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In this chapter we give a survey of some of the most frequently encountered
distributions. In Chapters 4 and 5 we will cover some of these in more detail.
Many of the common distributions belong to the exponential family of distri-
butions. We present this family and some of its properties in Section 2.4. We
conclude the chapter by two appendices covering the gamma and beta functions;
both functions that arise in some of the common distributions.

If probability is the language for discussing uncertainties, then Chapter 1 could
be viewed as learning the basic grammar and simple verbs, while this chapter is
more like learning the important nouns or objects. With these in place, we will
be in a position in subsequent chapters to use our language to convey ideas.
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26 Survey of Distributions

2.1 Discrete Distributions

It is easy to be put off by the seemingly endless number of probability distribu-
tions, but there are only a handful of distributions that keep on cropping up. The
sooner you make friends with them the easier your life is going to be. We start
with discrete distributions, which are those that involve random variables which
take values that lie in a countable set.

2.1.1 Binomial Distribution

One of the frequently met probability distributions that pops up in a huge
number of applications is the binomial distribution. It arises when we sample n
objects that belong to two classes, A and B say. We assume that the probability
of choosing an object of class A is p. This does not change over time. We can
think of randomly choosing red and blue balls from a bag where the ratio of red
to blue balls is p. Each time we choose a ball we put it back and mix up the balls
before drawing the next sample. The probability of choosing m objects of class A
in n trials is given by

P
(

X = m|n, p
)
= Bin(m|n, p) =

(
n
m

)
pm (1 − p)n−m, (2.1)

where
(
n
m

)
= n!

m!(n−m)! is the binomial coefficient (often referred to as ‘n choose
m’). Figure 2.1 shows examples of the binomial distribution.

Figure 2.1 Example
of binomial mass
function for n = 10,
and p = 0.2 (dotted),
p = 0.5 (solid line)
and p = 0.7
(dashed).
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The mean of a binomial distribution is n p and the variance is n p (1 − p).
We return to the binomial distribution in Chapter 4. A large number of distri-
butions are in some way related to the binomial distribution: the hypergeometric
distribution describes the situation of sampling without replacement; the Poisson
distribution corresponds to a limit of the binomial as p → 0 and n → ∞, but
with p/n → μ, a constant; the multinomial distribution is a generalisation of the
binomial distribution to the case where there are more than two classes; finally
the Gaussian distribution is a limit of the binomial distribution as n → ∞.

Example 2.1 Rolling Dice
What is the probability of getting three sixes in 10 rolls of an honest
dice?

This situation describes a case of repeating independent random
binary trials, which gives rise to a binomial probability. In this case,
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2.1 Discrete Distributions 27

we have a success probability of p = 1/6 and have n = 10 trials so the
probability of three successes is

Bin(3|10, 1/6) =
(

10
3

)(
1
6

)3(
1 − 1

6

)7

= 0.155.

Thus we can expect this to happen around 15% of the times we
attempt it.

2.1.2 Hypergeometric Distribution

Although binomial distributions are the most common type of discrete distribu-
tion when dealing with two classes, they are not the only one. The hypergeometric
distribution describes the probability of choosing k samples of class A out of n
attempts, given that there is a total of N objects, m of which are of class A. For
example, if you have a bag of N balls of which m are red and the rest are blue, and
you sample n balls from the bag without replacement, then the hypergeometric
distribution

N = 13, m = 8
n = 5, k = 3

P
(
K = k|N , m, n

)
= Hyp(k|N , m, n) =

(
m
k

)(
N−m
n−k

)(
N
n

) (2.2)

tells you the probability that k of the drawn balls are red. (N is the total number
of balls and is not a random variable – we use a capital to follow a commonly used
convention for describing this distribution.) This probability is just the number
of different ways of choosing k red balls from the m red balls, times the number
of ways of choosing n − k blue balls from the N − m blue balls, divided by the
total number of ways of choosing n balls from N balls. There are a number of
surprising symmetries, for example, Hyp(k|N , m, n) = Hyp(k|N , n, m) (that is,
we get the same probability when we exchange the number of red balls and the
number of balls that we sample). These arise due to the many identities involving
binomial coefficients.

The mean value of K is n m/N and its variance is n(m/N)(1 − m/N)(N −
n)/(N − 1). Typical probability masses are shown in Figure 2.2. We observe that
these figures are not too dissimilar to those for the binomial distribution. Indeed,
in the limit N , m → ∞ such that m/N → p the hypergeometric distribution
converges to the binomial distribution (see Exercise 2.4 on page 41).

Figure 2.2 Examples
of hypergeometric
distributions for
N = 100, n = 10,
and m = 30 (dotted),
m = 50 (solid line)
and m = 70
(dashed).
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28 Survey of Distributions

An application of this distribution is when there is a shipment of N objects,
m of which are defective. If we sample n of the objects, then the hypergeometric
distribution tells us the probability that k of the samples are defective. This is
also the distribution you need to use if you want to calculate the probability of
winning a prize in the UK National Lottery (see Exercise 2.5 on page 41). The
hypergeometric distribution is not so well known as its ubiquity deserves. Possibly
its low profile is a consequence of the fact that it is not always that easy to deal
with analytically.

Example 2.2 Bridge
In the game of bridge, each player is dealt 13 cards. What is the
probability that player 1 has three aces?

Treating a bridge hand as a random sample of 13 cards from a
pack of 52 cards where we don’t replace the cards, then we see that
this is a job for the hypergeometric distribution. The total number of
cards is N = 52, the number of aces is m = 4. A hand is a sample of
n = 13 cards so that the probability we seek is

Hyp(3|52, 4, 13) =

(4
3

)(48
10

)(52
13

) = 858
20 825

= 0.0412.

That is, a player can expect such a bridge hand around 4% of the
time.

2.1.3 Poisson Distribution

The Poisson distribution can be regarded as a limiting case of the binomial
distribution when p → 0 and n → ∞, but with p n = μ. In this limit, with
m � n, the binomial coefficient simplifies(

n
m

)
=

n (n − 1) . . . (n − m)

m!
≈ nm

m!
,

and

(1 − p)n−m = e (n−m) log(1−p) ≈ e−p(n−m) ≈ e−p n = e−μ

where we have used the Taylor expansion log(1 − p) = −p +O(p2). Thus in this
limit

lim
p→0

p×n=μ

(
n
m

)
pm(1 − p)n−m =

(n p)me−μ

m!
=
μme−μ

m!
= Poi(m|μ). (2.3)

This is the definition of the Poisson distribution. Its somewhat simpler form than
the binomial distribution makes it easier to use. It is also important because
it describes the distribution of independent point events that occur in space
or time (we return to this in Section 12.3). The Poisson distribution arises, for
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2.1 Discrete Distributions 29

Figure 2.3 Examples
of the Poisson
distribution for
μ = 0.5 (dotted),
μ = 1 (solid line),
and μ = 2 (dashed).
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example, if you want to know the probability of a Geiger counter having 10
counts in a minute given that the background radiation level is six counts per
minute (answer 0.0413). Both the mean and variance of the Poisson distribution
are equal to μ. Typical examples of the distribution are shown in Figure 2.3.

Example 2.3 Carbon Dating
Carbon dating is traditionally based on counting the number of beta
particle emissions associated with the radioactive decay of carbon 14.
Carbon 14 is an radioactive isotope of carbon with a relatively short
half-life of 5730 years. All carbon 14 that initially existed in the early
earth would have decayed a long time ago. However, it is constantly
being replenished through neutron capture caused by cosmic rays
creating neutrons that react with nitrogen in the atmosphere.

14N + 1n → 14C + 1p.

where 1n is a neutron and 1p a proton. As a consequence, carbon in
the atmosphere (CO2) has around one part per trillion of carbon 14.
This is equivalent to 60 billion atoms per mole of carbon. This car-
bon is then taken up by plants through photosynthesis. By measuring
the ratio of carbon 14 we are then able to deduce its age.

The probability of an atom of carbon decaying in one year is
λ = 1.245×10−4. The number of carbon 14 atoms in a 1 mole sample
(i.e. approximately 12 g of carbon) is

N = N0 e−λ t

where N0 = 6 × 1010 is the estimated number of atoms absorbed
from the atmosphere through photosynthesis and t is the age of the
sample. The expected number of decays in a time Δt is μ = λ N Δt.
Now suppose we observe n = 100 decays of carbon 14 in one hour. As
radioactive decays are well approximated by a Poisson distribution,
the probability of the decay is

P
(
n = 100

)
=
μ100

100!
e−μ

where μ = λ Δt N0 e−λt = 852.7 e−λt (recall that we know λ, Δt, and
N0, but we don’t know the age of the sample t). In Figure 2.4 we show

https://doi.org/10.1017/9781108635349.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635349.003


30 Survey of Distributions

Figure 2.4
Probability of
observing 100 decays
in a sample with 1
mole of carbon
atoms an hour versus
the age of the
sample. 0
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the probability of observing 100 decays in the sample versus the age t
in years. We see that with high likelihood the age of the sample would
be between 15,000 and 20,000 years.

We assumed that the proportion of carbon 14 in the atmosphere
is constant over time. This is not true (it is not even true over
location), thus to obtain a more accurate estimate, the concentration
of carbon 14 is calibrated against tree samples that can be aged by
counting rings. However, as our probabilistic model shows, there is
also a natural uncertainty caused by the underlying Poisson nature of
radioactive decay. To obtain precise dates for a small sample requires
that measurements over a very long time interval be made. Modern
carbon dating tends to measure the proportion of carbon 14 directly
using a mass spectrometer to reduce the uncertainty caused by that
randomness of beta decays.

2.2 Continuous Distributions

These distributions describe random variables that take on continuous values.
By far the most important distribution in this class is the Gaussian or normal
distribution. However, there are a number of other continuous distributions that
are common enough that they are worth getting to know.

2.2.1 Normal Distribution

The normal distribution – also called the Gaussian distribution – is by far the most
frequently encountered continuous distribution. There are a number of reasons
for this. The central limit theorem (see Section 5.3 on page 81) tells us that the
distribution of the sum of many random variables (under mild conditions) will
converge to a normal distribution as the number of elements in the sum increase.
Many of the other distributions converge to the Gaussian distribution as their
parameters increase. This means that in practical situations many quantities will
be approximately normally distributed. If all you know about a random variable
is its mean and variance then there is a line of reasoning (the so-called maximum
entropy argument, see Section 9.2.2 on page 267) that says that of all possible
distributions with the observed mean and variance the normal distribution is
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2.2 Continuous Distributions 31

Figure 2.5 Examples
of the normal
distribution for
(μ,σ) = (0, 1) (solid
line), (μ,σ) = (1, 1)
(dotted), and
(μ,σ) = (−1, 2)
(dashed).0
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overwhelmingly the most likely. Thus, assuming it is normally distributed is,
in some sense, the optimal decision. However, before you use this argument
you need to understand the small print (i.e. you’ve made a strong assumption
about your variables that ain’t necessarily so). A further reason why normal
distributions are so commonly used is simply because they are easy to manipulate
mathematically – this is a less contemptible motivation than it may at first appear.
All models are abstractions from reality, and an approximate, but an easily
solvable model is often much more useful than a more accurate but complex or
intractable model.

The probability density for the normal distribution is defined as

N(x|μ.σ2) =
1√

2π σ
e− (x−μ)2

2σ2 , (2.4)

which has mean μ and variance σ2. Examples of the normal probability density
functions are shown in Figure 2.5. We will have much more to say about the
normal distribution in Chapter 5.

2.2.2 Gamma Distribution

When considering problems where a continuous random variable only takes
positive values, the normal distribution can provide a poor model. Often a more
appropriate model is the gamma distribution defined for X > 0 through the
probability density

Gam(x|a, b) =
baxa−1e−b x

Γ(a)
, (2.5)

where Γ(a) is the gamma function defined (for real a > 0) The gamma
function is actually
defined throughout
the complex plane
except where a is
equal to 0 or a
negative integer.

by

Γ(a) =
∫ ∞

0
xa−1e−xdx

(see Appendix 2.A). It can easily be verified using integration by parts that
Γ(a + 1) = a Γ(a). For positive integers, n > 0, the gamma function is given
by Γ(n) = (n − 1)! (factorial). In some texts the gamma distribution is defined
with parameters α = a and β = 1/b. The mean of the gamma distribution is
given by a/b (or α β) while the variance is given by a/b2 (or α β2). Examples of
the distribution are shown in Figure 2.6.
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32 Survey of Distributions

Figure 2.6 Examples
of the gamma
distribution for
b = 1 and a = 0.5
(solid line), a = 1
(dotted) and a = 2
(dashed).
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The gamma distribution is often used to empirically fit data that are known
to always take positive values. For example, if you wish to model the intensity
of light from different stars or the sizes of different countries then the gamma
distribution is often a reasonable fit. Given an empirically measured mean μ̂ and
variance σ̂2 a simple fit is to choose a = μ̂2/σ̂2 and b = μ̂/σ̂2. (Although this gives
a reasonably good fit, it is not the maximum likelihood estimator for a and b.)
Gamma distributions also arise naturally in many problems. We discuss a few
examples here.

The chi-squared (or χ2) distribution is a particular form of the gamma
distribution. The distribution arises in sums such as

Sk =
k∑
i=1

X2
i ,

where Xi are normally distributed variables with mean 0 and variance 1. Then
Sk is distributed according to

fSk (s) = χk(s) = Gam
(
s| k2 , 1

2

)
.

The χ2-distribution arises when evaluating the expected errors in curve fitting.
In the special case of a = 1, the gamma distribution reduces to the exponential

distribution

Exp(x|b) = Gam(x|1, b) = b e−b x . (2.6)

The exponential distribution describes the waiting times between events in a
Poisson process (see Section 12.3.1 on page 380).

The velocity of particles in an ideal gas (a model for a real gas which is often
very accurate) are normally distributed, such that the components of the velocity
Vx , Vy , and Vz have distribution N(Vi|0, m/(2 k T)), where k is the Boltzmann
constant and T the temperature. The speed V = ‖V‖ is consequently distributed
according to the Maxwell–Boltzmann distribution, which is related to the gamma
distribution

P
(
v ≤ V < v + dv

)
= fV (v) dv = 4 π

( m
2 π k T

)3/2
v2e

− m v2

2 k T dv

= Gam
(
v2
∣∣∣∣32 ,

m
2 k T

)
dv2.
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2.2 Continuous Distributions 33

Example 2.4 Escaping Helium
Molecules can escape the atmosphere if their velocity exceeds the
escape velocity and they are pointing in the right direction. This is
known as Jeans’ escape. The gravitational escape velocity of an object
from a mass M at a radius r from the centre of the mass is given by

ve =

√
2 G M

r
.

For a molecule 500 km above earth this is around 10.75 km/s. The
upper level of the atmosphere is known as the exosphere, which
starts at the exobase at a height of around 500 km. In the exosphere
the mean free path of a gas molecule is sufficiently large that a
molecule can easily escape the gravitational pull of earth if it has
sufficient velocity. The temperature of atmospheric gas is surprising
large at around 1600 K. The velocity for hydrogen and helium is
given by the Maxwell–Boltzmann distribution. Figure 2.7 shows the
distribution of velocities for both molecular hydrogen and helium.
Although small, there is a sufficiently high probability of reaching
the escape velocity for the escape of hydrogen and helium to be
important. Although hydrogen is lost to space, most of it is retained
as it forms molecules with heavy atoms (e.g. water, H2O), however,
helium does not form any molecules and so will, over time, become
lost into outer space. The presence of helium in the atmosphere is the
result of radioactive alpha decays. The concentration of helium in the
atmosphere (5.2 parts per billion) is determined by an equilibrium
between its production through alpha decays and its loss from the
atmosphere through Jeans’ escape.

Figure 2.7
Distribution of
velocity of hydrogen
and helium
molecules at 1600 K.
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Yet another distribution obtained by making a suitable change of variable is
the Weibull distribution. If Y ∼ Exp(1) = Gam(1, 1) then the random variable
X = k

√
λ Y is distributed according to a Weibull probability density:

Wei(x|λ, k) =
k
λ

( x
λ

)k−1
e−(x/λ)k .

The mean of the Weibull distribution is Γ(1 + 1/k) and the variance is λ2(Γ(1 +
2/k) − Γ2(1 + 1/k)). Weibull distributions can also be used to fit data involving
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34 Survey of Distributions

positive real random variables. It is slightly less convenient than a gamma
distribution, although easier enough to fit numerically. It provides slightly dif-
ferently shaped density profiles to the gamma distribution. This is explored in
Exercise 2.6.

Although gamma distributions are not so well known, as these many examples
illustrate they deserve to be widely appreciated.

2.2.3 Beta Distribution

The beta distribution is a two-parameter continuous distribution that is defined
in the interval [0, 1]. It is therefore useful for modelling situations where the
random variable lies in a range. It is defined by

Bet(x|a, b) =
xa−1(1 − x)b−1

B(a, b)
(2.7)

where B(a, b) is the beta function (see Appendix 2.B) given by

B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx =

Γ(a)Γ(b)
Γ(a + b)

.

The mean and variance of the beta distribution are a/(a+b) and a b/((a+b)2(a+
b+1)), respectively. Examples of the beta probability density functions are shown
in Figure 2.8.

Figure 2.8 Examples
of the beta
distribution for
(a, b) = (0.5, 1)
(solid line),
(a.b) = (2, 2)
(dotted), and
(a, b) = (4, 2)
(dashed). 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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A typical application of the beta distribution is to model an unknown prob-
ability. The uncertainty might be because you don’t know what the value of
probability is. For example, you might want to model the probability of a cell
dividing in the next hour. In this case, there is some fixed probability p, but you
don’t know it. To model your uncertainty you can treat p as a random variable
that takes some value in the interval [0, 1]. Alternatively, you might have different
types of cells with different probabilities of dividing. Here, the uncertainty arises
because you don’t know which type of cell you are looking at. In this case, you
are modelling the distribution of p in a population of cells. The beta distribution
has a limited parametric form, nevertheless it is sufficiently flexible that it can
fit many observed distributions for quantities bounded in an interval quite well,
provided the distributions are single peaked (unimodal).

https://doi.org/10.1017/9781108635349.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635349.003


2.3 Multivariate Distributions 35

2.2.4 Cauchy Distribution

There are a large number of other continuous distributions, many of which are
rather esoteric. However, one type of distribution which you need to be aware
of are those with long tails – that is, with a significant probability of drawing
a sample which is many standard deviations away from the mean. (These are
also, perhaps more accurately called thick-tailed distributions, since they are
usually characterised by a power-law fall-off rather than an exponential fall-
off in probability.) A classic example of a distribution with very long (thick)
tails is the Cauchy distribution (aka Cauchy–Lorentz, Lorentzian, Breit–Wigner),
defined through the probability density

Cau(x) =
1

π(1 + x2)
. (2.8)

The median and mode of the Cauchy distribution is zero, but rather It is tempting to
assume the mean
must be zero by
symmetry. Don’t be
tempted!

shockingly
the distribution has no mean or variance. That is, if X is drawn from Cau then
the improper integrals E

[
X
]

and E
[
X2
]

diverge. We will see that distributions
like this behave rather differently to the other distributions we have looked at so
far. The Probability Distribution Function (PDF) for the Cauchy distribution is
shown in Figure 2.9.

Figure 2.9 The
Cauchy distribution.
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2.3 Multivariate Distributions

So far we have considered distributions involving a single random variable. Often
we have situations where there are many correlated random variables. Distribu-
tions that describe more than one random variable are known as multivariate
distributions, in contrast to distributions of a single variable, which are known
as univariate distributions. There are multivariate extensions for most univariate
distributions, although they often become rather too complex to work with.
However, there are three well-known and useful multivariate distributions that
are relatively easy to work with: the multinomial distribution, the multivariate
normal distribution, and the Dirichlet distribution.

2.3.1 Multinomial Distribution

The multinomial distribution is the generalisation of the binomial distribution
to more than two classes. We assume that we have k classes. The probability
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of drawing a sample from class i is given by pi. Thus the model is described
by a vector of probabilities p = (p1, p2, . . . , pk), with pi ≥ 0 for all i and∑

i pi = 1. The vector of probabilities satisfying these constraints live in the
(k − 1)-dimensional unit simplex

Λk =

{
p = (p1, p2, . . . , pk)

∣∣∣∣ ∀i, pi ≥ 0 and
k∑
i=1

pi = 1

}
. (2.9)

Note that the simplex is a (k−1)-dimensional surface that lives in a k-dimensional
space. Suppose we draw a sample of n objects without replacement and we wish
to know what is the probability that we have drawn n1 objects from class 1, n2

objects from class 2, etc. This probability, P
(
N = n

)
, is given by the multinomial

distribution

Mult(n|n, p) = n!
k∏
i=1

pnii
ni!

�
n ∈ Λk

n

�
(2.10)

where we use the notation
�
predicate

�
to be the indicator function as defined in

Section 1.5.1 (note that the bold n signifies a vector with components ni equal to
the number of samples in class i, while the italic n denotes the total number of
samples). The set Λk

n is the discrete simplex defined by

5
5

n2

n3

n1 4 43 32 2

2
3
4
5

1 1

1

0
0

Λ5
3

Λk
n =

{
n = (n1, n2, . . . nk)

∣∣∣∣ ∀i, ni ∈ {0, 1, 2, . . .} and
k∑
i=1

ni = n

}
. (2.11)

The mean of the multivariate distribution is E
[
N
]
= n p. For multivariate

distributions you not only have a variance for each variable Var
[
Ni

]
= E
[
N2
i

]
−

E
[
Ni

]2
, you also have a covariance between variables Ci j = E

[
Ni Nj

]
−

E
[
Ni

]
E
[
Nj

]
. In general, the second-order statistics for a multivariate distribu-

tion are described by a covariance matrix, C, defined as

C = Cov
[
N
]
= E
[
N NT

]
− E
[
N
]
E
[
NT
]

.

A positive
semi-definite
matrix has the
property that for
any vector x

xTC x ≥ 0.

The covariance matrix is both symmetric and positive semi-definite. For the
multinomial distribution the covariance between Ni and Nj is given by

Cov
[
Ni, Nj

]
= Ci j = E

[
Ni Nj

]
− E
[
Ni

]
E
[
Nj

]
= n
�
i = j
�

pi − n pi pj

or in matrix form

C = n
(
diag(p)− p pT

)
,

where diag(p) is a diagonal matrix with elements pi.
The random variables Ni are not independent since their sum adds up to n.

A consequence is that each row (or column) of the covariance matrix sums to
zero. The multinomial distribution for just two variables only has one degree of
freedom (i.e. given p1 then p2 = 1 − p1) and in this case the multinomial reduces
to the binomial distribution. With three variables, the multinomial is sometimes
referred to as the trinomial distribution.
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Multinomial distributions are fairly common. Suppose, for example, you had a
(possibly biased) dice which you rolled n times. Letting Ni for i = 1, 2, …, 6 denote
the number of times the dice lands on i, then the probability of the outcome
N = n = (n1, n2, . . . , n6) is given by the multinomial P

(
N = n

)
= Mult(n|n, p),

where the components of the vector p = (p1, p2, . . . , p6) describe the probability
of each possible outcome of a dice roll.

2.3.2 Multivariate Normal Distribution

The most commonly used multivariate distribution for continuous variables is
the multivariate normal distribution defined as

N(x|μ,Σ) =
1√

|2πΣ|
e− 1

2 (x−μ)TΣ−1(x−μ), (2.12)

which has mean vector E
[
X
]
= μ and covariance Σ. A two-dimensional normal

distribution is shown in Figure 2.10. Like its univariate counterpart, the multi-
variate normal (or Gaussian) distribution can be manipulated analytically. This
can be a somewhat complicated or awkward business requiring some practice,
but it pays off handsomely. A large number of state-of-the-art algorithms from
Gaussian processes to Kalman filters rely on being able to manipulate normal
distributions analytically. We discuss the multivariate normal distribution in
more detail in Section 5.6 on page 96. Applications of multivariate normal
distribution reoccur throughout this book.

Figure 2.10 A
two-dimensional
normal distribution.

2.3.3 Dirichlet Distribution

Although the most common multivariate distributions by far are the multinomial
and multivariate normal distributions, there exist many others. A particularly
convenient distribution for describing a vector of random variables defined on
the unit simplex, Λk , is the Dirichlet distribution, defined as

Dir(x|α) = Γ(α0)

k∏
i=1

xαi−1
i

Γ(αi)
, (2.13)
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Figure 2.11 A
three-dimensional
Dirichlet
distribution,
Dir

(
X = (x, y, z)|

α = (1, 2, 3)
)
. Note

that this distribution
is defined on the
simplex.

where α0 =
∑n

i=1 αk . The means are equal to E
[
Xi

]
= αi/α0 and the covariance

Ci,j = E
[
Xi X j

]
− E
[
Xi

]
E
[
X j

]
=
αi(α0

�
i = j
�
− α j)

α2
0(α0 + 1)

.

An example of a Dirichlet distribution with three variables is shown in
Figure 2.11.

Suppose you have a dice and you are not sure whether it is biased. You could
model your uncertainty about the probability of rolling any number using a
Dirichlet distribution. The random variables Xi, drawn from Dir(X , α), are not
all independent as their sum adds up to one. In the two component case there
is only one independent variable and the Dirichlet distribution reduces to a beta
distribution.

2.4 Exponential Family�

� Warning, this is
more advanced
material than the
rest of this chapter.
It can be skipped.

Although distributions vary considerably, they also share many properties, some-
times more so than is immediately obvious. One very important family of
distributions which share similar properties is the exponential family. These are
distributions which can be written in the form

fX (x|η) = g(η) h(x) eηTu(x), (2.14)

where η are natural parameters of the distribution, g(η) and h(x) are scalar func-
tions, and u(x) is a vector function (i.e. a function for each natural parameter).
The distribution can be either for a single random variable or for a random vector,
e.g. in the case of a multinomial distribution. The importance of the exponential
family is that many properties are known to hold true for distributions belonging
to this family. Thus, once we know a distribution belongs to this family we know
many of its properties.

It is not immediately obvious, though, which distributions are in the exponen-
tial family, because they are often written in ways that don’t appear to fit the
standard form. Examples of distributions that belong to the exponential family
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Table 2.1 Examples
of distributions
belonging to the
exponential family.
Bern(x|μ) is a
Bernoulli
distribution, which
we discuss in
Section 4.1.

Distribution η u(x) h(x) g(η)

Bern(x|μ) = μx(1 − μ)1−x log
(

μ
1−μ

)
x 1 1

1+e η

N(x|μ,σ) = 1√
2 π σ2

e− (x−μ2)
2 σ2 1

σ2

(
μ

−1/2

) (
x
x2

) 1√
2 π

√
−2η2 e η

2
1/(4η2)

Gam(x|a, b) = ba xa−1 e −b x

Γ(a)

(−b
a−1

) (
x

log(x)

)
1 (−η1)

η2+1

Γ(η2+1)

Bet(x|a, b) = xa−1(1−x)b

B(a,b)

(
a−1
b−1

) ( log(x)
log(1−x)

)
1 1

B(η1+1,η2+1)

Dir(x|α) = Γ
(∑n

i=1 αi

)∏n
i=1

x
αi
i

Γ(αi)

⎛
⎜⎝α1−1

...
αn−1

⎞
⎟⎠
⎛
⎜⎝log(x1)

...
log(xn)

⎞
⎟⎠ 1 Γ(n+

∑n
i=1 ηi)∏n

i=1 Γ(ηi+1)

are shown in Table 2.1. A fuller discussion of the exponential family can be found
in Duda et al. (2001).

An important property of members of the exponential family is a relation
between the natural parameters and an expectation. To see this we start from
the normalisation condition

g(η)

∫
h(x) eηT u(x) d x = 1.

Differentiating both sides with respect to the natural parameters, η,

∇g(η)

∫
h(x) eηT u(x) d x + g(η)

∫
h(x) eηT u(x) u(x) d x = 0.

Rearranging and making use of the normalisation condition we find

−1
g(η)

∇g(η) = g(η)

∫
h(x) eηT u(x) u(x) d x

or, equivalently,

−∇ log
(
g(η)
)
= E
[
u(x)
]

.

Thus, the expectation of u(x) can be found by taking a derivative of log
(
g(η)
)
.

Furthermore, the covariance and higher order moments can be obtained by
taking higher order derivatives of g(η).

A related property is to do with the maximum likelihood estimate of the natu-
ral parameters. Given a collection of independent data points, D = (x1, x2, . . . ,
xn), the likelihood of the data is equal to

f (D|η) =
(

n∏
i=1

h(xi)

)
gn(η) eηT ∑n

j=1 u(x j ).

The maximum likelihood estimator for the natural parameters, η̂, satisfies

∇ f (D|η̂) = 0
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or

−∇ log
(
g(η̂)
)
=

1
n

n∑
i=1

u(xn).

From this we can solve for the maximum likelihood estimate η̂. Thus, the only
statistics needed for the maximum likelihood estimate of the natural parameters
are the components of the vector

∑n
i=1 u(xn). These are therefore sufficient

statistics for any member of the exponential family. We discuss maximum
likelihood estimators and sufficient statistics in more detail in Chapter 4.

Although there are a plethora of probability distributions, a few of them are so
common and important that they simply can’t be ignored. Of these the binomial
and normal (or Gaussian) distributions stand out as particularly important. In
the second rank sits the hypergeometric, Poisson, gamma, beta, multinomial,
and Dirichlet distributions. You also need to be aware that some distributions
can have very long tails and nasty properties. Although not very frequently
met in practice, the Cauchy distribution is a particularly pretty example of a
long-tailed distribution. We’ll meet other long-tailed distributions along the way.
Appendix B on page 445 provides tables showing the properties of some of the
more commonly encountered distributions.

Additional Reading

A useful table of results for different distributions can be found in the com-
pendium of mathematical formula by Abramowitz and Stegun (1964). If you
know which distribution you are interested in, then performing a Google or
Wikipedia search on the distribution is a very quick way to find most of the
common relationships that you might be interested in.

Exercise for Chapter 2

Exercise 2.1 (answer on page 396)
What distribution might you use to model the following situations:

i. the proportion of the gross national product (GDP) from different
sectors of the economy;

ii. the probability of three buses arriving in the next five minutes;
iii. the length of people’s stride;
iv. the salary of people;
v. the outcome of a roulette wheel spun many times;

vi. the number of sixes rolled in a fixed number of trials; or
vii. the odds of a particular horse winning the Grand National.

(Note that there is not necessarily a single correct answer.)
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Exercise 2.2 (answer on page 397)
Assume that one card is chosen from an ordinary pack of cards. The card is then
replaced and the pack shuffled. This is repeated 10 times. What is the chance that
an ace is drawn exactly three times?

Exercise 2.3 (answer on page 397)
Assume that a pack of cards is shuffled and 10 cards are dealt. What is the
probability that exactly three of the cards are aces?

Exercise 2.4 (answer on page 397)
Show that the hypergeometric distribution, Hyp(k|N , m, n), converges to a bino-
mial distribution, Bin(k|n, p) in the limit where N and m go to infinity in such a
way that m/N = p. Explain why this will happen in words.

Exercise 2.5 (answer on page 398)
In the UK National Lottery players choose six numbers between 1 to 59. On draw
day six numbers are chosen and the players who correctly guess two or more of the
drawn numbers win a prize. The prizes increase substantially as you guess more of
the chosen numbers. Write down the probability of guessing k balls correctly using
the hypergeometric distribution and compute the probabilities for k equal 2 to 6.

Exercise 2.6 (answer on page 398)
Show that if Y ∼ Exp(1) then the random variable X = λ k

√
Y (or Y = (X/λ)k ) is

distributed according to the Weibull density

Wei(x|λ, k) =
k
λ

( x
λ

)k−1
e−(x/λ)k .

Plot the Weibull densities Wei(x|1, k) and the gamma distribution with the same
mean and variance

Gam
(

Γ
2(1 + 1/k)

Γ(1 + 2/k)− Γ2(1 + 1/k)
,

Γ(1 + 2/k)
Γ(1 + 2/k)− Γ2(1 + 1/k)

)

for k = 1/2, 1, 2, and 5.

Appendix 2.A The Gamma Function

The gamma function, Γ(z), occurs frequently in probability. For �(z) > 0 (i.e.
the real part of z is positive), the gamma function is defined by the integral

Γ(z) =
∫ ∞

0
xz−1e−xdx. (2.15)

Using integration by parts (assuming z > 1) we obtain the relationship ∫ b

a

u
dv
dx

dx = [u v]ba

−
∫ b

a

v
du
dx

dx

Γ(z) =
[
−xz−1e−x

]∞
0
+ (z − 1)

∫ ∞

0
xz−2e−xdx

= (z − 1)Γ(z − 1).

Since

Γ(1) =
∫ ∞

0
e−xdx = 1
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we find forGauss much more
sensibly defined the
Pi-function

Π(z) =
∫ ∞

0
xze−xdx

so that Π(n) = n!.
Alas, history left us
with the gamma
function.

integer, n, that Γ(n) = (n − 1)Γ(n − 1) = (n − 1)(n − 2) · · · 2 · 1 =
(n − 1)!. Thus, the gamma function is intimately related to factorials (although
annoyingly with an offset of 1). As the gamma function increases so fast, it
will tend to cause overflows or underflows in numerical calculations if used in
its raw form. To overcome this it is usual to work with log(Γ(z)). In C-based
programming languages this function is called lgamma. It is also useful for
computing factorials. For example, to compute the binomial coefficient

(
n
k

)
we

can use

exp(lgamma(n + 1)− lgamma(k + 1)− lgamma(n− k + 1)).

The gamma distribution is very well approximated by Stirling’s approximation

0

3

6

9

12

15

0 5 10
n

log(n!)

n
lo

g(
n
)−

n
+

1
2

lo
g(

2 π
n
) Γ(z) =

√
2 π
z

( z
e

)z (
1 +O

(
1
z

))
.

For factorials this is equivalent to

n!≈
(n

e

)n √
2 π n .

In proving theorems involving factorials it is occasionally useful to use a bound
provided by Stirling’s approximation

√
2π nn+1/2e−n ≤ n!≤ e nn+1/2e−n.

Although the integral in Equation (2.15) is only defined for �(z) > 0, the
gamma function can be defined everywhere in the complex plane except at a =
0,−1,−2, · · · , where the function diverges. There are a number of relationships
between the gamma function at different values that often help to simplify
formulae. We have already seen that Γ(a) = (a − 1)Γ(a − 1). Another important
relationship is Euler’s reflection formula

Γ(1 − z) Γ(z) =
π

sin(πz)

and the duplication formula

Γ(z) Γ

(
z +

1
2

)
= 21−2z √

π Γ(2z).

For those readers with a more mathematical background, a formula, due to
Hermann Hankel, which is occasionally useful is an integral form for the
reciprocal of the gamma function in terms of a contour integration

1
Γ(z)

=
1

2 π i

∫
C

x−z e x dx,

where C is a path that starts at −∞ below the branch cut, goes around 0, and
returns to −∞ above the branch cut.

0
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Derivatives of the gamma function arise when computing maximum likelihood
estimates for distributions such as the gamma distribution. Rather than using the
derivative of the gamma function it is more usual (and often more convenient)
to consider the derivative of the (natural) logarithm of the gamma function
(throughout this book we use log(x) to denote the natural logarithm of x). This
is known as the digamma function which is usually written as

ψ(z) =
d log(Γ(z))

dz
=

1
Γ(z)

dΓ(z)
dz

.

Although the digamma function is not part of the standard C library, it exists
in many numerical packages. The derivative of the digamma function is known
as the trigamma function ψ′(z), while higher order derivatives are known as
polygamma functions. Like the gamma function the polygamma functions,
and particularly the digamma function, have interesting properties that are
well documented (e.g. in most tables of mathematical functions as well as in
Wikipedia, etc.).

The incomplete gamma functions are defined for �(a) > 0 by

γ(a, z) =
∫ z

0
xa−1 e−x dx, Γ(a, z) =

∫ ∞

z

xa−1 e−x dx,

with γ(a, z) + Γ(a, z) = Γ(a). The normalised incomplete gamma functions are
defined as

P(a, z) =
γ(a, z)
Γ(a)

, Q(a, z) =
Γ(a, z)
Γ(a)

,

with P(a, z) +Q(a, z) = 1.

Appendix 2.B The Beta Function

The beta function is defined (for �(a),�(b) > 0) through the integral

B(a, b) =
∫ 1

0
xa−1 (1 − x)b−1dx.

Remarkably, it is related to the gamma function through

B(a, b) =
Γ(a) Γ(b)
Γ(a + b)

.

To prove this we start from

Γ(a) Γ(b) =
∫ ∞

0
ua−1 e−udu

∫ ∞

0
vb−1 e−vdv =

∫ ∞

0

∫ ∞

0
ua−1 vb−1 e−u−vdu dv.

We make the change of variables u = z t, v = z (1−t), with t ∈ [0, 1] and z ∈ [0,∞]

(in the u-v plane t determines the angle and z the magnitude). The Jacobian is
given by

∂(u, v)
∂(t, z)

=

∣∣∣∣ z t
−z (1 − t)

∣∣∣∣ = z (1 − t) + z t = z.
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With this change of variables we find

Γ(a) Γ(b) =
∫ 1

0

∫ ∞

0
(z t)a−1 (z (1 − t))b−1 e z t−z (1−t) z dt dz

=

∫ 1

0
ta−1 (1 − t)b−1dt

∫ ∞

0
za+b−1e−zdz = B(a, b) Γ(a + b).

The incomplete beta function is defined as

Bz(a, b) =
∫ z

0
xa−1 (1 − x)b−1 dx.

The normalised incomplete beta function is defined as Iz(a, b) = Bz(a, b)/B(a, b).
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