A CLASS OF IDEALS OF THE CENTRE OF A GROUP RING

MICHAEL F. O'REILLY

(Received 24 September 1979; revised 3 November 1980)

Communicated by H. Lausch

Abstract

Reynolds (1972), using character-theory, showed that the p-section sums span an ideal of the centre Z(kG) of the group algebra of a finite group G over a field k of characteristic dividing the order of G. In O'Reilly (1973) a character-free proof was given. Here we extend these techniques to show the existence of a wider class of ideals of Z(kG).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 26, 20 C 05, 20 C 20.

1. Introduction and notation

Let G be a finite group, JG the group ring over the integers J, with centre Z(JG). For $X \subset G$ write $\overline{X} = \sum_{g \in X} g$; for $L \leq G$, $K \leq \mathfrak{N}(X) \cap L$ (the normalizer of X in L) let $\overline{X}_K^L = \sum_{g \in \Omega} \overline{X}^g$ where Ω is a transversal of K in L. In particular $\overline{X}_K^G \in Z(JG)$ and a conjugacy class sum is of the form b_C^G where C = C(b) is the centralizer of b.

The main result is

THEOREM 1. Let n be a fixed divisor of |G|, L a fixed subgroup of G. The subspace $\mathfrak{V}(L, n)$ of Z(JG) spanned by the set $\{(\overline{Hy})_N^G/H \le L, y \in \mathfrak{N}(H), H \le N \le \mathfrak{N}(Hy), N: H \text{ divides } n\}$ is an ideal of Z(JG).

The ideal $\mathfrak{V}(L, n)$ will thus include integer multiples $|C(b)|b_{C(b)}^G$ of conjugacy class sums (taking $N = H = \{1\}$) but will only include the class sum itself if |C(b)| divides n (taking $H = \{1\}$, N = C(b)).

[©]Copyright Australian Mathematical Society 1981

By extending the ring of coefficients to the p-adic integers and mapping canonically to Z(kG), k the residue class field of characteristic p, we obtain ideals $\mathfrak{V}'(L,n)$ of Z(kG). In the special case where $n=p^{\alpha}$ the generating set may be restricted [Theorem 2] to elements where N is a Sylow p-subgroup of $\mathfrak{V}(Hy)$. When $|L|=p^{\beta}$ Theorem 3 shows that a further restriction to subgroups H which lie in the Sylow p-subgroup of the centralizer of the p-regular part of p is permissible. The ideal of p'-sections is then $\mathfrak{V}'(P,1)$ where P is a Sylow p-subgroup.

2. The main theorem

For $X, Y \subset G$ and $S \leq \mathfrak{N}(X)$, $T \leq \mathfrak{N}(Y)$ the elements \overline{X}_S^G and \overline{Y}_T^G multiply according to the Mackey decomposition

(1)
$$\overline{X}_{S}^{G}\overline{Y}_{T}^{G} = \sum_{g \in \Omega} (\overline{X}\,\overline{Y}^{g})_{S \cap T^{g}}^{G}$$

where Ω is a set of (S, T) double coset representatives in L. For $S \leq K \leq G$, we have trivially that

$$\left(\overline{X}_{S}^{K}\right)_{K}^{G} = \overline{X}_{S}^{G}.$$

We first outline the proof of Theorem 1. It must be shown that if $(\overline{H}y)_N^G \in \mathfrak{U}(L,n)$ and b_C^G is a conjugacy class sum then their product lies in $\mathfrak{U}(L,n)$. By Eq. (1) this product is the sum of terms $(\overline{H}u)_S^G$ where $u=yb^g$ and $S=N\cap C^g$, which do not have the form required by the above spanning set of $\mathfrak{U}(L,n)$. However we show [Lemma 31] that Hu may be partitioned into conjugates of cosets $H_x x$, H_x being the maximum subgroup of H normalized by X. This gives [Lemma 4] $\overline{H}u$ as the sum of terms $(\overline{H}_x x)_{T(x,u)}^K$ where $K=\mathfrak{N}(Hu)\cap N$ and $T(x,u)=K\cap \mathfrak{N}(H_x x)$. From this and Eq. (2) we obtain $(\overline{H}u)_S^G$ as the sum of terms $(\overline{H}_x x)_{T(x,u)}^G$ which are shown to be in the given spanning set.

For $H \leq G$ and $u \in G$, H_u denotes the unique maximal subgroup of H which u normalizes.

LEMMA 1.

$$H \cap \mathfrak{N}(H_u u) \stackrel{\text{(a)}}{=} H_u \stackrel{\text{(b)}}{\leq} H \cap H^u \stackrel{\text{(c)}}{=} H \cap \mathfrak{N}(Hu) \stackrel{\text{(d)}}{\triangleleft} \mathfrak{N}(Hu) \stackrel{\text{(e)}}{\leq} \mathfrak{N}(H).$$

PROOF. We verify the chain from the right. $x \in N(Hu)$ implies $Hu = H^x u^x$ and so $Huu^{-1}H = H^x u^x (u^x)^{-1}H^x$, that is $H = H^x$ proving (e). Trivially then $\mathfrak{N}(Hu)$ normalizes $H \cap \mathfrak{N}(Hu)$ giving (d). Also trivially $H \cap H^u \leq H \cap \mathfrak{N}(Hu)$. If $x \in H \cap \mathfrak{N}(Hu)$ then as above $u^x \in Hu$ giving $x \in H^u$; so $H \cap \mathfrak{N}(Hu) \leq H \cap H^u$ giving (c). (b) is immediate from the definition of H_u .

Trivially $H_u \leq H \cap \mathfrak{N}(H_u u)$. If $h \in H \cap \mathfrak{N}(H_u u)$ then the inclusion $u^h \in$ $H_u u$ may be rewritten $uhu^{-1} \in hH_u \subset H \cap N(H_u u)$. So u^{-1} and hence u normalize $H \cap \mathfrak{N}(H_u u)$. By definition of H_u , $H \cap \mathfrak{N}(H_u u) \leq H_u$ proving (a).

COROLLARY. $x \in \mathcal{N}(Hu)$ if and only if $x \in \mathcal{N}(H)$ and $[x, u^{-1}] \in H$.

PROOF. Necessity is immediate from the proof of (e). If $[x, u^{-1}] \in H$ and $x \in \mathfrak{N}(H)$ then $u^x \in Hu$ and so $(Hu)^x = H^x u^x \subset HHu = Hu$.

LEMMA 2. If $H \cap H^u \leq K \leq \mathfrak{N}(Hu)$ then $K \cap \mathfrak{N}(H_uu)$: H_u divides KH: H.

PROOF. From Lemma 1, $H \cap H^u \triangleleft \mathfrak{N}(Hu)$, $H \cap K = H \cap H^u$ and $\{K \cap H^u\}$ $\mathfrak{N}(H_u u)$ $\cap \{H \cap H^u\} = H_u$. So

$$\frac{K \cap \mathfrak{N}(H_u u)}{H_u} \simeq \frac{\{K \cap \mathfrak{N}(H_u u)\}\{H \cap H^u\}}{H \cap H^u} \leq \frac{K}{H \cap H^u} \simeq \frac{KH}{H}.$$

Next we obtain a partition of the coset Hu into cosets of the form $H_x x$. First note that if $y \in H_x x$ then $H_y = H_x$ and so $H_y y = H_x x$; for y normalizes H_x giving $H_x \le H_y$ and then $x \in H_y y$ giving $H_y \le H_x$. The cosets $H_x x$, and $H_y y$ are thus either equal or disjoint and so we get a partition of G into cosets of form $H_x x$.

LEMMA 3. (a) The set $\mathfrak{P} = \{H_x x, x \in G\}$ is a partition of G, permuted by conjugation by $\mathfrak{N}(H)$.

(b) The set $\mathfrak{P}' = \{H_x x, x \in Hu\}$ is a partition of Hu, permuted by conjugation by $\mathfrak{N}(Hu)$.

PROOF. For $g \in \mathcal{N}(H)$, $H_x^g = H_z$ where $z = x^g$. So $(H_x x)^g = H_z z \in \mathcal{P}$, proving (a). If $g \in \mathfrak{N}(Hu)$ then $H_x x \in \mathfrak{P}'$ implies $H_z z \in \mathfrak{P}'$, proving (b).

We can immediately obtain a decomposition of an arbitrary coset sum $\overline{H}u$.

LEMMA 4. Let $K \leq \mathfrak{N}(Hu)$ and let $\{H_x x, x \in \Lambda(K)\}$ be a set of representatives of the distinct K-orbits of 9'. Then

$$\overline{H}u = \sum_{x \in \Lambda(K)} (\overline{H}_x x)_{K \cap \mathfrak{N}(H_x x)}^K.$$

The proof is trivial when it is noted that each summand is the sum of all the distinct cosets within a K-orbit.

PROOF OF THEOREM. Let $(\overline{Hy})_N^G \in \mathfrak{A}(L, n)$, let b_C^G be a conjugacy class sum and Ω a set of (N, C) double coset representatives. By (1)

$$(\overline{H}y)_{N}^{G}b_{C}^{G} = \sum_{g \in \Omega} (\overline{H}yb^{g})_{N \cap C^{g}}^{G}$$
$$= \sum_{u} (K: N \cap C^{g})(\overline{H}u)_{K}^{G}$$

It may be noted that a slight generalization of Theorem 1 may be obtained by replacing $\mathfrak{N}(Hy)$ by $\mathfrak{N}(Hy) \cap T$ where $L \leq T \leq G$.

3. The modular case

Extending the coefficient ring from J to R, the ring of p-adic integers, gives ideals $\mathfrak{V}_R(L, n)$ of Z(RG). If |G| is a unit in R then $\mathfrak{V}_R(L, n) = Z(RG)$ for each conjugacy class sum may be written $\{b\}_1^G/|C(b)|$. However on passing from R to k, the residue class field by the natural homomorphism, the ideals $\mathfrak{V}'(L, n)$ of Z(kG) so obtained are non-trivial when p divides |G|. In this case we may restrict n and N.

THEOREM 2. For $n = mp^{\alpha}$ and (m, p) = 1 the ideal $\mathfrak{V}'(L, n)$ equals $\mathfrak{V}'(L, p^{\alpha})$ and is spanned by the set $\{(\overline{Hy})_{P}^{G}/H \leq L, y \in \mathfrak{N}(H), P \text{ a Sylow p-subgroup of } \mathfrak{N}(Hy), P: H \cap P \text{ divides } p^{\alpha}\}$

PROOF. Let $\beta = (\overline{Hy})_N^G$ ($\in \mathfrak{V}'(L, n)$) and P be a Sylow p-subgroup of N. Then N: HP is a unit and $\beta = (\overline{Hy})_{HP}^G/N$: HP. Here HP: H (= P: $H \cap P$) is the maximum power of p dividing N: H and so divides p^{α} . So $\mathfrak{V}'(L, n) \subset \mathfrak{V}'(L, p^{\alpha})$ and trivially $\mathfrak{V}'(L, p^{\alpha}) \subset \mathfrak{V}'(L, n)$. Since $(\overline{Hy})_N^G = (\overline{Hy})_P^G/N$: P, $\mathfrak{V}'(L, n)$ is spanned by the elements $(\overline{Hy})_P^G$, which are non-zero only if P is a Sylow p-subgroup of $\mathfrak{N}(Hy)$.

We now restrict further to the case where L is a p-subgroup and obtain a further restriction of the spanning set. Let y = rs = sr with r p-regular, s a p-element, P a subgroup of L and $y \in \mathcal{R}(P)$.

LEMMA 5. $\Re(Py) \leq \Re(Pr)$.

PROOF. By the corollary to Lemma 1, $x \in \mathfrak{N}(Py)$ if and only if $x \in \mathfrak{N}(P)$ and $x^{-1}yxy^{-1} \in P$, that is $y^x \in Py$. Since $r = y^m$ for some integer $m, r \in \mathfrak{N}(P)$ and $r^x = (y^m)^x = (y^x)^m \in Py^m = Pr$.

LEMMA 6. Let y normalize both P and $Q = P_0 \le P$. Define recursively $P_{i+1} = \mathcal{N}(P_i) \cap P$, $i = 0, 1, 2, \ldots$ Then $y \in \mathcal{N}(P_i)$ and $(\overline{Q}y)_Q^P = 0$ if and only if for some i, $\mathcal{N}(P_iy) \cap P_{i+1} > P_i$. Otherwise $(\overline{Q}y)_Q^P = \overline{P}y$.

PROOF. For some l, $P_l = P$. The proof is by induction on the minimal such l. Since $y \in \mathcal{R}(Q)$ and y normalizes P, y normalizes $P \cap \mathcal{R}(Q) = P_l$. If $\mathcal{R}(Qy) \cap P_l > Q$ then $(\overline{Qy})_Q^{P_l} = 0$ whence $(\overline{Qy})_Q^P = 0$. Otherwise let T be a transversal of Q in P_l and so

$$(\overline{Q}y)_{Q}^{P_{1}} = \sum_{u \in T} (\overline{Q}y)^{u} = \sum_{u \in T} \overline{Q}y^{u}.$$

Here $y^u = (u^{-1}yuy^{-1})y = q_uy$ where $q_u = u^{-1}(yuy^{-1}) \in P_1$. $q_u \in Qq_v$ implies $y^u \in Qy^v$, that is $uv^{-1} \in \mathcal{N}(Qy) \cap P_1 = Q$. So the cosets Qq_u , $u \in T$, are distinct and $(\overline{Qy})_Q^{P_1} = \sum_{u \in T} \overline{Qq_uy} = \overline{P_1}y$. Applying the hypothesis to the chain from P_1 to P, we have the result.

Let $N = \mathcal{N}(Py) \leq \mathcal{N}(P)$; then y, r, and $s \in N$. Let $C = C(r) \cap N$ and $Q = P \cap C$. Let D be a Sylow p-subgroup of C. Then C and hence D normalize Q and so $D \leq \mathcal{N}(Qr)$. Further by the corollary to Lemma 1 since $D \leq \mathcal{N}(Py)$ we have $y^dy^{-1} \in P$ for all $d \in D$; trivially also $y^dy^{-1} = d^{-1}(y dy^{-1}) \in C$ and so $y^dy^{-1} \in P \cap C = Q$. So by the same corollary, $D \leq \mathcal{N}(Qy)$.

LEMMA 7.
$$(\overline{Q}y)_{D}^{N} = (N: PD)\overline{P}y \neq 0.$$

PROOF. $(\overline{Qr})_D^N$ is the sum of N-conjugacy classes, the only p-regular class term being $r_D^N = (C: D)r_C^N \neq 0$. So $(\overline{Qr})_D^N \neq 0$. In particular $(\overline{Qr})_D^{PD} \neq 0$. Since a transversal of D in PD is a transversal of Q in P, we have $(\overline{Qr})_D^{PD} = (\overline{Qr})_Q^P$; and so by Lemma 6 $\mathcal{N}(P_ir) \cap P_{i+1} = P_i$ and $(\overline{Qr})_D^N = (\overline{Pr})_{PD}^N = (N: PD)\overline{Pr}$. Thus PD is a Sylow p-subgroup of N. Since $\mathcal{N}(P_iy) \cap P_{i+1} \leq \mathcal{N}(P_ir) \cap P_{i+1} = P_i$, again by Lemma 6, we have $(\overline{Qy})_Q^P = \overline{Py}$ and so $(\overline{Qy})_P^N = (N: PD)\overline{Py} \neq 0$, as required.

THEOREM 3. Let L be a p-subgroup of G. Then $\mathfrak{V}'(L, p^{\alpha})$ is spanned by the set $\{(\overline{P}y)_D^G/P \leq D \leq C(r) \cap L, r \text{ the p-regular part of } y \in \mathfrak{N}(P), D \text{ a Sylow p-subgroup of } \mathfrak{N}(Py), D: P \text{ divides } p^{\alpha}\}.$

The proof is an immediate consequence of Lemma 7 since an arbitrary generator $(\overline{P}y)_N^G$ of $\mathfrak{V}'(L, p^{\alpha})$ is a non-zero multiple of $(\overline{Q}y)_D^G$ which lies in the above set.

We conclude by noting that when $\alpha = 0$ and L is a Sylow p-subgroup of G, the elements of the above spanning set are of the form $(\overline{D}y)_D^G = (\overline{D}r)_D^G$ since $s \in D$. But these elements e just the p'-section sums of Lemma 2 in O'Reilly (1973), giving the ideal of Reynolds (1972) Theorem 1. This ideal has also been studied in Broué (1978) and Iizuka (1973).

If L is a Sylow p-subgroup of G, $\mathfrak{A}'(L, p^{\alpha})$ will contain only those p-regular classes, and hence block idempotents, of defect $\leq p^{\alpha}$.

References

M. Broué (1978) 'Radicals, hauteurs, p-sections et blocs', Ann. of Math. 107, 89-107.

K. Iizuka, Y. Ito, A. Watanabe (1973), 'A remark on the representations of finite groups IV', Memoirs of the Faculty of General Education, Kumamato Univ., Natural Science Series, 8, 1-5.

M. F. O'Reilly (1973) 'Ideals in the centre of a group ring', Proc. Second Internat. Conf. Theory of Groups, pp. 536-540 (Lecture Notes in Mathematics 372, Springer Verlag, Berlin).

W. F. Reynolds (1972) 'Sections and ideals of centers of group algebras', Algebra 20, 176-181.

Department of Mathematics Rhodes University Grahamstown, 6140 South Africa