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Abstract

Einstein's vacuum field equations of an axially symmetric stationary rotating
source are studied. Using the oblate spheroidal coordinate system, a class of
asymptotically flat solutions representing the exterior gravitational field of a
stationary rotating oblate spheroidal source is obtained. Also it is proved
that an analytic axisymmetric and stationary distribution of dust cannot be
the source for the gravitational field described by the axisymmetric stationary
metric.

1. Introduction

The study of exact solutions of the general relativity field equations for empty
space-time is of some interest to physicists because these solutions are felt to corre-
spond to the gravitational fields external to matter distributions which are in some
sense localized. The exact solutions of Einstein's vacuum field equations with time
symmetry and cylindrical symmetry have been obtained by several authors, in
particular, Rosen [8], Bonnor [1], Weber and Wheeler [10] and Marder [4]. An
infinite cylinder with finite cross-section is the source of the gravitational fields
in these solutions. In astrophysics the sources of gravitation are rotating axially
symmetric finite bodies and hence the solutions of Einstein's field equations
corresponding to the axially symmetric, rotating stationary source may be more
suitable to interpret real physical situations. Papapetrou [6] has given a class of
exact, axially symmetric stationary solutions of Einstein's field equations for the
empty space-time. Kerr [3] has presented the best known solution representing
external fields for rotating matter distributions. The equilibrium shape of a rotating
star is an oblate spheroid. Misra [5] used oblate spheroidal coordinates to obtain
static solutions of the empty space-time field equations. Patel [7] has also used this

344

https://doi.org/10.1017/S0334270000001703 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001703


[2] Class of axisymmetric exact solutions 345

coordinate system in obtaining the axially symmetric zero mass meson solutions
of Einstein's equations. In this paper oblate spheroidal coordinates are again used
to obtain a class of asymptotically flat solutions of the vacuum field equations.

2. The coordinate system and vacuum field equations

To discuss the gravitational fields of a stationary, rotating star, the best line
element is the axisymmetric stationary space-time metric given by Chandrasekhar
and Friedman [2]

ds* = - e2S dt2+e^idcf, - w dt)2 + e2fi(dr2+dz2), (2.1)

where /J, 8, a and w are functions of r and z only. The boundary of a rotating star
is a surface of revolution and, under balance of self gravitation and the rotational
effect, the star becomes an oblate spheroid. Hence it will be more suitable to use
oblate spheroidal coordinates.

The oblate spheroidal coordinates (<f>, 8, a) are defined by

r = aV[(l + 02)(l-a2)]; z = ad*; ^ = <£, (2.2)

where r, z, <f> are the usual cylindrical polar coordinates. Here 8 ranges from 0 to oo
and a from — 1 to +1. The surface 8 = 0 is a disc of radius a in the xy-plane.
The surface a = 0 is the ;ty-plane except the part inside a circle of radius a centred
at the origin. The surfaces 8 = constant > 0 are flattened spheroids of thickness 2a8
through the axis of symmetry and are of the radius aj(l + S2) in the equatorial
plane. The surface a = 1 is the positive z-axis and the surface a = — 1 is the negative
z-axis. The surfaces a = constant are hyperboloids of one sheet, asymptotic to the
cone of semivertical angle cos"1 a. and with z-axis as the axis of the cone. We will
number the coordinates as x° = /, x1 = (f>, x2 = 6 and x3 = a.

Now, under the transformation (2.2), the metric (2.1) becomes

ds2 = -e
2Ut2+e2a{d(f>-wdt)2 + a\82 + oL2)e2fiU^+^^, (2.3)

where /?, a, S and w are functions of 8 and a only. The non-vanishing components
of the Einstein tensor for the metric (2.3) are

G°o =

- (1 - o?) (8 + a\ (d2 + a2) ft - (1 + e2)2 {82 + a2 + (8 + a)22}

- \A [(1 - 6*) w2 + (1 - a4) w2 + 2wAw + 2H<1 + d2) w2(3a - S)2

+ 2w(l- a2) w3(3<7 - S)3] exp (2a - 28), (2.4)
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G\ = \A [A(cr - 8) - (2 + 0* - a2) AjS + 2(1 + 02) (S + a)2 (a - S)2

+ 2(1 - a2) (8 + a)3 (a - S)3 + (1 + 02)2 {S2 + a\ + (8 + a)22}

+ (02 + a2) {(1 + 02) jS2(S + cr)2 - (1 - a2) ft(8 + a)3}

w{Aw + (1 + 02) w2(3a- S)2 + (1 - a2) W3(3a- 8)3}

+ (1 + 6*) (3 + 02) w\ + (1 - a2) (3 - a2) M|] exp (2a - 28), (2.5)

+ (1 + 6*)2 ( i + S2 + (a + 8)22 - 2̂ 2(ar + S)2}

- (1 - a2)2 {a\ + 82 + (a + 8)^} + (1 - a2) (2 + 02 - a2) j83(S + a)3

+ (02 + a2) (1 + 02) faS + a)2 - 2(1 + 02) (8 + a)2 S2

-2(l-a
2)S3(S + a)3j

-a2)2 w2-(l + 02)2 w2]exp(2o— 28, (2.6)

3 = - G 2 + v4[(l- a
2)(S + a)3{(02

 + a2)/S3-2S3}-A(S + (7)

- (1 + 02) (8 + a)2 {(02 + a2) & + 28,}], (2.7)

C? = ^ [ A w + (l + 02)H'2(3c7-S)2 + ( l - a
2 )H'3(3a-S)3]exp(2a-28) , (2.8)

GJ = ^ [ - Aw - 2wA(a - 8) + (1 + 02) {2w(S2 - a2) - w2(3a - S)2}

+ (l-a2){2>v(S2-a2)-w3(3a-S)3}]

2 (3a - S)2 + (1 - a2) W3(3<7 - S)3}

- a 2 ) w2}] exp (2(7-28), (2.9)

- « 2

x (8+ ̂ 3 + 8283+^^3-^^3 exp (2a-28)1, (2-10)

where

and
Ap = (1 + 6*) j822 + (1 - a2) 033 + 0/32 - aft. (2.12)

In the above expressions and in the following, the lower suffixes 2 and 3 after an
unknown function denote partial differentiation with respect to 0 and a respectively.
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3. Solution of the empty space-time field equations

Einstein's vacuum field equations are

Gj = O. (3.1)

A solution of the equation G\ + G% = 0 is

a+ 8 = k = constant. (3.2)

Then the equations corresponding to G§ = G\ = 0 imply

Jd<xK ' 36 8a'
Hence a solution is

w = e2S-k + C, (3.3)

where C is a negative constant satisfying the relation

_2e2*-fc<c<0.

Now use of the results (3.2) and (3.3) simplify the field equation G\ = 0 to the form

A(e-2*) = 0. (3.4)
This is a linear partial differential equation of second order. By using the method
of separation of variables, and the method of Frobenius, the solution of (3.4) is

[D'o8~n £

where C'o, C'x, D'o and DJ are arbitrary constants and n is a constant parameter
of the family.

By using equations (3.2,3.3,3.4) it is easy to show that the field equation Gg = 0
reduces to the form

AjS = 0. (3.6)

This is again a linear partial differential equation. The rest of the field equations
corresponding to
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are satisfied identically. The general solution of equation (3.6) is

/ » m\2*-m*)(V-m*)...{(2s-2)*-m*}
R (21)!

k (H-f i+« s
L "

(3.7)

where Co, Cx, DQ and Dx are arbitrary constants and m is a constant parameter of
the family.

Now for the metric (2.3) to be the metric of an asymptotically flat space the
following conditions are to be satisfied

D'x = 0, n = 1 (3.8)
and

Dx = 0, m>0. (3.9)
Thus

e-2S _ 1 _

and

! 1 -

(3.11)

is a class of solutions representing the exterior gravitational field of a rotating
stationary oblate spheroid.

The author has studied the structure of this class of solution, and the results will
be published elsewhere. It is interesting to note here that according to the Petrov
classification, the Riemann curvature tensor of the metric obtained above is of
type III.
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4. Analysis for the interior solution

It is well known that the gravitational field owes much to the interior distribution
of matter. It is very difficult, however, to obtain an exact solution for the interior
region of a rotating oblate spheroid. Recently, Roos [9] has proved that an analytic
axisymmetric and stationary distribution of dust cannot be a source for the
gravitational field described by the Kerr metric. Here we will prove the same
result for the more general axisymmetric stationary metric (2.3).

The energy momentum tensor for an incoherent dust distribution is

Tii = euiu', (4.1)

where e is the energy density of the dust. To write out the field equations explicitly
we need expressions for the components of the four-velocity vector u1. With the
definitions

^ = Q and F = (ii-w)exp(a-S), (4.2)

we readily find that the contravariant and the covariant components of the four-
velocity u1 are given by

and

«b = - j * * ^ F2) 0 + wVexp ( g - 8)}, «x= , expo-, «2 = u3 = 0. (4.4)

Hence the components of the energy momentum tensor of an incoherent dust are

-8)]
i-v2 ' ^ }

(4.6)

T*=7> = 0 0* = 2,3 and i = 0,1,2,3). (4.7)

Einstein's field equations for the interior region are

G\ = %-nT). (4.8)

Hence from the results (2.7), (2.10), (4.7) and (4.8), it is easy to show that the
solutions

o+8 = lc, (3.2)

H' = C+exp(2S-)t), (3.3)
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hold for the interior region also. Now the equations corresponding to G\ = G§ = 0
imply the result Aj8 = 0 and, from (2.8) and (2.9), it is easy to show that

+ GJ = 0. (4.9)

Equation (4.8) also yields the result

By using equations (4.5, 4.6) and simplifying the result so obtained we get the
equation

(Q - Cf exp (28 - it) = - C(fl - Cf (4.10)

which implies that either
Q = C (4.11)

or
exp(2S-A:) = - C . (4.12)

If (4.11) is true then V = 1 and hence T% and T\ are infinite. This is not physically
acceptable because it gives an infinite density for the dust distribution. In the case
(4.12) then w = 0. The space-time metric is not stationary but static. This proves
the following proposition.

PROPOSITION. An analytic axisymmetric and stationary distribution of dust cannot
be a source for the gravitational field described by the metric (2.3).

5. Conclusion

The class of solutions of the vacuum field equations, discussed in Section 3 are
free from singularity for 6 > \. They have singularities for 8 < | , hence the spheroid
6 = constant > \ may be a source of the vacuum field solutions.

The non-existence of stationary rotating dust sources for the rotating axisym-
metric space-time metric is physically reasonable because without pressure there
is no force to counterbalance the gravitation in directions parallel to the axis of
rotation. The rotation could stabilize a dust cloud at best in each surface which is
parallel to the equatorial plane.
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