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Abstract

Reynolds (1972), using character-theory, showed that the ̂ -section sums span an ideal of the centre
Z(kG) of the group algebra of a finite group G over a field k of characteristic dividing the order of
G. In O'Reilly (1973) a character-free proof was given. Here we extend these techniques to show the
existence of a wider class of ideals of Z(kG).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 26, 20 C 05, 20 C 20.

1. Introduction and notation

Let G be a finite group, JG the group ring over the integers J, with centre
Z(JG). For X c G write X = 2ge^_g; for L < G, K < <!Jl(X) n L (the nor-
malizer of X in L) let X£ = 2 g e a Xs where S2 is a transversal of K in L. In
particular Xg G Z(JG) and a conjugacy class sum is of the form b£ where
C = C(b) is the centralizer of b.

The main result is

THEOREM 1. Let n be a fixed divisor of \G\, L a fixed subgroup of G. The
subspace <¥(L, ri) of Z(JG) spanned by the set {(Hy)%/H < L, y G 91(7/),
H <N < 9l(Hy), N: H divides n) is an ideal of Z(JG).

The ideal %{L, ri) will thus include integer multiples \C(Jb)\b^b) of conjugacy
class sums (taking N = H = {1}) but will only include the class sum itself if
| C(b)\ divides n (taking H = {1}, JV = C(b)).
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By extending the ring of coefficients to the />-adic integers and mapping
canonically to Z(kG), k the residue class field of characteristic p, we obtain
ideals %'{L, n) of Z(kG). In the special case where n = p" the generating set
may be restricted [Theorem 2] to elements where N is a Sylow /^-subgroup of
%(Hy). When \L\ = pp Theorem 3 shows that a further restriction to subgroups
H which lie in the Sylow /^-subgroup of the centralizer of the /^-regular part of y
is permissible. The ideal of //-sections is then ^'(P, 1) where P is a Sylow
/^-subgroup.

2. The main theorem

For X, Y c G and S < Vl(X), T < 91(7) the elements Xf and Ff multiply
according to the Mackey decomposition

(0 X~ZY°

where £2 is a set of (S, T) double coset representatives in L. For S < K < G, we
have trivially that

(2) (Xf)l = X§.
We first outline the proof of Theorem 1. It must be shown that if (Hy)% G

%(L, n) and b£ is a conjugacy class sum then their product lies in %{L, n). By
Eq. (1) this product is the sum of terms (Hu)g where u = ybg and S = N n Cg,
which do not have the form required by the above spanning set of ^ ( L , n).
However we show [Lemma 31] that Hu may be partitioned into conjugates of
cosets Hxx, Hx being the maximum subgroup of H normalized by x. This gives
[Lemma 4] Hu as the sum of terms (Hxx)^xu^ where K = <$l(Hu) n Â  and
T(x, u) = K n 9l(#x;c). From this and Eq. (2) we obtain (Hu)° as the sum of
terms {Hxx)%^xu) which are shown to be in the given spanning set.

For H < G and u e G, Hu denotes the unique maximal subgroup of H which
u normalizes.

LEMMA 1.
(a) 0>) (c) (d) (e)

H n 9l(#uu) = Hu < H n Hu= H n 9l(tfu) < <3i(Hu) < <3L(H).

PROOF. We verify the chain from the right, x e N(Hu) implies Hu = H*ux

and so HuulH = Hxux(ux)xHx, that is H = Hx proving (e). Trivially then
%(Hu) normalizes H n 9l(//w) giving (d). Also trivially H n H" < H n
%(Hu). If x G H n 9l(//w) then as above ux G Hu giving x G H"; so H n
9l(Hu) < H n Hu giving (c). (b) is immediate from the definition of Hu.
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Trivially Hu < H n 9l(Huu). If h £ H n 9l ( / / u«) then the inclusion w* e
Huu may be rewritten w/iw'1 £ A/fu c / / n N(Huu). So M"1 ind hence u normal-
ize H n 9l(Huu). By definition of 7/u, # n 9L{Huu) < #„ proving (a).

COROLLARY, X E 9 1 ( / / M ) j/a/K/ only if x E 5L(W) a/u/ [x, M"1]

PROOF. Necessity is immediate from the proof of (e). If [x, u'1] £ H and
e 9l(W) then ux <E Hu and so (Huf = #*«* c HHu = //M.

LEMMA 2. If H n H" < K < %(Hu) then K n

PROOF. From Lemma 1, # n i/" < 9l(^«), /^ n K = ^ n H" and {̂T n
%(Huu)} n {H n Hu} = Hu.So

K n 9L(g,«) ^ {K n <9UHUU)){H n //"} A:
// s

 H n HU H„ H n HU H n HU~ H '

Next we obtain a partition of the coset Hu into cosets of the form Hxx. First
note that if y e Hxx then /^, = Hx and so /̂ ,>> = Hxx; fory normaUzes Hx

giving Hx < Hy and then x £ / ^y giving Hy < Hx. The cosets //^x, and / ^ y
are thus either equal or disjoint and so we get a partition of G into cosets of
form Hxx.

LEMMA 3. (a) The set 9 = {Hxx, x £ G) is a partition of G, permuted by
conjugation by ?Jl(H).

(b) The set 9' = {Hxx, x £ Hu} is a partition of Hu, permuted by conjugation
by 9l(Hu).

PROOF. For g £ 9 l ( # ) , # f = # 2 where z = x*. So (//xx)« = ^ 2 £ <3\
proving (a). If g E 9l(Hu) then #x;c £ <3>' imphes ^ z £ 9', proving (b).

We can immediately obtain a decomposition of an arbitrary coset sum Hu.

LEMMA 4. Let K < %(Hu) and let {Hxx, x £ A(tf)} 6e a .«?* of representa-
tives of the distinct K-orbits of <$'. Then

The proof is trivial when it is noted that each summand is the sum of all the
distinct cosets within a AT-orbit.
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PROOF OF THEOREM. Let (Hy)% e ^(L, ri), let b£ be a conjugacy class sum
and fl a set of (N, C) double coset representatives. By (1)

fr {Hyb')G
HnC.

= ^(K:Nn C*){Hu)G
K

U

where u = ybg and K = 'tJl(Hu) n N. By Lemma 4 and Eq. (2) (Hu)% is the
sum of terms {Hxx)%(xu) where T(x, u) = K n yi(Hxx). We show that these
terms lie in the given spanning set of ^(L, ri). By definition we have that
Hx <H <L and x e 9l(^). Also Hx<HnHx = Hf)Hu = Hn
9l(Hu) < N n 9l(Hu) = /iT; so Hx < T(x, M) < 9l(Hxx). Finally since

T(A:, M) = K n 9l(Hxx), by Lemma 2, T(x, M): / / , divides KH: H which

divides ./V: H which divides n.

It may be noted that a slight generalization of Theorem 1 may be obtained by

replacing %(Hy) by <X(Hy) n T where L < T < G.

3. The modular case

Extending the coefficient ring from / to R, the ring of p-adic integers, gives
ideals %R{L, ri) of Z(RG). If \G\ is a unit in R then %,(L, ri) = Z(RG) for
each conjugacy class sum may be written {6}f/|C(Z>)|. However on passing
from R to k, the residue class field by the natural homomorphism, the ideals
%'{L, ri) of Z(kG) so obtained are non-trivial when/? divides |G|. In this case
we may restrict n and N.

THEOREM 2. For n = mpa and (m,p) = 1 the ideal <¥'(£, «) ^wa/j %'(L,pa)
and is spanned by the set {(Hy)%/H < L, y G 'tJi(H), P a Sylow p-subgroup of
9L(Hy), P: H n P dividespa)

PROOF. Let /? = (Hy)% (e^'iL, ri)) and P be a Sylow /^-subgroup of N. Then
AT: J/P is a unit and /? = (Hy)%P/N: HP. Here HP: H (= P: H n P) is the
maximum power of p dividing N: H and so divides p". So ^'(X* ri) c
%'(L,/>a) and trivially %\L,pa) c <¥'(^ «)• Since (^-)^ = (Hy)G

P/N: P,
%'{L, ri) is spanned by the elements (Hy)^, which are non-zero only if P is a
Sylow/7-subgroup of ?fi(Hy).

We now restrict further to the case where L is a p-subgroup and obtain a
further restriction of the spanning set. Let y = rs = sr with r /»-regular, s a
/^-element, P a subgroup of L and.y
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LEMMA 5. 9l(Py) < 91 (Pr).

PROOF. By the corollary to Lemma 1, x G 9l(Py) if and only if x G 9l(P)
and x'yxy'1 G P, that isy* G Py. Since r — ym for some integer m, r G 9L(P)
and r* = 0 > T = (yx)m (E Pym = Pr.

LEMMA 6. Let y normalize both P and Q — Po < P. Define recursively P,+ , =
9l(P,) n P, i = 0, 1, 2, Then y G <dl(Pi) and_(Qy)p

Q = 0 if and only if for
some i, ^(Py) n Pi+l > P,. Otherwise (Qy)g = Py.

PROOF. For some /, P, = P. The proof is by induction on the minimal such /.
Since y G 91(0) andy normalizes P,_y normalizes P n 9l(£>) = Py. If 91(00
D P, > Q then (Qy)^' = 0 whence (0>)g = 0. Otherwise let T be a transversal
of g in Px and so

(Ov)e1 = 2 (Qy)" = 2 fiy".

Herey" = ( M ^ W " 1 ) ^ = r̂̂ y where ^u = u~\yuy~x) G /»,. ^u G <2̂ c implies >>"
Ggy", that is HtT1 e 9l(gv) n Pi = (?. So the cosets Qqu, u e T, are distinct
and (0Oe' = 2 M e r 2 ? ^ = P\y- Applying the hypothesis to the chain from Px

to P, we have the result.

Let N = 9l(Py) < 9l(P); then >>, r, and s G TV. Let C = C(r) n Â  and
g = P n C. Let D be a Sylow/>-subgroup of C. Then C and hence D normalize
Q and so D < 9l(gr). Further by the corollary to Lemma 1 since D < 9L(/»
we havey'y'1 G i» for all d G £>; trivially also^^"1 = ^"'(y ^ " ' ) G C and so

£ P n C = g, So by the same corollary, D < %(Qy).

LEMMA 7. «2y)£ = (TV: PD)Py # 0.

PROOF. (Qr)% is the sum of TV-conjugacy classes, the only /^-regular class term
being r% = (C: D)r£ ^ 0. So {Qr)N

D ¥= 0. In particular (0r)2° =/= 0^Since a
transversal of Z) in P£) is a transversal of g in P, we have {Qr)™ = (Qr)Q'y and
so by Lemma 6 9l(i>r) n ^,-H, = P, and ( S ^ = {Pr)N

PD = (TV: PZ))». Thus
PD is a Sylow/^-subgroup of A^ Since ^(Py) n P/+i < ^ ( P / ) n P,+, = P,,
again by Lemma 6, we have (Qy)p

Q = Py and so (Qy)% = (TV: PD)Py ¥= 0, as
required.

THEOREM 3. Le/ L be ap-subgroup of G. Then %'{L,pa) is spanned by the set
{(P~y)%/P < D < C(r) n L, r the p-regular part of y G 9l(P), D a Sylow
p-subgroup of 9l(Py), D: P dividespa).
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The proof is an immediate consequence of Lemma 7 since an arbitrary
generator (Py)% of 62tf'(^>/7'*) is a non-zero multiple of (Qy)% which lies in the
above set.

We conclude by noting that when a = 0 and L is a Sylow /^-subgroup of G,
the elements of the above spanning set are of the form (Dy)% = (Dr)% since
s e D. But these elements e just the /^'-section sums of Lemma 2 in O'Reilly
(1973), giving the ideal of Reynolds (1972) Theorem 1. This ideal has also been
studied in Broue (1978) and Iizuka (1973).

If L is a Sylow /^-subgroup of G, ^'(^p") will contain only those/>-regular
classes, and hence block idempotents, of defect < p".
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