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The monitoring of intracranial pressure (ICP) fluctuations, which is needed in the context
of a number of neurological diseases, requires the insertion of pressure sensors, an
invasive procedure with considerable risk factors. Intracranial pressure fluctuations drive
the wave-like pulsatile motion of cerebrospinal fluid (CSF) along the compliant spinal
canal. Systematically derived simplified models relating the ICP fluctuations with the
resulting CSF flow rate can be useful in enabling indirect evaluations of the former
from non-invasive magnetic resonance imaging (MRI) measurements of the latter. As a
preliminary step in enabling these predictive efforts, a model is developed here for the
pulsating viscous motion of CSF in the spinal canal, assumed to be a linearly elastic
compliant tube of slowly varying section, with a Darcy pressure-loss term included to
model the fluid resistance introduced by the trabeculae, which are thin collagen-reinforced
columns that form a web-like structure stretching across the spinal canal. Use of
Fourier-series expansions enables predictions of CSF flow rate for realistic anharmonic
ICP fluctuations. The flow rate predicted using a representative ICP waveform together
with a realistic canal anatomy is seen to compare favourably with in vivo phase-contrast
MRI measurements at multiple sections along the spinal canal. The results indicate that
the proposed model, involving a limited number of parameters, can serve as a basis for
future quantitative analyses targeting predictions of ICP temporal fluctuations based on
MRI measurements of spinal-canal anatomy and CSF flow rate.
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Figure 1. (a) Main anatomical features of the spinal canal for subject 1; (b) ICP wave form (Wagshul, Eide &
Madsen 2011) CC BY 2.0 (left subpanel) and dimensionless (right subpanel); (c) dimensionless canal functions
for subjects 1 and 2.

1. Introduction

The cerebrospinal fluid (CSF) is a clear fluid that fills the ventricles of the brain as
well as the subarachnoid spaces (SSASs) (Linninger et al. 2016). Normal CSF behaves
as a Newtonian fluid (Ommaya 1968; Bloomfield, Johnston & Bilston 1998) and its
properties are very close to those of water (i.e. density ρ = 103 kg m−3 and kinematic
viscosity ν = 0.7 × 10−6 m2 s−1). The motion of CSF in the central nervous system,
which has important physiological functions and plays a role in the development of
different neurological diseases, has been the subject of numerous studies, as reviewed by
Linninger et al. (2016). Recent efforts include numerical simulations of the entire cranial
cavity (Gholampour & Fatouraee 2021) and investigations of flow in the perivascular
spaces of cerebral arteries (Thomas 2019; Carr et al. 2021; Coenen, Zhang & Sánchez
2021) and along the cerebral aqueduct (Sincomb et al. 2020, 2021), for example. The
present paper deals with the motion along the SSAS, a slender compliant canal of length
L � 60 cm bounded internally by the pia mater surrounding the spinal cord and externally
by the deformable dura membrane (see figure 1a). The arterial blood flow in and out of
the rigid cranial vault causes the intracranial pressure (ICP) to fluctuate in time following
the cardiac cycle (Du Boulay 1966; Bhadelia et al. 1997; Wagshul et al. 2006), driving the
pulsatile motion of CSF along the SSAS.

Continuous ICP monitoring is key in the assessment of surgical intervention and also for
guiding therapy for cases of traumatic brain injury (TBI), normal pressure hydrocephalus
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A model for the pulsating flow in the spinal canal

(NPH) and other neurointensive states. Although the mean ICP value is often used
clinically, it is of interest to also assess the pulsatile ICP variation or morphology. As
shown in figure 1(b), the ICP waveform generally has three peaks associated with the
cardiac cycle whose amplitudes decrease in a stepwise manner in a healthy individual
(Singh & Cheng 2021). The waveform is altered due to the changes in intracranial volume
(Unnerbäck, Ottesen & Reinstrup 2018), an important result in the context of disease
conditions that produce an increase in mean ICP (TBI or oedema formation), which can
result in the waveform becoming more rounded (Ellis, McNames & Aboy 2007), or NPH,
which leads to greater fluctuation amplitudes (Eide & Sorteberg 2016). The insertion of
ICP sensors requires a burr hole made into the skull. Since the procedure has inherent
risks, including haemorrhage and infection (Evensen & Eide 2020), there is interest in
developing non-invasive techniques for ICP characterization. The approach postulated here
exploits the close connection existing between the ICP waveform and the resulting CSF
motion along the spinal canal. It is reasoned that detailed knowledge of the flow rate along
the canal, obtained via phase-contrast magnetic resonance imaging (PC-MRI) techniques
(Feinberg & Mark 1987), can be used to infer the associated ICP waveform.

The flow in the canal fundamentally involves a fluid–structure interaction problem,
which depends on detailed anatomical features of the canal determining its compliance
and flow resistance (Linninger et al. 2016). As summarized by Khani et al. (2018), most
previous modelling efforts are based on numerical simulations with different levels of
complexity. Analytic flow models involving a reduced number of parameters can be
more useful in enabling inverse predictions of ICP from measurements of flow rates.
One-dimensional models for pressure/flow wave propagation along the spinal canal have
been developed in the past using a coaxial cylindrical tube configuration (Berkouk,
Carpenter & Lucey 2003; Carpenter, Berkouk & Lucey 2003; Cirovic & Kim 2012). More
elaborate three-dimensional flow models assuming a thin annular canal of non-uniform
width are also available (Sánchez et al. 2018; Lawrence et al. 2019; Gutiérrez-Montes
et al. 2021). These previous efforts have assumed the canal section to be open, thereby
neglecting the pressure loss introduced by spinal microstructures, effects of which have
been quantified numerically by Tangen et al. (2015). Their analysis showed that most of
the increase in pressure loss is associated with the arachnoid trabeculae, which are thin
collagen-reinforced columns that form a web-like structure stretching across the SSAS
(Mortazavi et al. 2018). Following Gupta et al. (2009), our analysis will model the complex
trabeculae network as a porous medium of variable permeability. For increased generality,
no specific shape will be assumed for the canal cross-section, thereby generalizing our
previous analyses (Sánchez et al. 2018; Lawrence et al. 2019; Gutiérrez-Montes et al.
2021), postulating the SSAS to be a thin annular canal surrounding the spinal cord, an
assumption that necessarily fails in the sacral region, as shown in the cross-sectional views
of figure 1(a).

2. Preliminary considerations

2.1. The ICP
Attention will be focused on the motion induced by the cardiac cycle, associated with the
periodic temporal fluctuations of the ICP pc(t) from its mean value 〈pc〉 = T−1 ∫ t+T

t pc dt,
where T � 1s is the period of the cardiac cycle. These fluctuations can in general
be represented in the form pc(t) − 〈pc〉 = �pΠ(ωt), involving the mean fluctuation
amplitude �p = T−1 ∫ t+T

t |pc − 〈pc〉| dt, which typically takes values of the order of
�p ∼ 50–100 Pa, along with a dimensionless function Π(ωt) describing the waveform,
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with ω = 2π/T denoting the relevant angular frequency. Note that the function Π must
satisfy

∫ t+T
t Π dt = 0 and T−1 ∫ t+T

t |Π | dt = 1, for consistency with the definition of �p.

2.2. The canal geometry
In deriving a simple one-dimensional model for the flow dynamics, the spinal canal will be
modelled as a tube displaying a slowly varying shape over its length L � 50–70 cm. The
flow is to be described in terms of curvilinear coordinates (x, y, z), with the streamwise
distance x measured from the open end, connected to the cranial cavity through the
foramen magnum, with the closed sacral end corresponding to x = L, as indicated in
figure 1(a). As seen in figure 1(a), in the stretch of canal occupied by the spinal cord the
cross-sectional shape is an annulus, bounded internally by the pia mater and externally
by the dura mater. In the one-dimensional model developed below the morphology of
the cross-section enters only through two related quantities that vary along the spinal
canal, namely, the cross-sectional area occupied by CSF at each transverse section A(x)
and the length of the wetted boundary �(x), the latter including the pia mater surrounding
the spinal cord. The average cross-sectional area is given by Ao = VCSF/L � 1.5 cm2,
where VCSF = ∫ L

0 A dx � 80 cm3 is the total volume of CSF in the in the SSAS (Edsbagge
et al. 2011). Since the characteristic transverse length A1/2

o satisfies A1/2
o � L, the flow

is fundamentally slender. Fluid motion predominantly occurs in the axial direction, with
streamwise velocity u(x, y, z, t) driven by the streamwise pressure distribution p(x, t)
(Sánchez et al. 2018), assumed to be uniform across the canal section, as is consistent
with the slender-flow approximation.

2.3. Governing equations
During each cardiac cycle, the ICP pulsation drives a small volume �V ∼ 1 cm3 of CSF in
and out of the spinal canal (Linninger et al. 2016). This oscillating flow is accommodated
by the displacement of fat tissue and venous blood, which results in a periodic change
�A of the local cross-sectional area A at a given location. Since the characteristic stroke
volume �V is much smaller than the total CSF volume VCSF, these temporal changes are
small, i.e. �A ∼ (�V/VCSF)Ao ∼ 1 mm2. To model these changes, we shall adopt the
linear elastic model,

∂A
∂t

= γ
∂p
∂t

, (2.1)

involving a local compliance γ (x) having dimensions of surface over pressure with mean
value γo = L−1 ∫ L

0 γ (x) dx.
To maximize the simplicity and facilitate comparisons with in vivo results, CSF motion

is to be characterized with use of the local volumetric flow rate Q(x, t) = ∫∫
u dy dz,

obtained by integrating the streamwise velocity u(x, y, z, t) across the canal section. Its
streamwise variation is related with the temporal variation of the cross-sectional area
through the integrated continuity equation ∂Q/∂x + ∂A/∂t = 0, which can be rewritten
in the form

∂Q
∂x

+ γ (x)
∂p
∂t

= 0, (2.2)

after substitution of (2.1). On the other hand, the axial component of the momentum
balance equation can be simplified by neglecting convective acceleration, whose
magnitude can be shown to be a factor �V/VCSF smaller than that of the local acceleration
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(Sánchez et al. 2018), along with the contribution of streamwise derivatives to the
viscous force. Furthermore, following Gupta et al. (2009), the pressure loss caused by the
trabeculae network is modelled using Darcy’s law, yielding (Kurtcuoglu, Jain & Martin
2019)

∂u
∂t

= − 1
ρ

∂p
∂x

+ ν

(
∂2u
∂y2 + ∂2u

∂z2

)
− ν

κ
u, (2.3)

where κ(x) is the SSAS permeability, whose value depends on the number and structure
of the arachnoid trabeculae.

2.4. The inviscid wave model
It is illustrative to consider first the inviscid case ν = 0, for which integration of (2.3)
across the canal yields

∂Q
∂t

+ A(x)
ρ

∂p
∂x

= 0. (2.4)

In writing the above equation, we have neglected the small temporal variation of the
cross-sectional area A, as is consistent with the condition �A � Ao previously discussed.
Equations (2.2) and (2.4) can be integrated with boundary conditions p = pc at x = 0 and
Q = 0 at x = L to determine the periodic variation of the pressure and flow rate along the
canal. The wave nature of the flow can be emphasized by considering a canal with constant
section A(x) = Ao and constant compliance γ (x) = γo, for which (2.2) and (2.4) can be
combined to give

∂2p
∂t2

= c2 ∂2p
∂x2 and

∂2Q
∂t2

= c2 ∂2Q
∂x2 , (2.5)

where

c =
(

Ao

ργo

)1/2

(2.6)

is the elastic wave speed of the problem (Grotberg & Jensen 2004). For a harmonic ICP
fluctuation pc − 〈pc〉 = �p(π/2) cos(ωt), the above wave equation can be solved to give

Q = −π

2
γoLω�p sin(ωt)

sin[k(1 − x/L)]
k cos k

, (2.7)

where

k = Lω

c
=
(

ργoL2ω2

Ao

)1/2

(2.8)

is a relevant dimensionless wavenumber. The flow rate (2.7) oscillates in phase along
the entire canal, that being a fundamental limitation of the inviscid model, which is
unable to reproduce the streamwise phase lag of the flow rate that has been consistently
observed in MRI measurements (Yallapragada & Alperin 2004; Wagshul et al. 2006;
Tangen et al. 2015). As shown below, consideration of viscous pressure losses, including
those associated with the trabeculae, is needed to describe both the phase lag and the rate
of streamwise attenuation of the flow rate.
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3. A dimensionless flow model accounting for flow resistance

To reduce the parametric dependence, it is convenient to formulate the problem in
dimensionless form using ω−1, L and A1/2

o as scales for the time and for the longitudinal
and transverse length scales, respectively. In looking for appropriate scales for Q and p, one
may note from (2.2) that the characteristic value Qc of the volume flux associated with an
ICP fluctuation of magnitude �p is Qc = γoωL�p, and from (2.4) that the corresponding
streamwise variations of the pressure are of order p − pc ∼ k2�p, with k denoting the
wavenumber defined in (2.8). These scales lead to the new variables

τ = ωt, ξ = x
L

, ŷ = y

A1/2
o

, ẑ = z

A1/2
o

,

û = u
Qc/Ao

, Q̂ = Q
Qc

, p̂ = p − pc

k2�p
.

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

Similarly, Ao and γo are used to define the functions Â = A/Ao and γ̂ = γ /γo.
The development begins by writing the continuity equation (2.2) in the reduced form

∂Q̂
∂ξ

+ γ̂

(
dΠ

dτ
+ k2 ∂ p̂

∂τ

)
= 0. (3.2)

With the scales selected, the momentum equation (2.3) takes the dimensionless form

∂ û
∂τ

= −∂ p̂
∂ξ

+ 1
α2

(
∂2û
∂ ŷ2 + ∂2û

∂ ẑ2

)
− R(ξ)û, (3.3)

where α = (Aoω/ν)1/2 is the relevant Womersley number and R(ξ) = ν/(κω) is a
dimensionless resistance coefficient. The velocity must satisfy the no-slip condition û = 0
on the canal boundary Σ . Integrating the above equation across the canal section yields

∂Q̂
∂τ

+ Â(ξ)
∂ p̂
∂ξ

= − 1
α2

∫
Σ

τ̂f ds − R(ξ)Q̂, (3.4)

where ds the element of arclength measured at a given section along the canal boundary
Σ and τ̂f = ∂ û/∂n is the dimensionless viscous stress at n = 0, where n denotes the
dimensionless distance from the wall.

3.1. Simplifications for α � 1
The solution can be simplified by taking into account that the characteristic viscous time
across the canal section Ao/ν is fairly large compared with the characteristic pulsation
time ω−1. In the associated limit α � 1, the longitudinal velocity is uniform outside a thin
near-wall Stokes layer of rescaled thickness α−1 � 1. The uniform velocity in the inviscid
core varies along the canal according to û = Q̂(ξ, τ )/Â(ξ), while the accompanying
pressure gradient is ∂ p̂/∂ξ = −(∂Q̂/∂τ + RQ̂)/Â. Viscous forces are important in the
Stokes layer, across which the velocity ûS evolves from the inviscid value Q̂/Â to a zero
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value at n = 0, as described by the reduced problem

∂ ûS

∂τ
− 1

Â(ξ)

∂Q̂
∂τ

= ∂2ûS

∂η2 + R(ξ)

(
Q̂

Â(ξ)
− ûS

){
η = 0 : ûS = 0
η → ∞ : ûS → Q̂/Â

, (3.5)

where η = αn. The solution to (3.5) determines in particular the value of û′
o(ξ, τ ) =

∂ ûS/∂η|η=0, which can be used to write (3.4) in the form

∂Q̂
∂τ

+ Â(ξ)
∂ p̂
∂ξ

= − �̂(ξ)

α
û′

o − R(ξ)Q̂. (3.6)

As expected, since at leading order in the limit α � 1 the structure of the Stokes layer is
identical all around the canal wall, the term −�̂û′

o/α representing in (3.6) the viscous force
− ∫

Σ
τ̂f ds/α2 is linearly proportional to the dimensionless length of the wetted boundary

�̂(ξ) = �/A1/2
o .

3.2. Solution in terms of Fourier expansions
The problem can be solved for a given general periodic function Π(τ) =∑∞

n=1 Re(Bn einτ ), where Re indicates the real part, i is the imaginary unit, and Bn are
complex constants, by introducing accompanying Fourier expansions

p̂ =
∞∑

n=1

Re(BnPn(ξ) einτ ),

Q̂ =
∞∑

n=1

Re(BninQn(ξ) einτ ),

ûS = 1

Â(ξ)

∞∑
n=1

Re(BninQn(ξ)fn(η) einτ ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

for the pressure, volume flow rate and Stokes-layer velocity, with Pn(ξ), Qn(ξ) and fn(η)

representing complex functions. The function fn = 1 − exp[−(in + R)1/2η] is obtained
from the reduced Stokes problem

(in + R)( fn − 1) = d2fn
dη2

{
η = 0 : fn = 0
η → ∞ : fn → 1 , (3.8)

which follows from introduction of (3.7) into (3.5), thereby yielding dfn/dη(0) = (i n +
R)1/2 and

û′
o = 1

Â(ξ)

∞∑
n=1

Re[BninQn(ξ)[in + R(ξ)]1/2 einτ ]. (3.9)

Substituting (3.7) and (3.9) into (3.2) and (3.6) leads to the first-order linear ordinary
differential equations

dQn

dξ
+ γ̂ (ξ)[1 + k2Pn] = 0, (3.10)
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Â(ξ)
dPn

dξ
=
{

n2 − in

[
�̂(ξ)

αÂ(ξ)
[in + R(ξ)]1/2 + R(ξ)

]}
Qn, (3.11)

which can be further combined to generate the boundary-value problem

d
dξ

[
1

γ̂ (ξ)

dQn

dξ

]
+ k2

Â(ξ)

{
n2 − in

[
�̂(ξ)

αÂ(ξ)
[in + R(ξ)]1/2 + R(ξ)

]}
Qn = 0,

dQn

dξ
(0) + γ̂ (0) = Qn(1) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

for Qn(ξ), with the value of dQn/dξ at ξ = 0 following from using Pn(0) = 0 in (3.10).
It is worth noting that the terms in the large square brackets in (3.11) represent the

pressure losses associated with the Stokes layer developing on the canal boundary (the
term proportional to [in + R]1/2) and with the trabeculae (the term proportional to R).
The two pressure losses have different phase, so that they have distinct effects on the
resulting flow rate, as can be inferred from (3.12). Since the resistance exerted by the
Stokes layer is inversely proportional to α, it tends to have a lesser effect, especially on
the first Fourier mode n = 1, for which the pressure loss associated with the trabeculae
is significantly higher. Although simplified flow descriptions neglecting the presence of
the Stokes layer are worth exploring in future work, for completeness the computations
presented below utilize the full equation (3.12) in evaluating the flow rate.

For a canal of uniform section, uniform compliance and uniform permeability
(i.e. Â = γ̂ = 1, �̂ = constant and R = constant) the solution reduces to Qn =
sin[βn(1 − ξ)]/(βn cos βn), with

βn = kn

{
1 +

[
1 − i

(α/�̂)
√

2n

(
1 − Ri

n

)1/2

− Ri
n

]}1/2

. (3.13)

It is worth noting that the inviscid limit considered earlier corresponds to βn = kn, the
limiting form of (3.13) for α � 1 and R = 0. For the case B1 = π/2 and Bn = 0 for
n > 1, associated with the harmonic ICP pc = �p (π/2) cos(ωt), the Fourier series for
the flow rate reduces to the single term

Q̂ = Re
(

π

2
i
sin[k(1 − ξ)]

k cos k
eiτ
)

= −π

2
sin τ

sin[k(1 − ξ)]
k cos k

, (3.14)

consistent with (2.7).

4. Illustrative sample applications

In general, numerical integration of (3.12) is needed to determine Qn(ξ). The solution
depends on the anatomical characteristics of the SSAS, including its length L, average
cross-sectional area Ao and geometric functions Â = A/Ao and �̂ = �/A1/2

o . For a given
subject, the necessary anatomical data can be determined from high-resolution MRI
images, as explained for instance in Coenen et al. (2019). The computations reported below
correspond to two subjects: a healthy 27-year-old female with L = 60 cm, Ao = 182 mm2

and α = (Aoω/ν)1/2 = 40 (subject 1); and a healthy 39-year-old male with L = 64 cm,
Ao = 138 mm2 and α = 35 (subject 2), both with cardiac period T = 2π/ω = 1 s.
The functions Â(ξ) and �̂(ξ) shown in figure 1(b) are obtained by the boundaries of the
binary image stack resulting from segmentation of the high resolution MRI images.
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The value of R = ν/(κω) depends on the permeability κ , which in turn is a function
of the SSAS porosity ε and trabeculae transverse size. In the following, we shall assume
that κ is uniform and adopt the approximate formula κ = πa2ε(1 − √

1 − ε)2/[24(1 −
ε)3/2], derived by Gupta et al. (2009) for a trabeculae network comprising cylindrical
posts of radius a extending normally to the arachnoid layer. For a porosity ε = 0.99,
a value estimated by Tada & Nagashima (1994), and a trabeculae radius a = 15 μm
(Stockman 2006) this approximate formula gives κ = 2.362 × 10−8 m2, corresponding
to a dimensionless resistance factor R = 4.78, to be used below.

Limited information is available on the spinal canal compliance γ (Tangen et al. 2015).
Although departures of γ from its mean value γo can be expected as a result of the
unequal distribution of fat tissue and epidural veins along the canal, possibly resulting in a
smaller value of γ in the cervical region (Yallapragada & Alperin 2004), a uniform value
γ = γo is to be employed in the following sample computation, for which γ̂ = γ /γo = 1.
To estimate the average compliance γo, which determines from (2.8) the dimensionless
wavenumber k, one may use (2.6) to relate γo with the elastic wave speed c. Using
the value c = 4.6 m s−1 reported by Kalata et al. (2009) for healthy humans, it follows
from (2.6) that γ0 = 8.6 × 10−9 m2 Pa−1 and from (2.8) that k � 0.81 for subject 1, with
corresponding values γ0 = 6.5 × 10−9 m2 Pa−1 and k � 0.86 for subject 2.

The modes Q̂n determined from (3.12) with use made of the anatomical values reported
above were used in (3.7) to compute the corresponding dimensionless flow rate Q̂ yielding
the results shown in figures 2(c) and 3(c). The computation of Q̂ involves 10 Fourier
coefficients Bn, corresponding to the function Π(τ) shown in figure 1(b), taken as
representative of a healthy state ICP waveform (Di Ieva, Schmitz & Cusimano 2013).
The results are compared in figures 2 and 3 with flow rate measurements acquired at 12
vertebral levels using PC-MRI with retrospective cardiac gating in in vivo experiments
involving the two subjects (see Coenen et al. (2019) for details of the data-acquisition
process). To establish a quantitatively consistent comparison, the results are presented in
normalized form. Thus, the stroke volume VS(ξ) = 1

2

∫ t+T
t |Q| dt measured via MRI is

scaled with its entrance value (i.e. VS(0) = 0.7 cm3 for subject 1 and VS(0) = 0.6 cm3 for
subject 2), while the model prediction V̂S(ξ) = 1

2

∫ τ+2π

τ
|Q̂| dτ is correspondingly scaled

with V̂S(0), with V̂S(0) = 1.9 for subject 1 and V̂S(0) = 1.8 for subject 2. Similarly, the
PC-MRI flow rate measurements are scaled with its characteristic value ωVS(0) while the
predicted flow rate Q̂ is scaled with V̂S(0).

With the uniform values γ̂ = 1 and R = 4.78 selected in the computations, the
comparisons in figures 2 and 3 indicate that the model is able to describe reasonably
well the main features of the pulsating flow rate, including its particular shape and the
phase lag of its peak value. In addition, the streamwise decay of the stroke volume
(figures 2g and 3g), a metric often used in the medical community to characterize
CSF flow, is seen to agree well with the corresponding values computed from the MRI
data, with root-mean-square differences between model and MRI remaining below 0.09
for both subjects. As a further consistency check, one may use the measured value of
VS(0) along with the accompanying dimensionless prediction V̂S(0) to obtain from the
definition VS(0) = γoL�pV̂S(0) an estimate for the mean fluctuation amplitude �p. The
value obtained, �p = 73 Pa for subject 1 and �p = 80 Pa for subject 2, corresponding
to a peak-to-peak value of approximately 200 Pa, is well within the range of values
reported in the literature (Eide & Brean 2006), thereby providing additional confidence in
the model.
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Figure 2. Subject 1: selected spinal cord locations (a) with corresponding flow rate variation obtained from
PC-MRI measurements (b) and from model predictions for R = 4.78 (c), R = 0 (d), R = 1 (e) and R = 20
( f ), with associated normalized stroke volumes shown in (g).

To investigate the sensitivity of the model predictions to changes in trabeculae
resistance, results for varying R are also included in figures 2 and 3. In the absence of
trabeculae, i.e. for R = 0, both the rate at which the flow rate fluctuation decays along
the canal and the general flow rate waveform, including the associated phase lag, are
in poor agreement with the MRI measurements. Consequently, for R = 0 the modelled
streamwise decay of stroke volume, shown in figures 2(g) and 3(g), is also seen to strongly
overpredict the amount of CSF flow in the thoracic and lumbar regions compared with
the MRI measurements. These quantitative findings emphasize the important effects of
trabeculae, previously pointed out by Tangen et al. (2015). As can be seen in figures 2
and 3, the results are not very sensitive to the specific choice of R, provided that an
order-unity value is selected. Nevertheless, the computations obtained with R = 4.78, the
value determined using the permeability and other anatomical features taken from the
literature (Tada & Nagashima 1994; Stockman 2006; Gupta et al. 2009), appear to give
better overall agreement with the MRI measurements, providing the optimal amount of
attenuation all along the canal.
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Figure 3. Subject 2: selected spinal cord locations (a) with corresponding flow rate variation obtained from
PC-MRI measurements (b) and from model predictions for R = 4.78 (c), R = 0 (d), R = 1 (e) and R = 20
( f ), with associated normalized stroke volumes shown in (g).

5. Concluding remarks

The temporal and spatial variation of the flow rate predicted by the one-dimensional model
developed here supplemented with a presumed ICP waveform has been shown to predict
the main features revealed in in vivo experiments. Utilization of the model in future efforts
to develop non-invasive measurements of ICP requires the solution of the inverse problem,
i.e. the computation of the ICP fluctuation from the PC-MRI flow measurements. Given
the uncertainty regarding the canal compliance and the trabeculae-network properties, it
is unclear whether conventional parameter-fitting approaches will be successful in these
future developments or whether more elaborate optimization algorithms, possibly based
on machine-learning techniques, will be needed. In improving the model, these future
efforts should also account for localized pressure losses associated with the presence of
additional spinal microstructures, such as nerve roots and ligaments.
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