lower value functions in equilibrium. Reinsurer
k + 1 in chain 2 has a lower ambiguity aversion but faces a customer with a higher ambiguity aversion.
The combining effect on the ambiguity φ̂k+1 is, however, neutralized, that is, φ̂1,k+1 = φ̂2,k+1, but the value
function is increased. The results above are consistent with Proposition 4.1 in Cao et al. (2022b), in which
the authors study a reinsurance chain with all reinsurers adopting the mean-variance premium principle.

The impact on reinsurer i, for i = k + 1, . . . , n, depends on the premium rule adopted. Under the
mean-variance premium principle, Cao et al. (2022b) show that these reinsurers in chain 2 will have a
smaller ambiguity φ and larger value functions because the switching decreases their “effective” ambi-
guity aversions. However, if variance premium rule is adopted, these reinsurers are indifferent before
and after the switching.

In the following theorem, we allow each ceding (re)insurer to choose its accepting reinsurer in order
to maximize its value function, while fixing the primary insurer, which introduces an additional choice
within the linked Stackelberg games. More specifically, the primary insurer chooses a reinsurer among
the set of n reinsurers. That chosen reinsurer becomes player 1; then, player 1 chooses a reinsurer among
the set of n − 1 remaining reinsurers, and so on, until only one reinsurer remains, and that last one is
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the terminal reinsurer, or player n. Note that reinsurer i only has n − i reinsurers from which to choose.
The next theorem determines the equilibrium order under this expanded Stackelberg game.

Theorem 4.2. The equilibrium order under the expanded Stackelberg game, in which each ceding
(re)insurer chooses its accepting reinsurer from the pool of remaining reinsurers, is the one for which
the ambiguity parameters are in increasing order, that is,

ε1 < ε2 < · · · < εn. (4.14)

Proof. By Proposition 4.1, the primary insurer’s value function increases each time we switch two
adjacent reinsurers so that their ambiguity aversions are in increasing order. Therefore, the order in (4.14)
maximizes the value function of the primary insurer. The primary insurer only selects reinsurer 1, but
ε2 < ε3 < · · · εn also maximizes the value function of reinsurer 1 by Proposition 4.1. By continuing this
argument, we deduce that all the ceding (re)insurers choose their accepting reinsurer in accordance with
the order in (4.14). �

The optimal structure in Theorem 4.2 is consistent with the one in Cao et al. (2022b), when all rein-
surers adopt the mean-variance premium principle. In the next theorem, we evaluate which reinsurance
structure – the tree or chain – maximizes the primary insurer’s objective function, because the primary
insurer drives the initial demand for reinsurance by either buying from one reinsurer or from many.
Please see Appendix B.3 for the proof of the theorem.

Theorem 4.3. The primary insurer always prefers the tree over the chain. More specifically, for any
x0 ∈R and t ≥ 0,

V0(x0, t) > V̂0(x0, t).

Theorem 4.3 is consistent with our intuition, as well as with the remarks at the end of Section 3 that
competition among reinsurers is better for the primary insurer. In the tree structure, the primary insurer
negotiates reinsurance contracts with all reinsurers simultaneously. As a result, the indemnity purchased
from one reinsurer depends on premiums offered by other reinsurers. Meanwhile, when setting the pre-
mium rate, the reinsurer also needs to take into account the premium loadings offered by its competitors.
By contrast, in the chain structure, the primary insurer is only allowed to buy from one reinsurer, and
there’s no competition embedded in the chain. Theorem 4.3 tells us that the tree structure always pro-
vides a higher value to the primary insurer, even compared to the optimal chain structure; recall that, for
the tree structure, the order of ambiguity aversion does not matter, that is, there is no particular order to
the reinsurers.

It is also interesting to notice that the premium rules adopted by reinsurers affect the primary insurer’s
preference over different structures. When the game involves two reinsurers – one adopting the expected-
value premium principle and the other, the variance premium principle – Cao et al. (2022b) show that
there is no definite preference between tree and chain (in this case, there are two chains to consider due
to two different premium rules). However, when all reinsurers adopt the variance premium principle,
the primary insurer always prefers the tree over the chain.

5. Conclusions
We applied a game approach to study dynamic reinsurance contracting and competition problems, with
the former modeled by Stackelberg differential games and the latter modeled by a non-cooperative Nash
game. The reinsurance market in Section 2 consists of one insurer and n (n ≥ 2) competing reinsurers,
who all apply the same variance premium principle, with possibly different loadings, and who are distin-
guished by their ambiguity aversion levels. First, we considered the tree structure, in which the insurer
negotiates reinsurance with all n reinsurers simultaneously, and we derived equilibrium strategies for
all companies in (semi-)closed form. We showed that, in equilibrium, the insurer purchases a positive
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amount of proportional reinsurance from each reinsurer. The insurer benefits from an increasing num-
ber of competing reinsurers because it cedes a larger portion of risk in equilibrium, and its ambiguity
penalty is consequently lowered. In Section 4, we considered the same n + 1 players in a chain structure,
in which the risk of the insurer is shared sequentially among all n reinsurers, and showed that, from the
perspective of the insurer, the tree structure is always preferred to the chain structure because the former
requires full competition among the reinsurers (Theorem 4.3).

For future work, we will determine if Theorem 4.3 holds in other settings. For example, Chen et al.
(2020) study the chain structure under the mean-variance criterion with reinsurers who apply the vari-
ance principle. We will consider the tree structure in the same setting and compare our results to
Chen et al. (2020) to see if Theorem 4.3 holds under the mean-variance criterion, as it does for the
mean-ambiguity criterion of this paper.

Furthermore, we plan to consider more general structures, such as multiple levels of reinsurers that
compete at each level. The tree and chain structures are two special cases of such a general structure.
In fact, one can view them as extreme special cases, with the tree embodying full competition among
the reinsurers and the chain embodying monopolistic relationships. Under the mean-ambiguity criterion
with each reinsurer adopting the variance premium principle, we anticipate that the insurer will prefer
the tree over any other structure.
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A. Proofs of Section 3
A.1. Proof of Theorem 3.1
In this appendix, we apply the Hamilton–Jacobi–Bellman–Issac (HJBI) equation method to solve the
insurer’s problem in (2.6); see Mataramvura and Øksendal (2008) for a standard reference. We start
by defining an integro-differential operator A(I,φ0)

0 for the insurer. Given positive premium loadings 	η =
(η1, η2, . . . , ηn), for any collection of indemnities I = (I1, I2, . . . , In) ∈ I and for any probability distortion
φ0 ∈ 
, define A(I,φ0)

0 by:

A(I,φ0)
0 f = ∂tf +

{
c −

∫ ∞

0

{
n∑

i=1

Ii(z) +
n∑

i=1

ηi

2
I2

i (z)

}
ν(dz)

}
∂x0 f

+
∫ ∞

0

{
f

(
x0 −

(
z −

n∑
i=1

Ii(z)

)
, t

)
− f (x0, t)

}
(1 + φ0(z))ν(dz),
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in which f ∈ C1,1(R×R+), and ∂tf and ∂x0 f denote the partial derivatives of f with respect to t and x0,
respectively. In writing A(I0,φ0)

0 , we suppress the dependence of the operator on 	η.

Proof of Theorem 3.1. Based on a verification lemma similar to Lemma 3.1 in Cao et al. (2022a),
suitably modified for the variance premium principle, if we find a smooth function that satisfies the
following HJBI equation, subject to a transversality condition (see (A.4) below):

sup
I∈I

inf
φ0∈


{
A(I,φ0)

0 V(x0, t; 	η) + 1

2ε0

∫ ∞

0

φ2
0 (z)ν(dz)

}
= ρ(t)

(
V(x0, t; 	η) − x0

)
, (A.1)

then that solution equals the insurer’s value function V0 defined by (2.6). In (A.1), ρ(t) is the determin-
istic hazard rate of the random horizon τ , as defined in (2.5). To solve (A.1), we consider an ansatz
V(x0, t; 	η) = x0 + v0(t; 	η), in which v0 is yet to be determined. By substituting the ansatz into (A.1), we
obtain

v0
′(t) + c − ρ(t)v0(t) = inf

I
sup
φ0

[ ∫ ∞

0

{
n∑

i=1

(
Ii + ηi

2
I2

i

)}
ν(dz) (A.2)

+
∫ ∞

0

(
z −

n∑
i=1

Ii

)
(1 + φ0) ν(dz) − 1

2ε0

∫ ∞

0

φ2
0 ν(dz)

]
.

We first solve the inner maximization problem over φ0 and obtain the optimal distortion φ∗
0 (z; I, 	η) as

stated in (3.1). Next, by substituting (3.1) into (A.2), the outer minimization problem over I is equivalent
to minimizing

f(I1, I2, . . . , In) :=
n∑

i=1

ηi

2
I2

i + ε0

2

(
z −

n∑
i=1

Ii

)2

. (A.3)

A straightforward calculation shows that I∗
i (z; 	η) in (3.2) is the unique minimizer of the above f.

We directly see I∗
i (z; 	η) > 0 for all i and

∑n
i=1 I∗

i (z; 	η) < z for all z > 0, which implies I∗(z; 	η) =
(I∗

1 (z; 	η), I∗
2 (z; 	η), . . . , I∗

n (z; 	η)) ∈ I.
Lastly, substituting φ∗

0 (z; 	η) and I∗(z; 	η) into (A.2) yields

v0
′(t) + c − ρ(t)v0(t) =

∫ ∞

0

⎧⎨⎩
n∑

i=1

ηi

2
(I∗

i (z))2 + z + ε0

2

(
z −

n∑
i=1

I∗
i

)2
⎫⎬⎭ ν(dz),

the solution to which, subject to the transversality condition:

lim
s→∞

Eφ0
x0,t

[
e− ∫ s

t ρ(u)du V0(X0(s), s; 	η)
]
= 0, (A.4)

is given by

v0(t; 	η) =
⎛⎝c −

∫ ∞

0

⎧⎨⎩z +
n∑

i=1

ηi

2

(
I∗

i (z; 	η)
)2 + ε0

2

(
z −

n∑
i=1

I∗
i (z; 	η)

)2
⎫⎬⎭ ν(dz)

⎞⎠ ·E(τ − t|τ > t).

Thus, the value function of the insurer equals V(x0, t; 	η) = x0 + v0(t; 	η), with the optimal controls as
stated. �

In the above analysis, we assume that ηi > 0 for all i = 1, 2, . . . , n (or equivalently,
∏n

i=1 ηi > 0),
which we use to find the minimizer of f in (A.3); see the paragraph following the statement of
Theorem 3.1 for a detailed discussion about this assumption. In the rest of this appendix, we relax this
assumption and consider the case in which some ηi is allowed to equal 0 (or equivalently,

∏n
i=1 ηi = 0).

Define S0 := {i : ηi = 0} to mark those reinsurers whose premium loadings equal 0. Then, the function
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f in (A.3) equals

f(I1, I2, . . . , In) =
∑
i/∈S0

ηi

2
Ii(z; 	η)2 + ε0

2

(
z −

∑
i∈S0

Ii(z; 	η) −
∑
i/∈S0

Ii(z; 	η)

)2

.

Minimizing the above f then yields the optimal indemnity I∗
i (z; 	η), for i = 1, 2, . . . , n: when

∏n
i=1 ηi = 0,

I∗
i (z; 	η) =

{
0, i /∈ S0,

any nonnegative value s.t.
∑

i∈S0
I∗

i (z; 	η) = z, i ∈ S0.
(A.5)

A.2. Proof of Theorem 3.2
In this appendix, we solve reinsurer i’s problem in (2.7). The HJBI equation method used in Appendix
A.1 is applicable here, with only minor changes. Given positive premium loadings 	η and for a probability
distortion φi ∈ 
, define the integro-differential operator A(	η,φi)

i for reinsurer i by

A(	η,φi)
i f = ∂tf +

∫ ∞

0

{
I∗

i (z; 	η) + ηi

2
(I∗

i )2(z; 	η)
}

ν(dz) · ∂xi f

+
∫ ∞

0

{
f (xi − I∗

i (z; 	η), t) − f (xi, t)
}
(1 + φi(z))ν(dz),

in which f ∈ C1,1(R×R+) and I∗
i (z; 	η) is given by (3.2), for i = 1, 2, . . . , n.

Proof of Theorem 3.2. Based on a verification lemma similar to Lemma 3.2 in Cao et al. (2022a),
suitably modified for the variance premium principle, if we find a smooth function that satisfies the
following HJBI equation, subject to a transversality condition (as in (A.4)):

sup
ηi>0

inf
φi∈


{
A(	η,φi)

i Vi(xi, t; 	η(i)) + 1

2εi

∫ ∞

0

φ2
i (z)ν(dz)

}
= ρ(t)

(Vi(xi, t; 	η(i)) − xi

)
. (A.6)

then that solution equals the value function Vi defined in (2.7). We consider an ansatz in the form of
V(xi, t; 	η(i)) = xi + vi(t; 	η(i)) and insert it into (A.6) to obtain

vi
′(t) + sup

ηi

inf
φi

∫ ∞

0

{
ηi

2
(I∗

i (z; 	η))2 − φiI
∗
i (z; 	η) + φ2

i

2εi

}
ν(dz) = ρ(t)vi(t). (A.7)

Minimizing the above integrand over φi yields the optimal distortion φ∗
i (z; 	η) as stated in (3.3), which

helps us simplify (A.7) to

vi
′(t) + sup

ηi

∫ ∞

0

{
ηi − εi

2
(I∗

i (z; 	η))2

}
ν(dz) = ρ(t)vi(t). (A.8)

By recalling I∗
i (z; 	η) from (3.2), the first-order condition of the above maximization problem for ηi is

2

(
1 − εi

ηi

)(
1 +

∑
j �=i

ε0

ηj

)
= 1 +

n∑
j=1

ε0

ηj

, (A.9)

from which we obtain the optimal premium loading η̄i(	η(i)), as stated in (3.4).
Let 	η′ denote the collection of premium loadings that is obtained from 	η by replacing ηi with η̄i(	η(i)).

By substituting η̄i(	η(i)) and φ∗
i (z; 	η′) into (A.6), we obtain a first-order differential equation for vi(t; 	η(i)),

which is easily solved when we apply the required transversality condition, as in (A.4). Thus, we have
proved Theorem 3.2. �

Thus far, we have solved the reinsurer’s problem in (2.7) when all premium loadings are positive, or
equivalently,

∏n
i=1 ηi > 0. (The same assumption is also imposed in Theorem 3.1 to study the insurer’s
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problem.) The proposition below implies that such an assumption does not impose any restriction to the
analysis.

Proposition A.1. It is never optimal for a reinsurer to offer a reinsurance contract with zero premium
loading.

Proof. Fix an arbitrarily chosen reinsurer i = 1, 2, . . . , n. We have shown that, when
∏n

j=1 ηj > 0,
the reinsurer i’s optimal loading η̄i(	η(i)) given by (3.4) is indeed positive. Thus, we focus on the case
for which

∏n
j=1 ηj = 0 in the rest of the proof. First, observe that, when

∏n
i=1 ηi = 0, the reinsurer i’s

optimal premium loading is still solved from the same maximization problem in (A.8), but now with
I∗

i (z; 	η) given by (A.5). To proceed, we consider the following two scenarios:

(1) First, suppose all other reinsurers offer positive premium loadings, that is,
∏

j �=i ηj > 0: if rein-
surer i were to offer ηi = 0, then by (A.5), I∗

i = z and the integrand in (A.8) would be strictly
negative. Therefore, any ηi > εi is preferred to ηi = 0.

(2) Second, suppose there exists a reinsurer j, j �= i, such that ηj = 0, that is,
∏

j �=i ηj = 0: if reinsurer
i were to offer ηi > 0, then the insurer would never purchase reinsurance from reinsurer i, that
is, I∗

i = 0, and the integral in (A.8) would be identically zero. However, if reinsurer i were to
offer ηi = 0, then the insurer might purchase I∗

i > 0, which would make the integral in (A.8)
strictly negative, making ηi = 0 a non-optimal choice for reinsurer i.

The desired result follows because the above two scenarios are exhaustive. �

A.3. Proof of Theorem 3.3
For any collection of positive premium loadings, we define

yi = 1

ηi

, for i = 1, 2, . . . , n, and α =
n∑

i=1

yi.

From the proof of Theorem 3.2, we know that the optimal loadings are obtained from (A.9), which can
be rewritten as:

2(1 − εiyi)
(
1 + ε0(α − yi)

)= 1 + ε0α.

Solving the above quadratic equation yields two solutions and only one of them is less than α, as required,
which is given by:

yi = ε0 + εi(1 + ε0α) − √
�i(α)

2ε0εi

,

in which �i(α) = ε2
0 + ε2

i (1 + ε0α)2 > ε2
i ε

2
0α

2. By taking the sum of yi over i, and by the definition of α,
we show that such an α, if exists, is a positive zero of the function h defined in (3.6).

Next, we show that h(α) = 0 has a unique positive solution, denoted by α∗. First,

lim
α→0+

h(α) = n

2ε0

+ 1

2

n∑
i=1

(
1

εi

−
√

1

ε2
i

+ 1

ε2
0

)
> 0

and, for α sufficiently large, h(α) < 0. These boundary conditions, together with the continuity of h over
(0, ∞), imply there exists a positive zero of h. A straightforward calculation yields

h′(α) = n − 2

2
− 1

2

n∑
i=1

1
ε0

+ α√
1
ε2

i
+
(

1
ε0

+ α
)2

,

in which the last term is an increasing function of α. Thus, one of the following two statements must be
true: (1) h′(α) ≤ 0 for all α > 0; or (2) there exists a α0 ∈ (0, ∞) such that h′(α) ≥ 0 for all 0 < α ≤ α0
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and h′(α) < 0 for all α > α0. In either case, h(α), as a function of α, only crosses the positive horizontal
axis once.

With equilibrium loadings obtained in (3.5), the remaining results in Theorem 3.3 can be verified by
straightforward computation, which we leave to the interested reader as an exercise.

B. Proofs of Section 4
B.1. Proof of Theorem 4.1
For ease of notation, define ai =∑i−1

j=0
1
εj

, for i = 1, 2, . . . , n.
(1) Primary insurer: Based on Lemma 3.1 and Theorem 3.1 of Cao et al. (2022a) (and their proofs),
suitably modified for the variance premium principle, we know that the primary insurer solves the fol-
lowing problem, in which the primary insurer buys I1 from reinsurer 1 at a premium loading of η1:

sup
I1

inf
φ0

[
− I1 − η1

2
I2

1 − (z − I1) (1 + φ0) + φ2
0

2ε0

]
,

whose solution is

φ̂0(z; I1, η1) = ε0(z − I1),

and

Î1(z; η1) = ε0

ε0 + η1

z = 1

1 + a1η1

z. (B.1)

(2) Intermediate reinsurer i, i = 1, 2, . . . , n − 1: Reinsurer i sells Ii to reinsurer i − 1 with a pre-
mium loading of ηi and purchases reinsurance Ii+1 from the next player with a premium loading of
ηi+1. Therefore, based on Lemma A.1 and Theorem 3.2 of Cao et al. (2022b), suitably modified for
the variance premium principle, we know that intermediate reinsurer i solves the following problem, in
which Îi is the optimal choice of indemnity of reinsurer i − 1:

sup
Ii+1

sup
ηi

inf
φi

[
Îi + ηi

2
(Îi)

2 − Ii+1 − ηi+1

2
I2

i+1 − (Îi − Ii+1)(1 + φi) + φ2
i

2εi

]
= sup

Ii+1

sup
ηi

[ηi

2
(Îi)

2 − ηi+1

2
I2

i+1 − εi

2
(Îi − Ii+1)

2
]

= sup
ηi

sup
Ii+1

[ηi

2
(Îi)

2 − ηi+1

2
I2

i+1 − εi

2
(Îi − Ii+1)

2
]

. (B.2)

The second line in (B.2) follows because the optimal distortion equals φ̂i(z; ηi, Ii+1) = εi(Îi − Ii+1).
For a given value of ηi, maximize the expression in (B.2) with respect to Ii+1 and obtain the optimal

Îi+1 in terms of Îi as follows:

Îi+1(z; Îi, ηi, ηi+1) = εi

εi + ηi+1

Îi(z; ηi). (B.3)

Because Î1 in (B.1) is a constant multiple of z and because the εi and ηi are constants, (B.3) implies that
Îi is a constant multiple of z for all i = 1, 2, . . . , n. Thus, the expression in (B.2) is a constant multiple
of z2, and maximizing (B.2) over ηi is equivalent to maximizing it when z = 1. To that end, define the
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function ki and simplify it as follows:

ki(ηi) = ηi

2
(Îi)

2 − ηi+1

2
(Îi+1)

2 − εi

2
(Îi − Îi+1)

2
∣∣∣

z=1

=
{

ηi

2
− ηi+1

2

(
εi

εi + ηi+1

)2

− εi

2

(
εi

εi + ηi+1

− 1

)2
} (

Îi(1)
)2

=
{

ηi

2
− 1

2
· εiηi+1

εi + ηi+1

} (
Îi(1)

)2
.

Via induction, we will show7

Îi(z; ηi) = 1

2i−1(1 + aiηi)
z. (B.4)

Under this assumption, the expression for ki becomes

ki(ηi) =
{

ηi

2
− 1

2
· εiηi+1

εi + ηi+1

}
1

22(i−1)(1 + aiηi)2
.

By maximizing ki with respect to ηi, we obtain the optimal η̂i as a function of ηi+1:

η̂i(ηi+1) = 1

ai

+ 2εiηi+1

εi + ηi+1

= εi−1βi−1 + 2εiηi+1

εi + ηi+1

, (B.5)

which one can show equals the recursion in (4.8). Furthermore, from (B.3) and (B.4), we obtain

Îi+1(z; ηi+1) = Îi+1(z; Îi, η̂i, ηi+1) = εi

εi + ηi+1

Îi(z; η̂i)

= εi

εi + ηi+1

· 1

2i−1(1 + aiη̂i(ηi+1))
z

= 1

2i(1 + ai+1ηi+1)
z,

in which the last line follows from the first expression for η̂i(ηi+1) in (B.5) and from ai+1 = ai + 1
εi

. Thus,
we have proved (B.4) for all i = 1, 2, . . . , n.

Finally, the recursion for Îi in (4.6) follows from (B.3), (B.4), and (B.5), and the recursion for φ̂i in
(4.10) follows from the recursion for Îi.

(3) Terminal reinsurer n: Based on Lemma 3.2 and Theorem 3.2 of Cao et al. (2022a) and based on
Theorem 3.3 of Cao et al. (2022b), suitably modified for the variance premium principle, we know that
the terminal reinsurer solves the following problem, in which the terminal reinsurer n sells reinsurance
În = z

2n−1(1+anηn)
to reinsurer n − 1:

sup
ηn

inf
φn

[
În + ηn

2
(În)

2 − În(1 + φn) + φ2
n

2εn

]
= sup

ηn

[
ηn − εn

2
(În)

2

]
=: sup

ηn

kn(ηn).

in which the optimal distortion is given by φ̂n(z; ηn) = εnÎn. Specifically,

kn(ηn) = ηn − εn

2
· z2

22(n−1)(1 + anηn)2
,

which is maximized by:

η̂n = 2εn + 1

an

= 2εn + 1∑n−1
j=0

1
εj

.

7Note that when i = 1, the expression in (B.4) equals the one in (B.1).

https://doi.org/10.1017/asb.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.24


726 Jingyi Cao et al.

(4) Equilibrium: To compute the equilibrium, substitute η̂n into (B.4) with i = n to obtain

În(z) = 1

2n−1(1 + 2anεn + 1)
z = 1

2n(1 + anεn)
z = βn

2n
z,

and the recursions for Îi, η̂i, and φ̂i give us the explicit expressions in (4.7), (4.9), and (4.11), respectively.

(5) Equilibrium value function: Similar to the proof of Theorem 3.4 of Cao et al. (2022b), the value
functions for the primary insurer (player 0) and reinsurer i, for i = 1, 2, . . . , n, are, respectively, given
by:

V̂0(x0, t) = x0 +
∫ ∞

0

(
c − z − η̂1

2
Î2

1 − (z − Î1)φ̂0 + φ̂2
0

2ε0

)
ν(dz) ·E(τ − t|τ > t), (B.6)

and

V̂i(xi, t) = xi +
∫ ∞

0

(
η̂i

2
Î2

i − η̂i+1

2
Î2

i+1 − (Îi − Îi+1)φ̂i + φ̂2
i

2εi

)
ν(dz) ·E(τ − t|τ > t), (B.7)

in which we define În+1 ≡ 0.
Define Î0 = z; then, (B.1) and (B.3) imply

φ̂i = εi(Îi − Îi+1) = εi

η̂i+1

εi + η̂i+1

Îi = η̂i+1Îi+1, i = 0, 1, . . . , n − 1,

and

φ̂n = εnÎn.

Therefore, for i = 0, the integrand in (B.6) equals

c − z − 1

2

(
φ̂0Î1 + φ̂2

0

ε0

)
= c − z − 1

2

(
φ̂0

(
z − φ̂0

ε0

)
+ φ̂2

0

ε0

)
= c − z − φ̂0

2
z =: p0(z),

and for i = 1, 2, . . . , n − 1, the integrand in (B.7) equals

1

2

(
φ̂i−1Îi − φ̂i Îi+1 − φ̂2

i

εi

)
= 1

2

((
εi−1βi−1

2i
z + φ̂i

)
Îi − φ̂i Îi+1 − φ̂2

i

εi

)

= 1

2

(
εi−1βi−1

2i
Îi z + φ̂i(Îi − Îi+1) − φ̂2

i

εi

)

= εi−1βi−1

2i+1
Îi z =: pi(z),

in which the first equality follows from (4.10). Also, from (4.6) we have

Îi = βi

2i
z + (1 − βi)Îi+1 = βi

2i
z + (1 − βi)

(
Îi − φ̂i

εi

)
,

which, together with εiβi

εi−1βi−1
= 1 − βi, implies

Îi = z

2i
− φ̂i

εi

· 1 − βi

βi

= z

2i
− φ̂i

εi−1βi−1

.

One can verify the case when i = n similarly. Thus, we have proved Theorem 4.1.
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B.2. Proof of Proposition 4.1
In this proof, we fix z > 0.

Equivalence between 1 and 2: For i = k + 1, . . . , n and j ≥ i, εjβj = 1∑j
�=0

1
ε�

is unaffected by switching

εk and εk+1. Then, (4.11) implies φ̂1,i(z) = φ̂2,i(z). For i = k, by recursion (4.10),

φ̂k(z) = εkβk

2k+1
z + φ̂k+1(z),

in which εkβk = 1∑k
�=0

1
ε�

increases in εk. By comparing the two chains, because φ̂1,k+1(z) = φ̂2,k+1(z), it fol-

lows that φ̂1,k(z) < φ̂2,k(z) if and only if ε1,k < ε2,k = ε1,k+1. For i = 0, 1, . . . , k − 1, because εiβi = 1∑i
�=0

1
ε�

is unaffected by switching εk and εk+1, the recursion in (4.10) implies φ̂1,i(z) < φ̂2,i(z) if and only if
φ̂1,i+1(z) < φ̂2,i+1(z), which is equivalent to ε1,k < ε2,k = ε1,k+1.

Equivalence between 1 and 3: If i = 1, . . . , k, then εi−1βi−1 is the same for both chains 1 and 2. Thus,
for i = 0, 1, . . . , k, (4.13) implies

V̂1,i > V̂2,i ⇐⇒ φ̂1,i < φ̂2,i ⇐⇒ ε1,k < ε2,k = ε1,k+1.

Equivalence between 1 and 4: Recall φ̂1,k+1(z) = φ̂2,k+1(z), and clearly εkβk = 1∑k
�=0

1
ε�

increases in εk.

Then, (4.13) implies V̂1,k+1 < V̂2,k+1 if and only if ε1,k < ε2,k = ε1,k+1.

Equivalence between 1 and 5: Without loss of generality, we set z = 1. Note that V̂1,i = V̂2,i for i =
k + 2, · · · , n. We have

n∑
i=0

V̂1,i −
n∑

i=0

V̂2,i = V̂1,0 − V̂2,0 +
k∑

i=1

(V̂1,i − V̂2,i) + V̂1,k+1 − V̂2,k+1

= 1

2
(φ̂2,0 − φ̂1,0) +

k∑
i=1

1

2i+1
(φ̂2,i − φ̂1,i) + 1

22k+3
(ε1,kβ1,k − ε2,kβ2,k)

= 1

2k+1

(1

2
+

k∑
i=1

1

2i+1
− 1

2k+2

) (
ε2,kβ2,k − ε1,kβ1,k

)
= (1 − 3

2k+2
)
( 1∑k−1

l=0
1

ε2,l
+ 1

ε2,k

− 1∑k−1
l=0

1
ε1,l

+ 1
ε1,k

)
.

in which to go from the first to the second line, we used that fact that ε1,i−1 = ε2,i−1 for i = 1, 2, · · · , k
and φ̂1,k+1 = φ̂2,k+1; and the third line is due to (4.11) and the fact that ε1,iβ1,i = ε2,iβ2,i for i �= k. By noting
the term in the first term is positive (k ≥ 1), and

∑k−1
l=0

1
ε2,l

=∑k−1
l=0

1
ε1,l

, the equation above is positive if
and only if ε1,k < ε2,k.

B.3. Proof of Theorem 4.3
By comparing (3.8) and (3.9) with (4.12) and (4.13), we only need to show that for any z > 0,

c − z − ε0

2(1 + ε0α∗)
z2 > c − z − φ̂0(z)

2
z. (B.8)

Because φ̂0(z) is proportional to z, in the following we let z = 1 without loss of generality. Then
(B.8) is equivalent to α∗ > 1

φ̂0
− 1

ε0
. Recall that α∗ is the unique zero of function h(α) defined in (3.6)

with limα→0+ h(α) > 0 and h(α) < 0 for α sufficiently large. Therefore, α∗ > 1
φ̂0

− 1
ε0

if and only if
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h
(

1
φ̂0

− 1
ε0

)
> 0, which, with straightforward calculation, is equivalent to

1

2

n∑
i=1

(
φ̂0

εi

+ 1 −
√

φ̂2
0

ε2
i

+ 1

)
> 1 − φ̂0

ε0

. (B.9)

For ease of notation, define γi = ε0

εi

for i = 1, 2, . . . , n. Then, according to (4.11) and (4.5), we have

φ̂0

ε0

= 1

2
+

n−1∑
i=1

1

2i+1

1

1 +∑i
j=1 γj

+ 1

2n

1

1 +∑n
j=1 γj

, (B.10)

which implies

1 − φ̂0

ε0

=
(

n−1∑
i=1

1

2i+1
+ 1

2n

)
−

n−1∑
i=1

1

2i+1

1

1 +∑i
j=1 γj

− 1

2n

1

1 +∑n
j=1 γj

=
n−1∑
i=1

1

2i+1

∑i
j=1 γj

1 +∑i
j=1 γj

+ 1

2n

∑n
j=1 γj

1 +∑n
j=1 γj

=
n∑

i=1

γi

(
n−1∑
k=i

1

2k+1

1

1 +∑k
j=1 γj

+ 1

2n

1

1 +∑n
j=1 γj︸ ︷︷ ︸

=: Di

)
,

(B.11)

in which to go from the second to the third line of (B.11), recombine terms by adding all the factors of
γi. We follow the convention that the sum is zero whenever the lower index exceeds the upper index.

Next, we show that the ith term on the left side of (B.9) is greater than the ith term of (B.11), for
i = 1, 2, . . . , n. To see this, consider function f (x) = x + 1 − √

x2 + 1, which increases from 0 to 1 as x
increases from 0 to ∞. Therefore, for a given constant c ∈ (0, 1), f (x) > c if and only if x > f −1(c) = c(2−c)

2(1−c)
.

Set c = 2γiDi (which is less than 1); thus, we wish to show

φ̂0

εi

>
γiDi(2 − 2γiDi)

1 − 2γiDi

.

From φ̂0
εi

= γi
φ̂0
ε0

and (B.10), this inequality is equivalent to

γi

(
1

2
+

i−1∑
k=1

1

2k+1

1

1 +∑k
j=1 γj

+ Di

)
>

2γiDi(1 − γiDi)

1 − 2γiDi

,

or

1

2
+

i−1∑
k=1

1

2k+1

1

1 +∑k
j=1 γj

>
Di

1 − 2γiDi

,

which is true because

2(1 + γi)Di < 2

(
n−1∑
k=i

1

2k+1
+ 1

2n

)
= 1

2i−1
≤ 1,

which implies Di
1−2γiDi

< 1
2
. This completes the proof.
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