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ON THE DESIGN OF MORTGAGES AND
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Abstract

There is a well-recognized need for a mortgage instrument that will operate satisfactorily
in the presence of a volatile inflation. This paper analyses a large class of mortgages—the
'continuous mortgage' (CM)—as a basis for such design. In particular, it is shown that
the real (inflation-adjusted) payment stream is exponentially sensitive to changes in the
real interest rate. Consequently to realize a satisfactory design, the mortgage must be
indexed by assigning the real interest rate. Then, under appropriate restraints, the CM
offers a continuum of satisfactory mortgage designs.

1. Introduction

This paper arose from an attempt to design a mortgage which can be guaranteed
to operate satisfactorily—even optimally—in the presence of inflation. From one
point of view, the task is impossible, since inflation is unpredictable and may
become large and volatile. But from another point of view the task is straight-for-
ward. We need only allow for inflation (or adjust to it after it has occurred) by the
process of indexation.

Indexation consists of denominating financial contracts in 'real terms', i.e. in
terms of units of constant purchasing power, as measured with reference to 'a
suitable commodity basket.' Any quantity expressed relative to this is called 'real',
or is expressed 'in real terms'. In contrast, quantities expressed in money terms
can be called 'nominal'. Thus indexation cancels out (by definition) after the fact
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[2] Design of mortgages 57

the major average inflation fluctuations, and leaves only the (usually smaller)
'real' relative price fluctuations.

Throughout this paper we have the consumer price index (CPI) in mind.
However, the analysis and conclusions remain valid for any chosen commodity
basket, provided inflation is measured relative to that chosen basket.

In fact, many forms of indexation are possible, though acceptance of an index
other than the CPI should be made with great caution. For example, the linking
of Israeli mortgages to the U.S. dollar had disastrous consequences in 1962 [8,
page 160]. On the other hand, while wage indexation clearly has some advantages,
these are two-edged—real mortgage payments will reduce if real wages reduce,
but they will increase if real wages increase. (Such a wage indexation of mortgage
repayments has been an option for low income earners in Brazil [1, page 122].)

As might be expected, many economists believe that the widespread unfavoura-
ble effects of inflation can be greatly reduced by indexation [7]. This belief has
been reinforced by the successful implementation of indexation in Brazil since
1964 [1] in spite of a high inflation rate (~ 100% per year). However, there has
been much resistance against indexation—especially in countries with moderate
inflation rates (~ 10% per year) for which indexation is thought by some to be
unnecessary or undesirable.

Rather than attempting any general consideration of arguments for or against
indexation [7], [12], we focus our attention on the relevance of indexation to
mortgage design. We make the generally accepted assumption that the shape of
the stream of repayments in real terms is of primary importance in the design [3],
[4], [6], [7], [11], [12].

We begin with a brief summary of the inflation-induced problems associated
with the conventional non-indexed mortgage instruments, as described qualita-
tively by Lessard and Modigliani [6].

The standard mortgage (SM), with its constant (nominal) interest rate and
constant (nominal) repayment rate, has proved to be an unsatisfactory instrument
during recent years of high and unpredictable inflation for the following reasons.
The constant (nominal) interest rate is inappropriate since this rate should be
allowed to vary to accommodate anticipated inflation. Moreover, as (nominal)
interest rates on new mortgages increase with anticipated inflation, higher initial
repayment rates are induced. These may be so high as to become impracticable
for the potential home owner. Because the (nominal) repayment rate is constant,
the real repayment rate will decline at the inflation rate, producing a 'negative
tilt'.

The extent of this tilt is illustrated in Table 1 for mortgages of (typical) 25 year
duration, for a range of constant annual inflation rates \a. (Note that (1 + Xfl)

25

= ratio of final to initial price levels = ratio of initial to final real payment rates.)

https://doi.org/10.1017/S0334270000004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004331


58 F. C. Gair [3]

TABLE 1. Dependence of (l + Xo) on the annual inflation rate Xa

(I+Aa)25

X(%/year)

1

1.282

.995

2

1.641

1.980

5

3.386

4.879

10

10.83

9.531

15

32.92

13.98

20

95.40

18.23

30

705.6

26.24

(The continuous inflation rate A = logE(l + Xa) is given for comparison—see Section 5.)

We see, for example, that for \a = 10%, this ratio is already prohibitively high
at 10.83, and greater values of Xa render the ratio successively more impossible.
Only such small values as Xa~ \% could be regarded as corresponding to
acceptable payment ratios (~ 1.3) for the SM. Moreover, in practice Xa will not
remain constant during the mortgage, but will fluctuate unpredictably. Thus the
real repayment burden is concentrated in the early years of the SM to produce a
highly unsatisfactory instrument which in real terms remains completely vulner-
able to the whims of inflation.

The situation has been only marginally alleviated by the use of the standard
variable rate mortgage (SVRM) which allows some of the required adjustments in
the interest rate to occur. However, each interest rate change is made at the
expense of an undesirable discontinuity in the repayment rate. (At each change it
is as though a new mortgage is started.) Moreover, the negative tilt in the real
repayment rate and its associated problems remain unabated.

These high initial repayment rates dampen the demand for mortgages. Conse-
quently, the real interest rate decreases, which in turn dampens the supply of
mortgage finance. In fact such gravely distorted mortgage markets continue to
function only under the restraints of ad hoc governmental controls and subsidies.

If housing subsidies are part of government policy then they should be applied
in a predictable manner rather than unpredictably as a result of inflation.

A number of innovative alternative mortgage instruments have been proposed
as partial or complete solutions of these problems, [2] to [8], [11]. Some of these
designs offer marked improvements over the SM and the SVRM. However, it is
pertinent that of all these designs only the price level adjusted mortgage (PLAM
[4]) is indexed, and only the PLAM has been in successful operation over an
extended period [1].

We will argue more generally that only indexed designs should be considered,
and we will present a continuum of such designs.

Our conclusions will be based on the quantative study of the class of all
mortgages with 'smoothed real payment design' which we call the continuous
mortgage (CM). This class contains virtually all of the proposed new mortgage
instruments.
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14] Design of mortgages 59

This paper has the following aims:
(1) to present the CM as a continuum of practical mortgage designs
(2) to derive the important quantitative relationships for the CM
(3) to deduce appropriate constraints on the CM to guarantee it as a satisfac-

tory design regardless of the severity or volatility of inflation.
A continuous model is used in our analysis, rather than a discrete one, for the

following reasons.
(1) The mathematical analysis of the continuous model is more attractive. It

avoids the choice of an arbitrary time period for the compounding of interest
needed for the discrete analysis. The relationships between the various rates
(interest, inflation, repayment increment, control function) are particularly simple
in the continuous model.

(2) Certain deceptive practices are impossible in the continuous model. On the
other hand, most banks use a number of different discrete models, with differing
time periods, for different purposes. The resulting effective interest rates can be
computed [9], but this is likely to be beyond the scope of the layman. Such an
environment is wide open to deceptive practices.

(3) Banks have already made some moves towards the continuous model. It is
increasingly their practice to calculate interest on certain special purpose and
savings accounts on a monthly basis (based on an average daily balance over the
month). This is equivalent to compounding 12 times a year. It can be seen from
Appendix 2 that this (m = 12) is very close to compounding continuously
(m = oo). Such moves towards continuous compound interest should be encour-
aged.

(4) The widespread use of computers by banks and the availability of relatively
cheap electronic calculators to the general public, make use of the continuous
calculations an immediate practicable possibility.

The paper is structured as follows. In Section 2, it is convenient to begin by
formulating the continuous model of the general mortgage (GM) for the loan
function L with variable interest rate /, repayment rate Q, and duration T. In
Section 3, the restriction to a positive continuous Q gives the CM. Here,
introduction of the control function a enables us to view the CM as a general dual
rate mortgage. The fundamental relationship (10a) between L and Q is derived. In
Section 4, taking a constant gives the simple continuous mortgage (SCM). In
Section 5, the analysis is reviewed in real terms. In Section 6, the qualitative
dependence of the CM functions on the dual rates a, ft or a, / is derived, and the
results are detailed in Table 2. Then the fundamental relationship is illustrated
quantitatively for the SCM in Table 3. In Section 7, the factors determining the
control and predictability of the real CM functions are considered quantitatively,
and the results appear in Table 4. The imposition of constraint (25 a) on /? is then
considered, and its effect is illustrated in Table 5.
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In Section 8 the consequences of the additional constraint S^ i? o £ y o are
considered. These result in the inter-related restrictions (29) on Lo and a, which
are illustrated numerically in Tables 6(a), (b), (c).

In Section 9 the conclusions are made.

2. The general mortgage (GM)

If a loan Lo is borrowed at time 0 at a variable interest rate l(t) at time t, and
Lo is to be fully repaid (with interest) at time T, the end of the mortgage period,
then the loan L(t) owing at t satisfies the following conditions:

L(0)-L0, L(T) = 0, L is continuous, (la,b,c)

1/(0 = l(t)L(t) - g(0, (Id)
wherever / and Q are continuous in the interval [0, T], where Q is the repayment
rate function. As already mentioned, as well as assuming that interest accrues
continuously, this model requires that the repayments are made continuously, at
rate Q(t). (This does not necessarily require Q to be a continuous function—
though this restriction is made in Section 3). In practice it is easy to modify this
repayment stream into discrete form without violating the continuous model (see
Appendix 1).

Throughout the analysis it is very convenient to introduce the compact notation

(2)

for any integrable function a. Then Ea generalizes the exponential function,
retaining many of its properties. For example,

Ea is positive and continuous, and (3a)

E'a = aEa wherever a is continuous. (3b)

Ea is piecewise exponential if a is a step-function, and exponential if a is constant.
Moreover, it is the natural function with which to express the compounding of
interest, since unit investment at time 0 compounds to Et{t) at time t when l(t) is
the variable interest rate at time t.

Now the solution of (1) can be written as

L(t) = £,(0( A) ~ jf'£.,e) = E,{t)j*E_,Q (4a,b)

where Q is arbitrary except for the constraint
T_,Q. (5)
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[6] Design of mortgages 61

We will refer to this as the general mortgage (GM). It is clear from (5) that Q can
be determined in advance only if / is so specified.

3. The continuous mortgage (CM)

Let us now restrict Q to be positive, continuous, and piecewise continuously
differentiable. Then we can write

6(0 = REr{t) (6a)

where R, a positive constant, is the initial repayment rate Q(0), and r, a piecewise
continuous function, the "repayment increment rate", is given by

r(t) = 6'(0/6(0 (6b)
wherever Q is continuously differentiable. Thus Q determines the pair (R, r), and
vice versa. In particular R, r determine the initial value, and the shape of Q,
respectively.

Substitution of (6) into (5) gives

Lo = Rf\_, (7)

so that R is determined (and the mortgage can proceed in practice) only when the
difference function / — r is specified at the outset for the whole duration of the
mortgage. It is therefore important to isolate and name this function.

We therefore define

a = l—r, so that r = / — a, (8a,b)

and call a the "control function". Thus we normally regard a as being prescribed
in advance. (It is possible to allow changes in the prescription of a during the
mortgage. However these cause discontinuities in S, and produce a piecewise
continuous mortgage (which is not considered here).)

If we also define

Ga{t) = Ea{t)j*E_a = Jfr[exp( jf"(-«))] du, O^KT, (9a,b)

then for each arbitrary (piecewise continuous function) a, using (4b), (6), (7), (8)
and (9), we deduce the fundamental relationship

L(t) = Q(t)Ga(t) (10a)

where
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and

R = Lo/Ga(0). (10c)

We will refer to (10) as the "continuous mortgage" (CM). The simple connection
(10a) between L and Q shows that Q/L = \/Ga is independent of / and depends
only on a. It also indicates that Q and L are related at time t exactly as for a new
mortgage of duration T — t starting at time t. From (9) we find further that

Ga(T) — 0, G is continuous, (lla,b)

Ga(t)>0 forO <t<T, (lie)

G'a(t) = a{t)Ga(t) — 1 wherever a is continuous, (Hd)

so that Ga is also a mortgage loan function (like L) but with interest rate a,
repayment rate = 1, and physical dimension of time. Thus Ga is a "normalized
loan function". It plays a key role in CM design.

4. The simple continuous mortgage (SCM)

The simplest case of the CM is achieved by choosing

a = constant. (12)

We refer to this case as the simple continuous mortgage (SCM). We now call a
the "control parameter". Here (9) reduces to

L J (13)
J-t ifa = 0,

which has exactly the form of L for the standard mortgage with interest rate a,
and unit repayment rate, whereas (10c) reduces to

aLn

jr iia — 0.

The SM is thus a special case of the SCM with a = / = constant.
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5. Analysis in real terms

In order to evaluate any mortgage instrument during times of substantial or
variable inflation, it is essential to recast the analysis in real terms, that is to make
allowance for the changes in the real value of money due to inflation.

If X is the (continuous model) inflation rate function, then Ex is the price level
function (i.e. Ex(t) is the price at t of goods having unit price at time 0). Let

t = E_xL, %=E_XQ, fi = l - \ . (15a,b,c)

Then £, S, /? are respectively the loan, repayment rate, and interest rate functions
in real terms (i.e. inflation adjusted to the price level at t = 0). We will see that all
conditions between the 'nominal mortgage functions' L, Q, I, r are easily trans-
lated into conditions between the corresponding 'real mortgage functions'
£, £, /?, y with the 'neutral mortgage functions' a, Ea, Ga remaining unchanged
throughout.

Thus in real terms, for the general mortgage we get

£(0) = L0, £ ( r ) = 0, £ is continuous, (16a,b,c)

£'(0 = j8(r)£(0-2(0, (16d)
wherever /? and £ are continuous in [0, T],

£(0 = Ep(t)(L0 - f'E.fi) = Ep(t)[
TE_fi% (I7a,b)

where S is arbitrary except for the constraint

so that 2. can be determined in advance only if /? is so specified. For the
continuous mortgage, the 'fundamental relationship' (10a) becomes

e(/) = S(0Ga(0, (19a)
where

&(0 = REp.a(t) = REy(t), (19b,c)

and

y = fS- a = r-X = S ' / S (I9d,e,f)

is the repayment increment rate in real terms, and JR is given by (10c). Note that
the fundamental relationship (10a) or (19a) can be rewritten as

Q(t)/L(t) = £ ( / ) / £ ( / ) = 1/(7.(0,

which depends only on a and t (and is independent of /?, /, or X).
As before the SCM is the special case when a is constant.
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The relationship between the GM, CM, SCM, SM, and PLAM [3], [4] are
conveniently illustrated in Figure 1, the downward progression indicating succes-
sive specializations.

CM

X

Q. = REoa (£ positive and continuous)

SCM a = constant

a = I = constant [sNl | P L A M | a = 0 = constant

FIGURE 1

The variable rate graduated payment mortgage (VRGPM) of Tucker [11]
appears to be the discrete model analogue of the SCM, and the constant payment
factor variable rate mortgage (CPFVRM) [3], [4] is a somewhat more complicated
approximation of this.

It is clear from (19c,f) that y determines the tilt of & which is ^ 0 according as
7 ^ 0 . Since ?l(t)/R = Ey(t) = Ep_tt(t) we have the straightforward result that
^(t)/R is precisely determined by /? — a. This simple result is in striking contrast
with the conclusion of Cohn and Fischer [4, page 67] that the CPFVRM had 'a
real payment that showed no clear trend over the 1951-70 period' which was
chosen to illustrate the design. It is of interest to note that for the PLAM,
%(t)/R = 1, so that 2 then has zero tilt, whereas for the SM, 2 ( 0 / R = £-x(0 so
that the negative tilt depends directly on X. (This has already been illustrated in
Table 1 (Section 1) for t = T = 25 years, and X = constant.)

The question of designing a CM with 2 of arbitrary tilt, and more generally of
arbitrary shape, is considered in Sections 6, 7, 8.

6. CM dependence on dual rates

The qualitative dependence of the functions of the CM on the dual rates are
illustrated in Table 2.

We say, for example, that Ea increases relative to a, and write Ea inc(a), since

E ( 0 = exp /"'a, < exp f o2 = E ( 0 for 0 < / < T
•'o •'o
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provided a,(r) «S a2(/) for 0 < t «£ T, which we abbreviate to Eai < Ea2 provided
a, *S a2. Similarly the remaining increasing (inc) or decreasing (dec) variations
indicated in the Table follow from the monotonicity of the integral and of exp.

TABLE 2. CM dependence on the dual rates (for fixed Lo, T).

Type

Neutral

Real

Nominal

Function defined on [0, T]

Ea(t) = expjf'a

Q(') 2 (0 1
L(t) £(r) Ga(t)

R- L°
G 10)

r = I- a
Q/R = E, = £,_„

a

inc

dec

inc

inc

dec
dec

dec
tilt

dec

dec
dec

dec
tilt

dec

P

1 
1

inc
inc

inc

inc

1 1

/

I
I 

I
I

I
I 

M
inc
inc

inc

inc

We see that % £ both increase with /? through the factor Efi which is of
'exponential type' and is therefore very sensitive to /?. This signals the need for
controlling fluctuations in /? (as discussed in Section 7).

The dependence of S, £ on a is more subtle. As a function, & is neither
increasing nor decreasing relative to a. However increasing a decreases the tilt of
S(or increases its negative tilt). This can be argued as follows:

Now 2 = REy = LoEp_a/JoE.a and let a + 82 = L0£/,_o_,a//0
7'.E_a_ao be

the function corresponding to 2. when a is changed to a + 5a, where 8a is an
arbitrary positive incremental function. Then E_Sa(u) is continuous and decreas-
ing relative to u E [0, T]. It follows that

E.8a(T)<E.ta(u)<l,
E_Sa(T)E_a(u) ^ E_a_Sa(u) < £_„(«),
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and

Hence

fTE-a-Sa = E_Sa(v) [TE_a for some v £ (0, T),Jo Jo

so that

( 2 + «&)(/) = Z(t)E_ta(t)/E_aa(v) ^ S ( 0 according as t$ v.

Hence

£(f)inc(a) forO < ? < u

and

S ( / ) d e c ( a ) f o r o < / < 7\

We describe this by saying that increasing a, decreases the tilt of £ (or increases
its negative tilt). The variable 'pivot point' (u, 2-(u)) depends on a and 8a.

Since a similar analysis holds when 2-, y, /$ are replaced by Q, r, I, an analogous
tilting of Q occurs when a is increased (with / held fixed).

In order to show that £ dec(a), the following form of £ is required. From
(16a,d) and (19a), it follows that

£'(/) = (£(/) - l/Ga(0)£(0 fo rO<r<J , (20a)
so that

t = L0Ep_1/Ca, (20b)

from which it follows that £dec(a). Similarly from (la,d) and (10a)

L\t) = (/(0 - l/Ga(0)L(0 f o r 0 ^ < 7 \ (21a)

L = L0EHX/Ga, (21b)

and L dec(a) also. (Note that as t -> T-, Ga(t) -> 0 + , £.,/Ga(O ->• 0, so that £(0
and i ( r ) -H. 0 as required.)

From (20), (21) we can judge the extent to which £ or L is increasing (or
decreasing) relative to t merely by comparing \/Ga with /?, / respectively. Also the
ratio of repayment rate to interest repayment rate is given in real or nominal
terms by

2 / 0 £ = l / 0 G a > Q/lL=\/lGa, (22a,b)

respectively. If inflation is substantial, there should be little concern if L is
increasing during the early mortgage years provided £ is decreasing at a sufficient
rate.
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For the SCM, since a is constant, the fundamental relationship can be
illustrated quantitatively. This is done in Table 3, which gives the dependence of
Q(t)/L(t) = £ ( 0 / £ ( 0 = l/Ga(O on a and T - t. For t = 0, Table 3 gives
values of R/LQ = \/GJ0).

TABLE 3. Repayment rate per year as fraction of outstanding loan (for SCM).

Values per year of G ( 0 / L ( 0 = S ( 0 / £ ( 0 = ! /£„( ' )

T- tin
a years
in
%/year

0

2

4

6

8

10

12

14

16

18

5

.2000

.2102

.2207

.2315

.2427

.2542

.2660

.2781

.2906

.3033

10

.1000

.1103

.1213

.1330

.1453

.1582

.1717

.1858

.2005

.2156

15

.0667

.0772

.0887

.1011

.1145

.1287

.1438

.1529

.1760

.1930

20

.0500

.0607

.0726

.0859

.1002

.1157

.1320

.1491

.1668

.1851

25

.0400

.0508

.0633

.0772

.0925

.1089

.1263

.1444

.1630

.1820

30

.0333

.0443

.0572

.0719

.0880

.1052

.1234

.1421

.1613

.1808

40

.0250

.0363

.0501

.0660

.0834

.1019

.1210

.1405

.1603

.1801

oo

.0000

.0200

.0400

.0600

.0800

.1000

.1200

.1400

.1600

.1800

Taking t = 0 we see that for a long term mortgage ( 7 ^ 2 0 years say),
practicable values of R/Lo («s 10.02% per year, say) can only be achieved by
choosing sufficiently small a («£ 8% per year, say). This desirable possibility is
removed if we are restricted to the SM (with a = I) whenever / is moderately large
(> 8% per year, say). For example if / = 18% per year, T— 25 years, we can
compare an SCM with a = 8% per year giving R/Lo = 9.25% per year with an
SM (with a = / = 18% per year) giving R/Lo - 18.20% per year which is
impracticably high. Bounds for a are considered more generally in Section 8.

For the SCM, Table 3 also enables quick calculation of £ ' /£, L'/L, 2/(j8£),
Q/(IL) for any value of t, a, and T (using (20), (21), (22)). Table 3 is also useful
in SCM design, as illustrated in Tables 6 (a), (b), (c) (Section 8).

7. Control and predictability of the real CM functions

From Table 2 we see that for fixed L0,.T the real CM functions are determined
by the dual rates a, /?. The function a is entirely at the designer's disposal,
whereas the function /J normally depends on the money market.
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If the function /? is predictable (e.g. for /? = constant—a fixed rate price level
adjusted mortgage (PLAM)), then by choosing a — fl — y, y arbitrary, we can
effect a CM with S = REy of any desired shape whatsoever, since this shape is
determined by y alone.

However, if the function ft is unpredictable (e.g. for a variable rate mortgage, or
for a fixed nominal rate mortgage in the presence of inflation), this unpredictabil-
ity is inevitably transmitted to the real CM functions. The exact measure of this
effect is shown in Table 4.

TABLE 4. Measures of real CM function predictability

Type

1

2

3

CM

P prescribed

/ prescribed

/Sand/
floating

Formula
fora

p-y

/ - A - Y

p-y

Prescription
fora

P~yP

i-K-y,

Pe~yP

Deviation
Y-Y,

0

\ g "

P'Pe

Deviation
factor
Ey-yP

1

Ex.-x

Examples

PLAM
(Y = 0)

SM

(K = 0)
SCM

(a = const)

We say that a function is 'prescribed' when its values for the duration of the
mortgage are known in advance at t = 0. In order to determine R through (10c)
so that the CM can proceed, a must be prescribed.

Let Yp be the 'target' real repayment increment rate function, and corre-
sponding to a given prescribed a, let

£p = %Ga, (23a,b)

Qp, tp arebe the 'target' & and £ respectively. Note that the target functions yp p p

independent of /?, and are at the designer's disposal. In particular yp (and hence
the shape of Sp) can be chosen arbitrarily as any integrable function here. We will
refer to the target functions yp,^lp, £p collectively as the 'target design'.

Only when /J is predictable can the condition y = yp be achieved, giving 2, the
target shape & . The unpredictability of y, S, and £ are indicated by the
'deviation' y — Yp. and the 'deviation factor'

= Ey_yp (24a,b)

with its very sensitive exponential dependence on y — yp. \e and /?e are forward
estimates (which must be made at t = 0) of the functions X, /? respectively.

Types 1 and 2 are special cases of type 3 when ft, I respectively are frozen.
Type 1 trades the disadvantage of inflexible /? for the advantage of complete

predictability of the real mortgage functions. yp = 0 gives the PLAM. However, if
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yp is negative, then

S(t) - REy^t), = Rexp(Ypt) if yp is constant,

so that the degree of negative tilt can be chosen at will, depending on the
magnitude of yp. For example, if there is doubt that real wages can be sustained,
then a small negative yp (e.g. -(1 or 2)% per year) could be taken to ensure that
mortgage payments will be unlikely to increase as a fraction of wages.

Another possibility would be to inndex the mortgage payments to a wage
index, though as previously mentioned this has the two-edged consequence that
real mortgage repayments would increase or decrease according as real wages
increase or decrease.

Type 2 suffers from the disadvantages both of an inflexible / and also of very
unpredictable values of the real mortgage functions, since the deviation Xe — X is
likely to be large owing to the difficulty of predicting A over the duration of a
mortgage. In particular for the SM, the unsuitable estimate Ae = 0 is effectively
made giving the deviation factor E_x which is likely to produce a large negative
tilt (as previously illustrated in Table 1).

Type 3 allows flexibility of /? at the expense of the deviation factor Ey_y =
Ep_pe. Since this factor has very sensitive exponential dependence on /? — /3e it is
necessary that it should be contained by imposing bounds on /} — fie.

If we impose the condition

| ft — Pe |«£ e where fie, e are constants, (25a)

so that

| Y - Y , l < e , (25b)

then

In particular

e-^V^r)**'7-, (25d)

so that e'T is a measure of the largest possible deviation factor. On the other
hand, assuming that Pe > e, the ratio of largest to smallest possible ft,

/WAnin = (& + < 0 / ( & - < 0 , (26)

can be regarded as a measure of the flexibility in fi, enabling (1 to change in
response to fluctuations in the supply-demand for real money. The dependence of
eeT and Anax/̂ nnn o n e ̂  Pe

 i s illustrated in Table 5 for T = 25 years.
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TABLE 5. Values of P

F. C. Gair

and e'r for T = 25 years for CM.

l i s l

e(%/yr)

fie
(Vyr)

2

3

4

e'T

0

1

1

1

1

0.5

1.66

1.4

1.29

1.133

1

3

2

1.66

1.284

1.5

7

3

2.25

1.455

2

00

5

3

1.649

A choice of pe ~ 3% per year, e = 1 or 1.5% per year would be a reasonable
compromise between keeping eeT sufficiently small, and allowing /?max/Anin
sufficiently large.

As with type 1, a small negative bias can be given to yp to counteract any
possible decrease in real wages. Since a = Be — yp, we see that the CM target
design is determined by a, or equivalently by y . We consider appropriate bounds
for a and yp in Section 8.

When e = 0, type 3 reduces to type 1. Because of this, and because type 2
appears unattractive, we confine further attention to type 3.

In view of the sensitivity of the deviation factor to B — Be (for type 3
mortgages), any necessary changes in B (within the prescribed limits (25a)) should
be controlled by an independent (e.g. government) agency.

8. Design constraints for the CM

The design of any mortgage must be compatible with the borrower's ability to
repay. Hence we now consider the effect of imposing an upper bound function So

on 2-. More precisely, for a given T, under the assumption that B is restricted by
(25a) (i.e. for a type 3 CM), we consider design constraints for the CM to ensure
that

or equivalently

R*ZR0, y<Yo>

for given upper bounds Ro (a constant) and y0 (a given function).

LetL0 =/?0Gamio(0) whereas = /8e + e - Y o .

(27a,b)

(27c,d)

(28a,b)
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Then in view of (10c), (19d), (25a) and the monotonicity of Ga (Table 2), (27) will
be satisfied provided we choose

A>^Aw (29a)
and contain a by

«min^«^«max . (29b >C)

where amax is uniquely determined by

J J r «max = «nun + C, (29d,e)

where c is a constant. Then

< w ( 0 ) < GJO) < Gamio(0), (29f)

or

Since from Table 4, yp = fie — a, the constraints (29b,c) can be rewritten as

Tpmin = Ar ~ "max ̂  Yp ^ Yo ~ £ = Ypmax. (30a,b)

which indicate the equivalent design freedom in yp.
Note that if y0 is chosen constant, then a,^, amax, and y^^ are constants. If

furthermore /L is constant, then so is y. .
Let us now consider one way of choosing £„, namely by relating it to the

borrower's expected real net income rate

% = I0EOe, (31a)

say, by

%=P*e, (31b)

where

p=p0Es, say, (31c)

is the largest fraction of income that the borrower allocates for mortgage
payments. It then follows that

Yo ~ s + ae, (31d,e)

and

^ O ) . (31f)

https://doi.org/10.1017/S0334270000004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004331


72 F. C. Gair [17]

For example, p0 could be chosen in the range 15-35%. s controls the fraction of
payment/income, and could be chosen conservatively small negative (say - 1 %
per year), through to small positive. ae could also be estimated conservatively,
since its value may be difficult to estimate. More simply, y0 could be chosen small
negative (say - 1 % per year), or 0, or small positive (say 1 or 2% per year)
according as $e is expected to have a small decrease, to remain constant or is
confidently expected to increase.

It is clear from (29) that the tightness of the design depends on the ratio
L o / L c w I f L o = £<>,„„. then

a ~ "min = a max '^ =^0> Yp = Yo ~ £> Y o ~ 2 e < Y < Y o -

and no freedom is then possible in the choice of a (or yp). On the other hand, if
Lo/LOmai < 1, then there remains some freedom of choice in a satisfying (29b,c)
(or equivalently in yp satisfying (30a,b)). The smaller Lo/Lo^, the greater is this
degree of freedom. This is illustrated in Tables 6(a), (b), (c) for cases when y0 is
chosen constant. (The values given can be checked using Table 3).

TABLE 6. Dependence of design parameters on L0/L0mo for T = 25 years, p0 = \, f}e = 3% per year,
Y0 constant.

(a) Example 1. y0 - c = yPm = -3% per year (e.g. (y0, e) = (-2,1), (-1,2), or (0,3)% per year) so
that amin = 6% per year, COnlin(0) = 12.95 years.

G*J0) (years)
"max (%/year)
"^(Vyear)
W ' o (years)

1
12.95

6
- 3
3.24

.835
10.81

8
-5

2.70

.709
9.18

10
- 7

2.295

.612
7.92

12
- 9

1.98

(b) Example 2. y0 - e = yp = -\% per year (e.g. (y0, e) = (0,1), (1,2), or (2,3)% per year) so that
«min = 4% per year, GaJoT= 15.80 years.

GaJP) (years)
"max (Vyear)
WVyear)
La/h (years)

1
15.80

4
-1
3.95

.822
12.95

6
-3

3.24

.684
10.81

8
- 5

2.70

.581
9.18

10
- 7

2.295

(c) Example 3. y0 - e = yp = 1 % per year (e.g. (y0, e) = (2,1), (3,2), or (4,3)% per year) so that
«min = 2% per year, G^JO)™^ 19.68 years.

G.JP) (years)
«max (%/year)
7*-. (Vyear)
^oA> (years)

1
19.68

2
1

4.92

.803
15.80

4
-1

3.95

.658
12.95

6
- 3

3.24

.549
10.81

8
- 5

2.70

https://doi.org/10.1017/S0334270000004331 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004331


[18] Design of mortgages 7 3

Regarding the final choice of a to satisfy (29b,c) (in the case LQ/LOmax < 1)
there are a number of possible approaches.

(1) Choose a = amax (most conservatively).
(2) Choose a = amhl (most radically).
(3) Choose a = ^ ( a ^ + amax).
(4) Choose a as an optimal solution—i.e. the solution to some 'appropriate

well-posed' optimization problem. It should be noted here that Conn and Fischer
[4, pages 48-52] considered 'criteria for evaluating mortgage instrument design'.
However, these criteria are only semi-quantitative, and are by no means univer-
sally accepted (see Thygerson [10]). The optimization of a therefore remains an
open question.

In many cases (for example if a^, amax are constants), it will be possible (and
may be desirable for simplicity) to restrict the analysis to the class of SCM's, and
to choose a constant value of the ' parameter' a.

More simply, if the examples in Table 6 are typical of long-term mortgages,
then choosing a to be a constant within the range from 4% per year (radical) to
8% per year (conservative) would be an appropriate rough and ready rule.
However, we should be reminded that these values are very sensitive to #, and e.

9. Conclusions

The following conclusions are based on the preceding analysis of the continu-
ous mortgage (CM). In so far as any mortgage is either a CM, or can be regarded
as a sequence of CMs, they can be applied to any mortgage.

(Cl) In order to make satisfactory mortgage design possible it is necessary that
the real interest rate /} should satisfy a restraint of the form

10 - fie | «£ e (Pe, £ constants), (25a)

for a suitably small e (Section 7).
(C2) The CM offers a continuum of satisfactory mortgage instruments pro-

vided the restraints (25a) on /? and (29) on the target design are imposed (Sections
7,8).

(C3) The actual real payment rate 2. of the CM will deviate from the planned
(target) %p by the 'deviation factor' Ep_Pe which is exponentially dependent on
the deviation ft — fie (Section 7).

(C4) The choice e ~ 1% per year is a practical compromise between allowing /?
to change unrestrictedly to accommodate the supply demand for money in real
terms, and minimizing the design deviation >8 — ySe (c/. Table 5, Section 7).
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(C5) The restraints (29) on the initial loan Lo, and the control function a are
chosen to ensure that 2. has an appropriate upper bound So (27) which can either
be chosen conservatively or related to the borrower's expected real income (31b).

(C6) The mortgage should be indexed, i.e. /? should be assigned rather than the
nominal interest rate /.

This is necessary to ensure (25a) whenever the inflation rate is volatile.
(C7) Changes in the assignment of /? (satisfying (25a)) should only be made

deliberately to reflect changes in real money pressures. Such changes should be
made by an independent (e.g. government) agency.

These changes in /J are expected to be small and infrequent. This is in contrast
with the current common practice of assigning / (= /? + A) and not letting it
accommodate sufficiently or sufficiently rapidly to changes in the inflation rate \ ,
so that /} is fluctuating almost in opposition to the whims of inflation. This can
even result in /3 becoming negative [7, page 91].

(C8) Assigning /? rather than / will also focus attention on the real mortgage
functions, and therefore encourage the acceptance of CM design with a ~ /?,
rather than the unsatisfactory a ~ / (as with the standard mortgage (SM) and
standard variable rate mortgage (SVRM)).

(C9) The possible optimization of the target design, determined by a, remains
an open question (Section 8).

(CIO) The SCM (with a constant) may be sufficiently general for most practical
purposes. A choice of constant a in the range 4-8% per year would be suitable for
a ' typical' long term mortgage (Section 8).

Appendix 1 - Method of repayments

Our continuous model requires that the repayments are made continuously at
the rate Q(t). However, as a practical scheme, the repayments could be made in
lumps at convenient regular intervals of duration A/ (e.g. one month). Allowing
for the continuous charging of interest, the repayment rate Q(t) is then equivalent
to making lumped payments P(rk) at times rk = kbt, k = 1, 2,. . . ,T (= T/At,
assumed an integer) as indicated in both nominal and real terms in Table 7, where

0 At ifa =
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TABLE 7. Equivalent lumped payments.

75

Mortgage
type

GM

CM

SCM

Nominal terms

JTk-t
 Ea(l)

Q(Tk)f"e°»duJo

Real terms
V(Tk) = P(rk)E.x(rk)

r *of̂ *
\-l Ea(')

•'0

If a is prescribed, and /? is assigned (Section 9(C6)), then ^(T^) can be
calculated from Table 7. However, there will be a delay in being able to calculate
the actual payment P(rk) = Ex{Tk)^{Tk) due to the delay in establishing the price
level (and hence X) right up to the current time rk. This can be adequately dealt
with either

(a) by accepting X values slightly in arrears (1-3 months, say) throughout the
mortgage, or

(b) by estimating the current X value, and making any necessary correction to
the next payment (or group of payments).

Appendix 2 - Comparison of effective annual interest rates

Here we illustrate the dependence of the effective annual interest rate on the
compounding frequency m (times/year) and the nominal annual interest rate S.
We note that S = 5,, which corresponds to compounding annually, 5m corre-
sponds to compounding m times/year, whereas Saa — es—\ corresponds to
compounding continuously.

TABLE 8. Values of the m-yearly effective annual interest rate Sm = (1 + S/m)m — 1 (in %).

m
S

1
2
5
10
15
20
30

1

1
2
5

10
15
20
30

2

1.003
2.010
5.063

10.25
15.56
21.00
32.25

4

1.004
2.015
5.095

10.38
15.87
21.55
33.55

12

1.005
2.018
5.116

10.47
16.08
21.94
34.49

52

1.005
2.020
5.124

10.51
16.16
22.09
34.87

365

1.005
2.020
5.127

10.52
16.18
22.13
34.97

00

1.005
2.020
5.127

10.52
16.18
22.14
34.99
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The extent to which Sm approximates Sx can be measured by

00 ^m _

For example, for m = 12 this ratio approximates -rj (1 + ^S), so that monthly
compounding is substantially continuous as compared with annual compounding.
This is also clear from Table 8.
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