POORLY APPROXIMATED \mathbb{Z}_{2}-COCYCLES
 FOR TRANSFORMATIONS WITH RATIONAL DISCRETE SPECTRUM

ADAM FIELDSTEEL

Abstract

Let T be an ergodic automorphism with rational discrete spectrum and ϕ a \mathbf{Z}_{2}-cocyle for T. We show that the resulting two-point extension of T is cohomologous to a Morse cocycle if ϕ is approximated with speed $o(1 / n)$.

On the other hand, we show by example that this is in general false when the speed of approximation is $O(1 / n)$.

In this paper we answer a question raised in [1]. In order to formulate the problem and its solution, we begin with some preliminary definitions and results.

Throughout this paper we let T denote an ergodic measure-preserving automorphism of a non-atomic Lebesgue probability space $(\mathfrak{X}, \mathfrak{B}, \mu)$. If $\phi:(\mathfrak{X}, \mathfrak{B}, \mu) \rightarrow \mathbb{Z}_{2}$ is a measurable function, we obtain a measure-preserving automorphism T_{ϕ} of $\mathfrak{X} \times \mathbb{Z}_{2}$ (endowed with the obvious product measure $\bar{\mu}$) given by $T_{\phi}(x, i)=(T x, i+\phi(x))$. (We write \mathbb{Z}_{2} additively as $\{0,1\}$). We refer to T_{ϕ} as a \mathbb{Z}_{2}-extension of T, and to ϕ (perhaps inappropriately) as a \mathbb{Z}_{2}-cocycle for T. We say two \mathbb{Z}_{2}-extensions T_{ϕ} and T_{ψ} of T are T-relatively isomorphic if there is an isomorphism between T_{ϕ} and T_{ψ} of the form $(x, i) \rightarrow(x, i+\rho(x))$, where $\rho: \mathfrak{X} \longrightarrow \mathbb{Z}_{2}$ is measurable.

The following lemma is elementary and well-known.
Lemma 1. Let T on $(\mathfrak{X}, \mathfrak{B}, \mu), \phi$ and ψ be as above. The following are equivalent.
1.) T_{ϕ} and T_{ψ} are T-relatively isomorphic.
2.) There is a measurable function $\rho: \mathfrak{X} \rightarrow \mathbb{Z}_{2}$ satisfying $\rho(x)+\rho(T x)=\phi(x)+\psi(x)$ almost everywhere.
3.) The extension $T_{\phi+\psi}$ is not ergodic.

Proof. The equivalence of 1.) and 2.) is immediate from the definitions. To show that 3.) implies 2.), let A be a proper invariant set for $T_{\phi+\psi}$. Note that this implies that $\bar{\mu}(A)=1 / 2$ and for μ-almost every $x \in \mathfrak{X}, A$ contains exactly one of the points $(x, 0)$ and ($x, 1$). Letting $B=\{x \in \mathfrak{X} \mid(x, 0) \in A\}$, one sets $\rho=\chi_{B}$ and verifies that ρ satisfies 2.). To show that 2.) implies 3.), one can let $A=\{(x, \rho(x)) \mid x \in \mathfrak{X}\}$, and verify that A is a proper invariant set for $T_{\phi+\psi}$.

If the conditions of the lemma are satisfied, we say ϕ and ψ are cohomologous.
The automorphism T is said to have rational discrete spectrum if the eigenfunctions of T span a dense subspace of $L^{2}(\mathfrak{X}, \mathfrak{B}, \mu)$ and the eigenvalues are all roots of 1 . An

[^0]equivalent, and for our purposes more useful formulation is the following. A stack τ of height $h(\tau)=n$ for an automorphism T is a pairwise disjoint sequence of measurable sets $\left\{T^{i} B\right\}_{i=0}^{n-1}$ such that $\mu\left(\cup_{i} T^{i} B\right)=1$. The set B is called the base of τ and the sets $T^{i} B$, $i=0,1, \ldots, n-1$ are called the levels of τ. An ergodic automorphism T has rational discrete spectrum if and only if there exists a sequence τ_{j} of stacks for T whose levels generate \mathfrak{B}. This last condition means that for all $A \in \mathfrak{B}$ and $\epsilon>0$ there exists a set U satisfying $\mu(U \triangle A)<\epsilon$, where U is a union of levels of some τ_{j}. It is not hard to see that given such a sequence of stacks for T, we may assume, by passing to a subsequence and permuting the levels of the stacks, that the stacks in fact satisfy
a.) $h\left(\tau_{j}\right) \mid h\left(\tau_{j+1}\right)$
b.) $B_{j+1} \subset B_{j}$ (where B_{j} denotes the base of τ_{j}) and
c.) for all $A \in \mathfrak{B}$ and $\epsilon>0$ there exists a $J \in \mathbb{N}$ such that for all $j>J$ there exists a set U satisfying $\mu(U \triangle A)<\epsilon$, where U is a union of levels of τ_{j}.
Condition c.) in fact follows from a.) and the assumption that the original sequence of stacks generates. The effect of conditions a.) and b.) is simply to arrange that each τ_{j+1} is obtained from τ_{j} by cutting τ_{j} into $h\left(\tau_{j+1}\right) / h\left(\tau_{j}\right)$ columns of equal measure and concatenating them.

For brevity, we will refer to a sequence satisfying a.), b.) and c.) as a generating sequence of stacks for T. Note that every subsequence of a generating sequence of stacks for T is again such a sequence.

Now and for the remainder of the paper we suppose that T is an ergodic automorphism of $(\mathfrak{X}, \mathfrak{B}, \mu)$ with rational discrete spectrum. A cocycle ϕ for T is called a Morse cocycle if for some generating sequence of stacks τ_{j}, ϕ is constant on the sets $T^{i}\left(B_{j}\right)$, $i=0,1,2, \ldots h\left(\tau_{j}\right)-2$. The term Morse cocycle is used because the measure-preserving automorphisms arising from generalized Morse sequences can be given as \mathbb{Z}_{2}-extensions of automorphisms of rational discrete spectrum by such a cocycle. (See [2]).

Let $\phi:(\mathfrak{X}, \mathfrak{B}, \mu) \rightarrow \mathbb{Z}_{2}$ be a cocycle for T and let $f: \mathbb{N} \rightarrow \mathbb{R}$. We say that ϕ is approximated with speed $o(f(n))$ (respectively $O(f(n))$ if for some generating sequence of stacks τ_{j}, there is a subsequence $\tau_{j_{k}}$, such that for each k, there is a set U_{k} which is a union of levels of $\tau_{j_{k}}$ and satisfies

$$
\mu\left(U_{k} \triangle \phi^{-1}(1)\right)=o\left(f\left(h\left(\tau_{j_{k}}\right)\right)\right)
$$

(respectively $O\left(f\left(h\left(\tau_{j_{k}}\right)\right)\right)$).
THEOREM 1. Let ϕ be a cocycle for T that is approximated with speed $o(1 / n)$. Then there is a Morse cocycle ψ for T that is cohomologous to ϕ.

REmARK. This is a strengthening of Theorem 1 of [1], where the hypothesis is that ϕ is approximated with speed $O\left(1 / n^{1+\epsilon}\right)$, for some $\epsilon>0$. The proof we give here is a variant of their argument.

Proof. Fix a generating sequence of stacks τ_{j} for T. We have by hypothesis a subsequence $\tau_{j_{k}}$ and sets U_{k}, each a union of levels of $\tau_{j_{k}}$ such that $\mu\left(U_{k} \triangle \phi^{-1}(1)\right)=$
$o\left(1 / h\left(\tau_{j_{k}}\right)\right)$. By passing to a subsequence and relabeling it as τ_{k}, we may assume that we have sets U_{k}, each a union of levels of τ_{k} such that $\mu\left(U_{k} \triangle \phi^{-1}(1)\right) \leq \epsilon_{k}\left(1 / h\left(\tau_{j k}\right)\right)$, where $\sum_{k} \epsilon_{k} \leq 1 / 2$. On this sequence of stacks we will inductively define a Morse cocycle ψ such that $T_{\phi+\psi}$ is not ergodic. It will be convenient to let n_{k} denote $h\left(\tau_{k}\right)$ and q_{k} denote $\frac{n_{k+1}}{n_{k}}$. Note that on each τ_{k} there is a unique choice of U_{k} satisfying the given conditions. Indeed, for each $i=0,1, \ldots, n_{k}-1$, either $\phi^{-1}(1)$ or $\phi^{-1}(0)$ occupies a fraction of at least $1-\epsilon_{k}$ of $T^{i} B_{k}$. Let $\phi_{k}=\chi_{U_{k}}$. (Here we regard the values of ϕ_{k} as being elements of \mathbb{Z}_{2}).

Define $\psi(x)=0$ for all $x \in \cup_{i=0}^{n_{1}-2} T^{i} B_{1}$. Having defined ψ on $\bigcup_{i=0}^{n_{k}-2} T^{i} B_{k}$, we extend the definition to $\cup_{i=0}^{n_{k+1}-2} T^{i} B_{k+1}$. The idea is to define ψ on the last levels of the columns obtained from τ_{k} in such a way as to make the sum of the values of $(\phi+\psi)(x)$ across such columns equal 0 , for most x. In particular, for $x \in B_{k+1}$ and $i=1,2, \ldots, q_{k}-1$, we set

$$
\psi\left(T^{i n_{k}-1}(x)\right)=\phi_{k+1}\left(T^{i n_{k}-1}(x)\right)+\sum_{m=0}^{n_{k}-1}\left(\psi+\phi_{k+1}\right)\left(T^{(i-1) n_{k}+m}(x)\right)
$$

Now let $C_{k}=\bigcup_{i=0}^{n_{k}-1} T_{\phi+\psi}^{i}\left(B_{k} \times\{0\}\right)$. We will show that these sets converge to a proper invariant set for $T_{\phi+\psi}$.

It is clear that for each $k, \bar{\mu}\left(C_{k}\right)=1 / 2$ and $\bar{\mu}\left(C_{k} \triangle T_{\phi+\psi}\left(C_{k}\right)\right) \leq\left(2 n_{k}\right)^{-1}$.
In the following estimates, we use the notation $A \sim A^{\prime}$ to signify the condition $\bar{\mu}(A \triangle$ $\left.A^{\prime}\right)<\eta$. For each k we have $\mu\left(\left\{x \mid \phi_{k}(x) \neq \phi(x)\right\}\right)^{\eta}<\epsilon_{k}(1 / n)$, so that

$$
C_{k}=\bigcup_{i=0}^{n_{k}-1} T_{\phi+\psi}^{i}\left(B_{k} \times\{0\}\right) \sim \bigcup_{2 \epsilon_{k}}^{n_{k}-1} T_{\phi_{k}+\psi}^{i}\left(B_{k} \times\{0\}\right)
$$

Now $B_{k} \times\{0\}=\cup_{i=0}^{q_{k}-1} T^{i_{k}}\left(B_{k+1}\right) \times\{0\}$ so that $\cup_{i=0}^{n_{k}-1} T_{\phi_{k}+\psi}^{i}\left(B_{k} \times\{0\}\right)=$ $\cup_{m=0}^{q_{k}-1} \cup_{i=0}^{n_{k}-1} T_{\phi_{k}+\psi}^{i}\left(T^{m n_{k}}\left(B_{k+1}\right) \times\{0\}\right)$. But if $T^{m n_{k}+i} B_{k+1}$ is a level of τ_{k+1} on which ϕ_{k+1} differs from ϕ_{k} (remember that both ϕ_{k+1} and ϕ_{k} are constant on levels of τ_{k+1}), then ϕ differs from ϕ_{k} on a subset of $T^{m n_{k}+i} B_{k+1}$ of measure at least $\left(1-\epsilon_{k+1}\right) / n_{k+1}$. Each such level contributes $\left(1-\epsilon_{k+1}\right) / n_{k+1}$ to $\mu\left(U_{k} \triangle \phi^{-1}(1)\right)$, and therefore the levels $T^{m n_{k}} B_{k+1} \subset B_{k}$ of $\tau_{k+1}\left(m=0,1, \ldots, q_{k}-1\right)$ such that for some $i=0,1, \ldots, n_{k}-1$, ϕ_{k+1} and ϕ_{k} differ on $T^{m n_{k}+i} B_{k+1}$ form a set of measure less than $\left(\frac{\epsilon_{k}}{1-\epsilon_{k+1}}\right) \cdot n_{k}^{-1}$. Thus, for all but a fraction $\left(\frac{\epsilon_{k}}{1-\epsilon_{k+1}}\right)$ of the $m \in\left[0, q_{k}-1\right], \cup_{i=0}^{n_{k}-1} T_{\phi_{k}+\psi}^{i}\left(T^{m n_{k}}\left(B_{k+1}\right) \times\{0\}\right)=$ $\cup_{i=0}^{n_{k}-1} T_{\phi_{k+1}+\psi}^{i}\left(T^{m n_{k}}\left(B_{k+1}\right) \times\{0\}\right)$, and therefore,

$$
\begin{aligned}
\bigcup_{m=0}^{q_{k}-1} \bigcup_{i=0}^{n_{k}-1} T_{\phi_{k}+\psi}^{i}\left(T^{m n_{k}}\left(B_{k+1}\right) \times\{0\}\right) & \underset{\epsilon_{k} /\left(1-\epsilon_{k+1}\right)}{\sim} \\
\bigcup_{m=0}^{q_{k}-1} \bigcup_{i=0}^{n_{k}-1} T_{\phi_{k_{k+1}+\psi}}^{i}\left(T^{m n_{k}}\left(B_{k+1}\right) \times\{0\}\right)= & \bigcup_{i=0}^{n_{k+1}-1} T_{\phi_{k+1}+\psi}^{i}\left(B_{k+1} \times\{0\}\right) \underset{2 \epsilon_{k+1}}{\sim} \\
& \bigcup_{i=0}^{n_{k+1}-1} T_{\phi+\psi}^{i}\left(B_{k+1} \times\{0\}\right)=C_{k+1} .
\end{aligned}
$$

This establishes that the sets C_{k} form a Cauchy sequence in the metric of symmetric difference, and hence converge to a necessarily $T_{\phi+\psi}$-invariant set of measure $1 / 2$.

The question raised in [1] is whether the conclusion of Theorem 1 holds when ϕ is approximated with speed $O(1 / n)$. We show here by example that it does not.

Let T be the ergodic automorphism of $(\mathfrak{X}, \mathfrak{B}, \mu)$ with rational discrete spectrum, whose eigenvalues are all the roots of unity of order a power of 2 . Thus, T admits a generating sequence of stacks τ_{k} of heights $h\left(\tau_{k}\right)=2^{k}, k \in \mathbb{N}$. We will construct a cocycle ϕ for T such that ϕ is approximated with speed $O(1 / n)$, but such that for all Morse cocycles ψ for $T, T_{\phi+\psi}$ is ergodic. In other words, for all Morse cocycles ψ for T, ϕ and ψ are not cohomologous.

The desired cocycle ϕ is defined as follows. As before, we let B_{k} denote the base of τ_{k}, and we recall that, by assumption, $B_{k} \supset B_{k+1}$. For each k, let

$$
\phi(x)=\left\{\begin{array}{ll}
0, & \text { if } x \in T^{2^{k-1}-1}\left(B_{k+1}\right) \\
1, & \text { if } x \in T^{3 \cdot 2^{k-1}-1}\left(B_{k+1}\right)
\end{array}\right\} .
$$

It is clear that ϕ is approximated with speed $O(1 / n)$ (and not with speed $o(1 / n)$).
Now let ψ be a Morse cocycle for T. Then there is a sequence $k_{i} \rightarrow \infty$ such that ψ is constant on all the sets $T^{j} B_{k_{i}}, i \in \mathbb{N}, j=0,1, \ldots, 2^{k_{i}}-2$. The sequence of stacks $\tau_{k_{i}}$ is again a generating sequence of stacks for T. Furthermore, since the levels of the stacks $\tau_{k_{i}}$ generate \mathfrak{B}, the sets of the form $L \times\{c\}, c \in \mathbb{Z}_{2}$, where L is a level of a stack $\tau_{k_{i}}$, generate the product σ-algebra in $X \times \mathbb{Z}_{2}$. Let $A \subset X \times \mathbb{Z}_{2}$ be a set of measure $\bar{\mu}(A) \in(0,1)$ and $\epsilon>0$. We will show that $\bar{\mu}\left(\cup_{m \in \mathbf{Z}} T_{\phi+\psi}^{m}(A)\right)>1-4 \epsilon$. Since A and ϵ are arbitrary, it will follow that $T_{\phi+\psi}^{m}$ is ergodic. Choose i so that for some level $L=T^{p} B_{k_{i}}$ of $\tau_{k_{i}}$, and some $c \in \mathbb{Z}_{2}, \bar{\mu}(A \cap(L \times\{c\}))>(1-\epsilon) \bar{\mu}(L \times\{c\})$.

LEMMA 2. (Notation as above). For all $x \in B_{k_{i+1}+1}$ and all $y \in T^{2^{k_{i+1}}}\left(B_{k_{i+1}+1}\right)$, the sequences $\left\{(\phi+\psi)\left(T^{m} x\right)\right\}_{m=0}^{2_{i+1}-1}$ and $\left\{(\phi+\psi)\left(T^{m} y\right)\right\}_{m=0}^{2_{i+1}-1}$ are identical, except for the terms corresponding to $m=2^{k_{i+1}}-1$, at which they differ.

Proof. Since x and y both lie in $B_{k_{i+1}}$, this follows from the fact that ψ is constant on all but the last level of $\tau_{k_{i+1}}$, and ϕ is constant on all but the central level $T^{2^{k_{i+1}-1}}\left(B_{k_{i+1}}\right)$, on which it takes the two values 0 and 1 , as described above.

The set L is a union of levels $T^{p+j \cdot 2^{k}}\left(B_{k_{i+1}+1}\right), j=0,1,2, \ldots, 2^{k_{i+1}-k_{i}+1}-1$ of the stack $\tau_{k_{i+1}}$, so that $L \times\{c\}$ is a union of the sets $T^{p+j \cdot 2^{k_{i}}}\left(\boldsymbol{B}_{k_{i+1}+1}\right) \times\{c\}$. If L_{j} is one of these levels, where $0 \leq j \cdot 2^{k_{i}} \leq 2^{k_{i+1}}-1$ (in other words, L_{j} is in the first half of $\tau_{k_{i+1}+1}$), let L_{j}^{\prime} denote $T^{2^{k_{i+1}}} L_{j}$. We say $L_{j} \times\{c\}$ is good if both $L_{j} \times\{c\}$ and $L_{j}^{\prime} \times\{c\}$ are contained in $\cup_{m \in \mathbf{Z}} T_{\phi+\psi}^{m}(A)$ except for a fraction less than 4ϵ of their measure. It follows that there must exist good sets $L_{j_{1}} \times\{c\}$ and $L_{j_{2}} \times\{c\}$ such that $L_{j_{1}}$ occurs in the first quarter of $\tau_{k_{i+1}+1}\left(0 \leq j_{1} \cdot 2^{k_{i}} \leq 2^{k_{i+1}-1}-1\right)$ and $L_{j_{2}}$ occurs in the second quarter of $\tau_{k_{i+1}+1}\left(2^{k_{i+1}-1} \leq\right.$ $\left.j_{2} \cdot 2^{k_{i}} \leq 2^{k_{i+1}}-1\right)$. Let $r=\left(j_{1}-j_{2}\right) 2^{k_{i}}$ so that $T^{r}\left(L_{j_{1}}\right)=L_{j_{2}}$. Because of Lemma 2, we see that either $T_{\phi+\psi}^{r}\left(L_{j_{1}} \times\{c\}\right)=L_{j_{2}} \times\{c+1\}$, or $T_{\phi+\psi}^{r}\left(L_{j_{1}}^{\prime} \times\{c\}\right)=L_{j_{2}}^{\prime} \times\{c+1\}$. Suppose, without loss of generality, that the first is the case. Then $A \cup T_{\phi+\psi}^{r} A$ contains
all but a fraction 4ϵ of $\left(L_{j_{2}} \times\{c\}\right) \cup\left(L_{j_{2}} \times\{c+1\}\right)$, and therefore $\cup_{m=-2^{k_{i+1}+1}}^{m=k^{k_{i+1}+1}} T_{\phi+\psi}^{m}(A)$ has $\bar{\mu}$ measure greater than $1-4 \epsilon$, and we are done.

References

1. I. Filipowicz, J. Kwiatkowski and M. Lemanczyk, Approximation of \mathbf{Z}_{2}-cocycles and shift dynamical systems, Publ. Mat. 32(1988), 91-110.
2. M. Keane, Generalized Morse sequences, Z. Wahr. Verw. Geb. 10(1968), 335-353.

Department of Mathematics
Wesleyan University
Middletown, CT
USA 06459

[^0]: Received by the editors September 20, 1989; revised: September 14, 1990.
 AMS subject classification: 28D05.
 (C) Canadian Mathematical Society 1991.

