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Abstract. Let L be a convex body in �n and z an interior point of L. We associate
with L and z a new, convex and centrally symmetric, body CI(L, z). This generalizes
the classical intersection body I(L, z) (whose radial function at u ∈ Sn−1 is the volume
of the hyperplane section of L through z, orthogonal to u). CI(L, z) coincides with
I(L, z) if and only if L is centrally symmetric about z. We study the properties of
CI(L, z).

2010 Mathematics Subject Classification. 52A20.

1. Introduction. Let L be a convex body in �n containing 0 in its interior. The
intersection body I(L) of L, defined by its radial function ρI(L) on the sphere Sn−1,
which is

ρI(L)(u) = vol(L ∩ u⊥)

and the cross-section body C(L) of L, defined by

ρC(L)(u) = max
t

vol((L ∩ (tu + u⊥))

are not, in general, convex bodies, although they are identical and, moreover, convex in
the case when L is centrally symmetric. This follows from Brunn–Minkowski theorem
(see [21, p. 309]) and from Busemann’s theorem (see [3]). We introduce here a new
convex body associated with L, generalizing both the intersection body and the cross-
section body. More precisely, we define the convex intersection body CI(L) of L by its
radial function

ρCI(L)(u) = min
z∈Pu(L∗g(L))

vol
([

Pu(L∗g(L))
]∗z)

, (1)
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where g(L) denotes here the centroid of L, and if E is a linear subspace of �n and M
is a convex body in E, we define for z ∈ E,

M∗z = {y ∈ E; 〈y − z, x − z〉 ≤ 1 for every x ∈ M}.

Thus (1) means: first apply duality with respect to the point g(L), then project onto u⊥,
finally apply duality with respect to z and minimize the (n − 1)-dimensional volume
over z.

In Section 2, we shall attach to any convex body K in �n a body J(K) constructed
with the help of its projections, and prove that it is always convex. In Section 3, we
prove that CI(L) is convex, and we study the inclusions

CI(L) ⊂ I(L) ⊂ C(L),

when gL = 0. Finally, in Section 4, a few open problems are listed, with proposed ideas
concerning some of them.

NOTATIONS. For x, y ∈ �n, we denote by 〈x, y〉 the canonical scalar product in �n,
|x| denotes the Euclidean norm defined by it. If u and v are two non-zero vectors in �n

that are not orthogonal to one another, we define �w,u⊥ : �n → u⊥ to be the projection
parallel to w onto u⊥ = {x ∈ �n; 〈x, u〉 = 0}, we denote

Pu = �u,u⊥ .

If L is a subset of �n, let [L] be the affine subspace of �n that it spans. If B is a convex
subset of �n, we denote its k-dimensional volume by vol(B) (where k = dim[B]). By
conv (A), we denote the closed convex hull of A.

For L a convex set in �n and z ∈ [L], we denote the polar body of L with respect
to z by

L∗z = {y ∈ [L]; 〈y − z, x − z〉 ≤ 1 for every x ∈ L}.

It is well known that the function z → vol(L∗z) is strictly convex on the relative interior
of L and tends to +∞ as z approaches the realtive boundary of L in [L] (see [17, 20]). It
follows that it reaches its minimum at a unique point s(L) ∈ int(L). This point is called
the Santaló point of L. We shall denote

L∗s := L∗s(L).

Moreover, s(L) is also characterized as the unique point z ∈ int(L), which is the centroid
of L∗z (see [20] and also [21, p. 419]). Let us denote by g(M) the centroid of a convex
body M in [M], and set

M∗g = M∗g(M).

One has
L∗s = M if and only if M∗g = L.

Observe that, in general, s(L) = g(L) (see the recent [18], where a lower bound to
how far apart these two points can be is given). Finally if 0 ∈ int(M), we shall write
M∗ = M∗0, so that M∗x = x + (M − x)∗ for every x ∈ int(M).
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We adopt the following notation: if K is a star body with respect to 0, we denote

||x||K = inf{λ > 0; x ∈ λK}
to be the gauge of K . Then for u ∈ Sn−1,

ρK (u) = 1
||u||K

is the radial function of K .

2. A convexity theorem.

THEOREM 1. If K is a convex body in �n, let NK : �n → �+ be defined by the
formula

NK (u) = 1
vol((PuK)∗s)

= 1
minz∈u⊥ vol((PuK)∗z)

for u ∈ Sn−1,

and extended to all �n by NK (ru) = rNK (u) for r ≥ 0 and u ∈ Sn−1. Then NK is a norm
on �n.

Before proving Theorem 1, we need some preliminary results.

DEFINITION . Let v ∈ Sn−1, B be a bounded subset of �n and V : B → � be a
bounded map. The shadow system (Lt), t ∈ [a, b] of convex bodies in �n, with direction
the vector v, with basis the set B and with speed the function V , is the family of convex
bodies

Lt = conv {b + tV (b)v; b ∈ B}, for t ∈ [a, b].

For the sake of completeness, we prove the following result, which appears in [23] and
is used, for example, in [4, 5].

PROPOSITION 2. Let K be a convex body in �n. Then, for u, v ∈ Sn−1, such that
〈u, v〉 = 0, the family Lt = �u+tv,u⊥K, t ∈ �, is a shadow system of convex bodies in u⊥,
in the direction v.

Proof. To simplify notation, one may suppose that u = en and v = en−1, where
e1, . . . , en is an orthonormal basis of �n (we shall write �j for [e1, . . . , ej]). Then, for
all t ∈ �,

�u+tv,u⊥K = {X + zen−1 ; X ∈ �n−2, X + zen−1 + r(en + ten−1) ∈ K for some r ∈ �}
= {X + zen−1 ; X ∈ �n−2, X + (z + rt)en−1 + ren ∈ K for some r ∈ �}
= {X + (x − rt)en−1 ; X ∈ �n−2, r ∈ � such that X + xen−1 + ren ∈ K}
= {U − rten−1 ; (U, r) ∈ PuK × � such that U + ren ∈ K}.

For U ∈ PuK , define

I(U) = {r ∈ � ; U + ren ∈ K}.
Then I(U) = [a(U), b(U)] is a closed interval of �. Define also x(U) ∈ � such that

〈U − x(U)en−1, en−1〉 = 0,

https://doi.org/10.1017/S0017089511000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000103


526 MATHIEU MEYER AND SHLOMO REISNER

and let

D1 = {U ∈ PuK ; x(U) ∈ �} and D2 = {U ∈ PuK ; x(U) ∈ � \ �}.

Define V : PuK → � by

v(U) = −b(U) if U ∈ D1 and v(U) = −a(U) if U ∈ D2.

By the continuity of the two concave functions −a, b : Pu(K) → �, it is easy to see that
for every t ∈ �

�u+tv,u⊥K = conv {U + tV (U)en; U ∈ PuK}.

�

REMARK . The converse assertion of Proposition 2 is true : every shadow system
Lt in �n can be represented as Lt = �u+tv,u⊥ (K) with an appropriate convex body
K ⊂ �n+1 and u, v ∈ Sn. This was shown, for example, in [4].

The following result was proved in [16].

THEOREM 3. Let t ∈ [a, b] → Lt be a shadow system in �n, then the function φ :
�n → �, defined by the formula

φ(t) = 1
vol((Lt)∗s)

= 1
minz vol((Lt)∗z)

,

is convex.

LEMMA 4. Let N : �n → �+ satisfy
� N(x) > 0 for x = 0,
� N(αx) = |α|N(x) for every α ∈ � and x ∈ �n,
� for all u, v ∈ Sn−1 such that 〈u, v〉 = 0, t �→ N(u + tv) is convex on �.

Then N is a norm on �n.

Proof. Let us show that N(x + y) ≤ N(x) + N(y) for every x, y ∈ �n \ {0}. Let
α = | x

|x| + y
|y| | and β = | x

|x| − y
|y| |, u = 1

α
( x
|x| + y

|y| ) and v = 1
β

( x
|x| − y

|y| ). We may suppose

that α = 0 and β = 0. Then u, v ∈ Sn−1, 〈u, v〉 = 0 and

x = |x|
2

(αu + βv), y = |y|
2

(αu − βv).

We get

N(x + y) = α(|x| + |y|)
2

N
(

u + β(|x| − |y|)
α(|x| + |y|)v

)

= α(|x| + |y|)
2

N(u + (λt + (1 − λ)s)v),
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where λ = |x|
|x|+|y| , t = β

α
and s = − β

α
. Under the assumption of the lemma, we

get

N(x + y) ≤ α(|x| + |y|)
2

(λN(u + tv) + (1 − λ)N(u + sv))

= α

2

(
|x|N

(
u + β

α
v

)
+ |y|N

(
u − β

α
v

))
= N(x) + N(y).

�
Proof of Theorem 1. In view of Lemma 4, we need to prove that t → gu,v(t) =

N(u + tv) is convex, whenever u, v ∈ Sn−1 satisfy 〈u, v〉 = 0. It is easy to see that for
any t ∈ �, Pu+tvK is an affine image of �u+tv,u⊥K and satisfies

vol(Pu+tvK) = 1√
1 + t2

vol(�u+tv,u⊥K).

Hence

min
z∈{u+tv}⊥

vol((Pu+tvK)∗z) =
√

1 + t2 min
z∈u⊥

vol((�u+tv,u⊥K)∗z))

It follows that

N(u + tv) = |u + tv|
minz∈{u+tv}⊥ vol((Pu+tvK)∗z))

= 1
minz∈u⊥ vol((�u+tv,u⊥K)∗z)

.

Now by Proposition 2, t → �u+tv,u⊥K is a shadow system on � and thus by Theorem 3,
gu,v is convex on �.

REMARKS. (1) If K is centrally symmetric (and centred at 0), then all its projections
PuK are centrally symmetric (and centred at 0) so that

min
z∈u⊥

vol(PuK)∗z) = vol(PuK)∗0) = vol(K∗0 ∩ u⊥).

Under this hypothesis, we proved that u → 1
vol(K∗0∩u⊥)

is the restriction to Sn−1 of

a norm on �n. This is Busemann [3] theorem on the sections of convex centrally
symmetric bodies, applied to K∗.

(2) For every convex body K in �n, Theorem 1 defines a centrally symmetric convex
body J(K) in �n by

J(K) = {x ∈ �n; NK (x) ≤ 1}.

Notice that for every x0 ∈ �n, J(K + x0) = J(K) and that for A : �n → �n a linear
isomorphism, we have

J((AK)) = | det(A)| (A∗)−1(J(K)).

(3) If n = 2 and if R is the rotation by angle π/2 in �2, then

vol(PuK) = hK (Ru) + hK (−Ru) = hK (Ru) + h−K (Ru),
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so that

J(K) = 1
4 R(K − K).

3. The convex intersection bodies IC(L, z) of a convex body L. Let L be a convex
body in �n. For a point z ∈ int(L), the intersection body I(L, z) of L with respect to
z is the centrally symmetric star body in �n whose radial function ρI(L,z) is given for
u ∈ Sn−1 by

ρI(L,z)(u) = vol({x ∈ L; 〈x − z, u〉 = 0}) = vol(L ∩ (z + u⊥)).

The body C(L) is the star body in �n defined by its radial function

ρC(L)(u) = max
x∈L

vol(L ∩ (x + u⊥)).

Of course, one has I(L, z) ⊂ C(L) for every z ∈ int(L). It was proved in [13] that these
bodies coincide if and only if L is centrally symmetric about z (the ‘if ’ part follows
easily from Brunn–Minkowski theorem). We define now the convex intersection body
of L with respect to z ∈ int(L), which we denote by CI(L, z), by

CI(L, z) = J(L∗z).

When z = g(L) is the centroid of L, we shall denote CI(L) = CI(L, g(L)). The radial
function of CI(L, z) is thus given for u ∈ Sn−1 by

ρCI(L,z)(u) = min
x∈u⊥

vol((Pu(L∗z))∗x) = vol((Pu(L∗z))∗s).

In view of Theorem 1, one has

THEOREM 5. Let L be a convex body. Then for every z ∈ int(L), CI(L, z) is a centrally
symmetric convex body such that CI(L, z) ⊂ I(L, z).

REMARKS. (1) It is easy to see that one has for every one-to-one affine map
A : �n → �n, I(AL, Az) = | det(A)|A∗−1

(
I(L, z)

)
, as well as

CI(AL, Az) = | det(A)| A∗−1(CI(L)
)
.

(2) In the case n = 2, for u ∈ S1, denoting by R the rotation around 0 of angle π/2, one
has

||u||C(L) = ||Ru||K−K

≤ ||u||I(L,z) =
(

1
||Ru||K−z

+ 1
|| − Ru||K−z)

)−1

≤ ||u||CI(L,z) = 4(||Ru||K−z + || − Ru||K−z).

(3) The inclusion CI(L, z) ⊂ I(L, z) is exact in the sense that their boundaries touch;
there always exists u ∈ Sn−1 such that

vol(L ∩ (z + u⊥)) = vol((Pu(L∗z))∗s).
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As a matter of fact, this equality means that the centroid of L ∩ (z + u⊥) in z + u⊥ is
at z. To see that such u exists, define φ : Sn−1 → � by

φ(v) = vol({x ∈ L; 〈x − z; v〉 ≥ 0}).

Since φ is continuous, it reaches its maximum at some point u ∈ Sn−1. Then, by [15], z
is the centroid of L ∩ (z + u⊥). See also [10].

(4) It was proved by Grünbaum ([10, Section 6.2]) that for every convex body
L ∈ �n, there exists some z0 ∈ int(L) such that (n + 1) different hyperplanes through
z0, with normals u1, . . . , un+1, satisfy that z0 is the centroid of L ∩ (z + u⊥

i ). For this z0,
the boundaries of CI(L, z0) and of I(L, z0) have at least 2(n + 1) contact points.

(5) We have seen above that, in the case when L is centrally symmetric about z,
CI(L, z) = I(L, z) and Theorem 5 is nothing else but the classical Busemann’s theorem
[1]. Conversely, the following result holds.

PROPOSITION 6. One has CI(L, z) = I(L, z) if and only if L is centrally symmetric
about z.

It is a consequence of the following lemma.

LEMMA 7. Let L be a convex body and z ∈ L. Suppose that z is the centroid of every
hyperplane section of L through itself. Then L is centrally symmetric about z.

Proof. Fix some z0 ∈ int(L), z0 = z, and define F : �n → � by

F(y) = vol({x ∈ L − z0; 〈x, y〉 ≥ 1}).

By [15], F is C1 on {F > 0} = �n \ {0} and one has for y = 0

∇F(y) = 〈∇F(y), y〉 g({w ∈ L − z0; 〈w, y〉 = 1})
= 〈∇F(y), y〉(g({x ∈ L; 〈x − z0, y〉 = 1}) − z0

)
. (2)

Let H be the affine hyperplane in �n defined by

H = {y ∈ �n; 〈z − z0, y〉 = 1}.

If y ∈ H, the hyperplane {x ∈ �n; 〈x − z0, y〉 = 1} passes through z, so that by the
hypothesis, one has

g({w ∈ L; 〈x − z0, y〉 = 1}) = z,

thus, by (2) we get

∇F(y) = 〈∇F(y), y〉(z − z0).

Now if y, y′ ∈ H, one has

〈y′ − y, z − z0〉 = 0 and for every t ∈ �, (1 − t)y′ + ty ∈ H

so that

F(y′) − F(y) =
∫ 1

0
〈y′ − y,∇F((1 − t)y + ty′))〉dt = 0.

https://doi.org/10.1017/S0017089511000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000103


530 MATHIEU MEYER AND SHLOMO REISNER

Thus, F is equal to some constant c on H. Define a function G : Sn−1 → � by

G(u) = vol{x ∈ L; 〈x − z, u〉 ≥ 0}.

and let

U = {u ∈ Sn−1; 〈u, z − z0〉 > 0}.

Then u → y(u) := u
〈u,z−z0〉 is a one-to-one mapping from U onto H, and it is easy to

check that

G(u) = F
(
y(u)

)
for every u ∈ U .

It follows that G = c on U , and since G(u) + G(−u) = vol(L) for every u ∈ Sn−1, G =
vol(L) − c on −U . Now, Sn−1 ∩ (z − z0)⊥ is contained in the closures of both U and

of −U in Sn−1. Since G is continuous on Sn−1, G = c = 1 − c = vol(L)
2 on Sn−1. The

fact that L is centrally symmetric about z now follows by a classical result (see [8]
or [6]). �

4. Additional comments and some open problems. We know that although C(L)
and I(L, z) are not in general convex bodies (by [14], C(L) is convex for n ≤ 3 and by [2],
if 	n is the simplex in �n, C(	n) is not convex if n ≥ 4). However C(L) and I(L, g(L)),
where g(L) is the centroid of L, are almost convex, and even almost ellipsoids, in the
sense that there exist some constants c > d > 0, independent on n and L, such that for
every u ∈ Sn−1, one has

d

vol(L)
3
2

(∫
L−g(L)

〈x, u〉2dx
) 1

2

≤ 1

maxt vol
(
L ∩ (tu + u⊥)

) = ρC(L)(u)

≤ 1
vol(L ∩ u⊥)

= ρI(L,g(L))(u)

≤ c

vol(L)
3
2

(∫
L−g(L)

〈x, u〉2dx
) 1

2

.

In the centrally symmetric case, this was proved by Hensley, and Ball [1] (for sharp
constants, see also [19]), and in the general case by Schütt [22] and Fradelizi [7] (the
latter with sharp constants). We have seen that ρI(L,g(L)) ≤ ρCI(L,g(L)). A natural question
to ask now is

OPEN PROBLEM 1. Does there exist a universal constant C > 0, independent on
the convex body L in �n and on n ≥ 1, such that ρCI(L,g(L)) ≤ CρI(L,g(L))? Of course,
in view of the preceding inequalities, an affirmative answer to this question would say
that the radial functions of C(L), CI(L) and I(L, g(L)) are all equivalent (with absolute
constants).

Observe that an equivalent way of formulating this problem is the following. Let K
be a convex body in �n such that its Santaló point is at 0. Does there exist an absolute
constant C > 0, independent on n and K such that

vol
(
(PuK)∗Puz) ≥ C vol

(
(PuK)∗0) for every z ∈ int(K) ?
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Equivalently, given a convex M ⊂ u⊥, with Santaló point s(M), and a convex body K
in �n, with Santaló point s(K), such that PuK = M, does

vol(M∗s(M)) ≥ Cvol(M∗Pus(K))

for some universal constant C > 0 ?
If one could prove that in this situation, for some universal constant c > 0, the

following is true:

Pus(K) − s(M) ∈ c
n

(
M − s(M)

)
,

then an affirmative answer could be given, using the following lemma.

LEMMA 8. Let V be a convex body in �n and x, y ∈ int(V ). Then

(1 − ||x − y||V−y)n vol(V∗x) ≤ vol(V∗y) ≤ vol(V∗x)(
1 − ||y − x||V−x

)n

Proof. One has

vol(V∗y) = vol(V∗y + y) = vol
(
(V − y)∗

)
= vol(

(
(V − x − (y − x))∗

) =
∫

(V−x)∗

1
(1 − 〈y − x, z〉)n+1

dz

because by a formula given in [18], if L is a convex body with 0 in its interior, one has
for every w in the interior of L,

vol(L∗w) =
∫

L∗

1
(1 − 〈w, z〉)n+1

dz.

Since 〈y − x, z〉 ≤ ||z||(V−x)∗ ||y − x||V−x, we get

vol(V∗y) ≤
∫

(V−x)∗

1
(1 − ||z||(V−x)∗ ||y − x||V−x)n+1

dz . (3)

Now, if L is a convex body with 0 in its interior, and 0 < c < 1, then

∫
L

1
(1 − c||z||L)n+1

dz = nvn

∫
Sn−1

(∫ 1
||θ ||L

0

rn−1

(1 − cr||θ ||L)n+1
dr

)
dθ

= nvn

∫
Sn−1

1
n

[(
r

1 − cr||θ ||L

)n] 1
||θ ||L

0
dθ

= vn

∫
Sn−1

1
(1 − c)n||θ ||nL

dθ = vol(L)
(1 − c)n

.

From which, together with (3), we get

vol(V∗y) ≤ vol(V∗x)
(1 − ||y − x||V−x)n

.
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Applying the same formula while interchanging the roles of x and y, one has

vol(V∗x) ≤ vol(V∗y)
(1 − ||x − y||V−y)n

.

It is well known (see, e.g. [19]) that there is an affine transformation A : �n → �n such
that AL = M is isotropic, that is, it satisfies vol(M) = 1 and for every u ∈ Sn−1,

1
vol(M)

(∫
M−g(M)

〈x, u〉2dx
) 1

2

= LM ,

where LM is the isotropic constant of M. In that context, Problem 1 is equivalent to

OPEN PROBLEM 2. Let M be an isotropic convex body. Is CI(M) equivalent to the
Euclidean ball (with absolute constant independent on M ⊂ �n and on n) ?

Of course, Problems 1 and 2 are non-trivial only if L or M are not centrally
symmetric. The particular case of the simplex is still open.

OPEN PROBLEM 3. Let 	n be a simplex in �n. Is there a constant c independent on
n such that for every u ∈ Sn−1

vol(	n ∩ u⊥) ≤ c vol(((	n ∩ u⊥)∗0)∗s) = c vol((Pu(	∗g
n ))∗s)?

Observe that when 	n is a regular simplex inscribed in the Euclidean ball, since
(	n)∗0 = −n	n, one has

(	n ∩ u⊥)∗0 = Pu((	n)∗0) = Pu(−n	n)

and thus

vol(((	n ∩ u⊥)∗0)∗s) = 1
nn−1

vol((Pu	n)∗s).

About Problem 3, one may remark that by affine invariance, we may suppose without
loss of generality that 	n is the regular simplex with vertices e1, . . . , en+1, |ei| = 1,
centred at 0 = e1 + · · · + en+1. For 1 ≤ i = j ≤ n + 1, one has then 〈ei, ej〉 = − 1

n .

FACT. Let A ⊂ {1, . . . , n + 1} be such that 1 ≤ k := card(A) ≤ n and define

uA =
∑

i∈A ei

| ∑i∈A ei| =
√

n
k(n + 1 − k)

∑
i∈A

ei ∈ Sn−1.

Then 0 is the centroid of 	n ∩ u⊥
A.

It suffices to show that 0 is the Santaló point of PuA	n. Let

e′
l = PuA el, 1 ≤ l ≤ n + 1, E = [e′

i, i ∈ A], and F = [e′
j; j ∈ A].

Then E and F are linear subspaces of u⊥
A such that dim(E) = k − 1, dim(F) = n − k,

〈x, y〉 = 0 for every x ∈ E and y ∈ F , and

SA := conv ({e′
i, i ∈ A}) ⊂ E and TA := conv ({e′

j, j ∈ A}) ⊂ F

are regular simplices with centre of mass at 0. It follows that 0 is the Santaló point
of SA in E and of TA in F , when 0 is the Santaló point of PuA	n = conv(SA, TA). It
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follows that 0 is the centroid of 	n ∩ u⊥
A , which can be described as

	n ∩ u⊥
A = S∗

A × T∗
A,

where S∗
A and T∗

A are the polars of SA and of TA, respectively, in E and F .

A corollary of this result is the following.

PROPOSITION 9. For every A ⊂ {1, . . . , n + 1}, such that 1 ≤ k := card(A) ≤ n, one
has

||uA||CI(	n,0) = ||uA||I(	n,0).

Moreover, in the particular case when u⊥ ∩ 	n is itself a simplex, one has the
following computational proposition.

PROPOSITION 10. Let u ∈ Sn−1, and if u = ∑n+1
i=1 uiei ∈ Sn−1 with

∑n+1
i=1 ui = 0 and

u1, . . . , un ≥ 0 > un+1, then u⊥ ∩ 	n is a simplex and

ρI(	n,0)(u) = vol(	n ∩ u⊥) = 1
(n − 1)!

(n + 1)
n+1

2

n
n
2 −1

1∏n
i=1(ui + ∑n

j=1 uj)

and

ρCI(	n,0)(u) = vol((	n ∩ u⊥)∗0)∗s) = 1
(n − 1)!

n
n
2 +1

(n + 1) n+1
2

1∑n
i=1 ui

.

It follows from Proposition 10 that CI(	n, 0) has 2n + 2 small faces around u = ±ei,
1 ≤ i ≤ n + 1. Nevertheless, it is easy to check that for such directions u ∈ Sn−1 one
has

1 ≤ vol(	n ∩ u⊥)
vol((	n ∩ u⊥)∗0)∗s)

≤ e
2
.
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Algebra Geom. 40 (1999), 163–183.
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