RATIONAL APPROXIMATION TO \boldsymbol{x}^{n} II

D. J. NEWMAN AND A. R. REDDY

Introduction. In 1858 Chebyshev showed that x^{n+1} can be approximated uniformly on $[-1,1]$ by polynomials of degree at most n with an error 2^{-n}. Let $0 \leqq \sigma \leqq(n+1) \tan ^{2}(\pi / 2 n+2)$. In 1868 Zolotarev established that $x^{n+1}-\sigma x^{n}$ can be approximated uniformly on $[-1,1]$ by polynomials of degree at most $(n-1)$ with an error $2^{-n}(1+\sigma / n+1)^{n+1}$. It is interesting to note that for the case $\sigma=0$, Zolotarev's result includes Chebyshev's result. Achieser ([1], p. 279) proved the following analogue for rational approximation. Let $a_{0} \neq 0$, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be any given real numbers. Then for every $N>n$,

$$
\min _{x_{i}, \beta_{i}-1 \leq x \leq 1} \max _{-1 \leq 1}\left|\sum_{v=0}^{n} a_{v} 2^{-v} x^{N-v}-\frac{\sum_{i=0}^{N-1} \alpha_{i} x^{i}}{\sum_{i=0}^{n} \beta_{i} x^{i}}\right|=\frac{|\lambda|}{2^{N-1}}
$$

where λ is numerically the smallest root of the polynomial

$$
\left|\begin{array}{lllll}
c_{n}-\lambda & c_{n-1} & \cdots & c_{1} & c_{0} \\
c_{n-1} & c_{n-2}-\lambda & \cdots & c_{0} & 0 \\
\cdot & \cdot & & & \\
\cdot & \cdot & \cdots & & \\
\cdot & \cdot & & & \\
c_{1} & c_{0} & \cdots & -\lambda & 0 \\
c_{0} & 0 & \cdots & 0 & -\lambda
\end{array}\right|
$$

with

$$
c_{m}=\sum_{i=0}^{[m / 2]} a_{m-2 i}\binom{N-m+2 i}{i}, \quad(m=0,1,2,3, \ldots, n) .
$$

Achieser's result fails to give information when one wishes to approximate x^{n+1} on $[-1,1]$ by rational functions of the form $p_{n-1}(x) / g_{m}(x)$, where $m>n$. In this connection Newman [2] has proved the following:

Theorem N. Let s and n be any non-negative integers; we have then
I. There is a $p(x)$ of degree $<n$ and a $q(x)$ of degree $2 s$ such that throughout $[-1,1]$

$$
\begin{equation*}
\left|x^{n}-\frac{p(x)}{q(x)}\right| \leqq 2^{1-n}\binom{s+n-3}{s}^{-1} \tag{1}
\end{equation*}
$$

Received March 21, 1977 and in revised form January 15, 1980.
II. If $p(x)$ is of degree $<n$ and $q(x)$ is of degree $\leqq 2$ s then, somewhere in $[-1,1]$

$$
\begin{equation*}
\left|x^{n}-\frac{p(x)}{q(x)}\right| \geqq 2^{-2-n}\binom{s+n+1}{s}^{-1} \tag{2}
\end{equation*}
$$

The above results of Achieser [1] and Newman [2] fail to provide information regarding the approximation of x^{n} on [0,1] by reciprocals of polynomials of degree n. When n is small and s is large the bounds obtained in (1) and (2) do not match each other.

In Theorems 1 and 2 of this paper we obtain error estimates to x^{n} on $[0,1]$ by reciprocals of polynomials of degree n. In Theorem 3 we obtain a lower estimate to x^{n} on $[0,1]$ by rational functions of the form $p_{l-1}(x) / q_{m}(x)$ for each $0 \leqq l \leqq n-1$, and $m \geqq 0$. In Theorem 4 we obtain an upper estimate to x^{k} on $[0,1]$ by rational functions of the form $x^{k-1} / p_{n}(x)$.

Notation. Let $g(x)=\sum_{k=-\infty}^{\infty} a_{k} x^{k}$. We denote the analytic part of the series as $A(g(x))=\sum_{k=0}^{\infty} c_{k} x^{k}$. As usual $T_{n}(x)$ denotes the Chebyshev polynomial of degree n. Throughout our work we use $\|p(x)\|$ to denote $\max _{-1 \leqq x \leq 1}|p(x)|$.

Lemma 1. [2] Let $p(x)$ be any polynomial of degree $\leqq m$, and $\|p(x)\| \leqq 1$. Then

$$
\left\|A\left(\frac{p(x)}{x^{\prime}}\right)\right\| \leqq 2^{n+2}\binom{N+1}{n+1},
$$

where

$$
N=\left[\frac{m+n}{2}\right] .
$$

Lemma 2. ([4], p. 68) Let $p(x)$ be a polynomial of degree at most n satisfying the assumption that $\max |p(x)| \leqq L$ on the segment $[a, b]$. Then at any point outside the segment we have

$$
|p(x)| \leqq L\left|T_{n}\left(\frac{2 x-a-b}{b-a}\right)\right| .
$$

Theorems.

Theorem 1. For all $n \geqq 4$

$$
\begin{equation*}
\left\|x^{n}-\frac{1}{\sum_{k=0}^{2 n-1}\binom{n+k-1}{k}(1-x)^{k}}\right\|_{L_{\infty}[0,1]} \leqq 16 n^{2}\left(\frac{27}{64}\right)^{n} . \tag{6}
\end{equation*}
$$

Proof. For convenience we prove
(7)

$$
\left\|(1-y)^{n}-\frac{1}{\sum_{k=0}^{2 n^{=1}}\binom{n+k-1}{k} y^{k}}\right\|_{L_{\infty}[0,1]} \leqq 16 n^{2}\left(\frac{27}{64}\right)^{n}
$$

It is well known that

$$
(1-y)^{-n}=\sum_{k=0}^{\infty}\binom{n-1+k}{k} y^{k}
$$

Set

$$
\begin{align*}
& p(y)=\sum_{k=0}^{2 n-1}\binom{n-1+k}{k} y^{k} \tag{8}\\
& q(y)=(1-y)^{-n}-p(y)
\end{align*}
$$

Then for $0 \leqq y \leqq 2 / 3$
(9)

$$
\begin{aligned}
0 & \leqq \frac{1}{p(y)}-(1-y)^{n}=\frac{1}{(1-y)^{-n}-q(y)}-(1-y)^{n} \\
& =\frac{q(y)}{(1-y)^{-n} p(y)}=\frac{\sum_{k=2 n}^{\infty}\binom{n+k-1}{k} y^{k}}{(1-y)^{-n} \sum_{k=0}^{2 n-1}\binom{n+k-1}{k} y^{k}} \\
& \leqq \frac{\binom{3 n-1}{2 n} y^{2 n} \sum_{k=0}^{\infty}\left(\frac{3 n}{2 n+1}\right)^{k} y^{k}}{\binom{2 n-1}{n}^{2} y^{2 n}} \\
& \leqq(2 n+1)\binom{3 n-1}{2 n}\binom{2 n-1}{n}^{-2} .
\end{aligned}
$$

On the other hand, for $2 / 3 \leqq y \leqq 1$,
(10) $\quad 0 \leqq \frac{1}{p(y)}-(1-y)^{n} \leqq \frac{1}{p(y)} \leqq \frac{1}{p(2 / 3)} \leqq \frac{2}{3}\binom{3 n-2}{2 n-1}^{-1}\left(\frac{3}{2}\right)^{2 n}$.

Hence for $0 \leqq y \leqq 1$,

$$
\|(1-y)^{n}-\frac{1}{\sum_{k=0}^{2_{n-1}}\binom{n-1+k}{k} y^{k} \|_{L_{\infty}[0,1]} \leqq 16 n^{2}\left(\frac{27}{64}\right)^{n} ~ . ~}
$$

Our result (7) follows from (8), (9) and (10). (6) follows from (7) by choosing $1-y=x$.

Theorem 2. Let $p(x)$ be any polynomial of degree at most m. Then for all $m \geqq 1$ and $n \geqq 1$,
(11) $\left\|x^{n}-\frac{1}{p(x)}\right\|_{L \propto[0,1]} \geqq 2^{-n-1}(3+2 \sqrt{2})^{-m}$.

Proof. For any given $p(x)$ of degree at most m, let
(12) $\left\|x^{n}-\frac{1}{p(x)}\right\|_{L \infty[0,1]}=\delta$.

From (12), we get on $[1 / 2,1]$
(13) $\frac{1}{p(x)} \geqq x^{n}-\delta \geqq 2^{-n}-\delta$.

Two cases will arise in (13), for if $2^{-n}-\delta \leqq 0$, then
(14) $\delta \geqq 2^{-n}$.

Otherwise

$$
\begin{equation*}
\max _{[1 / 2,1]}|p(x)| \leqq \frac{2^{n}}{1-2^{n} \delta} \tag{15}
\end{equation*}
$$

By applying Lemma 2 to (15) we obtain
(16) $|p(0)| \leqq \max _{[0,1]}|p(x)| \leqq \frac{2^{n}(3+2 \sqrt{2})^{m}}{1-2^{n} \delta}$.

On the other hand we get from (12)
(16') $1 / \delta \leqq|p(0)|$.
We obtain from (16) and (16 ${ }^{\prime}$)
(17) $\quad \delta^{-1} \leqq \frac{2^{n}(3+2 \sqrt{2})^{m}}{1-2^{n} \delta}$.

A simple calculation based on (17) will give us

$$
\begin{equation*}
\delta \geqq 2^{-n-1}(3+2 \sqrt{2})^{-m} \tag{18}
\end{equation*}
$$

(11) follows from (14) and (18).

Theorem 3. Let $p(x)$ and $q(x)$ be any polynomials of degrees at most $l(0 \leqq l \leqq n-1)$ and $m(m \geqq 0)$ respectively. Then
(i) For $l=n-1$
(19) $\left\|x^{n}-\frac{p(x)}{q(x)}\right\|_{L_{\infty}[0,1]} \geqq \frac{m!(2 n)!}{(m+2 n-1)!2^{2 n}(m+n)}$.
(ii) For $0 \leqq l \leqq n-1$, and $m=2 s$ (s is any positive integer),
(20) $\left\|x-\frac{p(x)}{q(x)}\right\|_{L_{\infty}[0,1]} \geqq \frac{(2 s+n-l-1)!(2 l+2)!2^{-2 n-2}}{(2 s+n+l)!(2 s+n)\binom{2 s+2 n-2 l}{2 n-2 l-1}}$.

Proof. Set

$$
\begin{equation*}
\left\|x^{n}-\frac{p(x)}{q(x)}\right\|_{L \propto[0,1]}=\epsilon . \tag{21}
\end{equation*}
$$

Denote

$$
\begin{equation*}
f(x)=x^{n} q(x)-p(x), \quad g(x)=x^{n} q(x) \tag{22}
\end{equation*}
$$

Normalize $f(x)$ such that

$$
\begin{equation*}
\max _{0 \leqq x \leqq 1}|f(x)|=1 \tag{23}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
f^{(l+1)}(x)=g^{(l+1)}(x), \quad g^{(k)}(0)=0, \quad k=1,2, \ldots, l . \tag{24}
\end{equation*}
$$

Now by applying the well known Markov inequality ([5], p. 279) to (23), we get

$$
\begin{equation*}
\max _{l \leqq x \leqq 1}\left|f^{(l+1)}(x)\right| \leqq \frac{2^{2 l+2}(l+1)!(m+n)(m+n+l)!}{(m+n-1-l)!(2 l+2)!} . \tag{25}
\end{equation*}
$$

From (24) one can easily write

$$
\begin{equation*}
g(x)=\int_{0}^{x} \int_{0}^{y_{l}} \ldots \int_{0}^{y_{3}} \int_{0}^{y_{2}} \int_{0}^{y_{1}} f^{(l+1)}(y) d y d y_{1} \ldots d y_{l} \tag{26}
\end{equation*}
$$

Then we obtain from (22), (25) and (26)

$$
\begin{align*}
\left|x^{n} q(x)\right|=|g(x)| & \leqq \frac{x^{l+1}}{(l+1)!} \max _{0 \leqq x \leqq 1}\left|f^{(l+1)}(x)\right| \tag{27}\\
& \leqq \frac{x^{l+1}(m+n+l)!2^{2 l+2}(m+n)}{(m+n-1-l)!(2 l+2)!}
\end{align*}
$$

if $l=n-1$, then we get from (27)

$$
\begin{equation*}
\max _{0 \leqq x \leqq 1}|q(x)| \leqq \frac{(m+2 n-1)!2^{2 n}(m+n)}{m!(2 n)!} . \tag{28}
\end{equation*}
$$

If $0 \leqq l \leqq-2$ then choose $T(x)=x^{n-l-1} q(x)$. It is obvious that $T(x)$ is a polynomial of degree $m+n-l-1$. Now by applying Lemma 1 over the interval $[0,1]$ instead of $[-1,1]$, to $T(x)$ we get along with (27),

$$
\begin{equation*}
\max _{0 \leqq x \leqq 1}|q(x)| \leqq \frac{2^{2 n}(m+n+l)!(m+n)}{(m+n-l-1)!(2 l+2)!}\binom{m+2 n-2 l}{2 n-2 l-1}, \tag{29}
\end{equation*}
$$

From (21) and (23) we get

$$
\begin{equation*}
\epsilon=\max _{0 \leqq x \leqq 1}\left|x^{n}-\frac{p(x)}{q(x)}\right|=\max _{0 \leqq x \leqq 1}\left|\frac{x^{n} q(x)-p(x)}{q(x)}\right| \geqq \frac{1}{\max _{0 \leqq x \leqq 1}|q(x)|} \tag{30}
\end{equation*}
$$

If $l=n-1$, then we get from (28) and (30),
(31) $\quad \epsilon \geqq \frac{m!(2 n)!}{(m+2 n-1)!2^{2 n}(m+n)}$.

If $0 \leqq l \leqq n-2$, then we get from (29) and (30), for $m=2 s$

$$
\begin{equation*}
\epsilon \geqq \frac{(2 s+n+l-1)!(2 l+2)!2^{-2 n-2}}{(2 s+n+l)!(2 s+n)\binom{2 s+2 n-2 l}{2 n-2 l-1}} \tag{32}
\end{equation*}
$$

Hence (19) follows from (31) and (20) follows from (32).
Theorem 4. Let k be a real positive integer satisfying the assumption that $0<m^{-1} 4 k \log m<1$. Then there exists a polynomial $q(x)$ of degree m and a positive constant c satisfying

$$
\begin{equation*}
\left\|x^{k}-\frac{x^{k-1}}{q_{m}(x)}\right\|_{L_{\infty}[0,1]} \leqq c\left(\frac{\log m}{m}\right)^{2 k-2} . \tag{33}
\end{equation*}
$$

Proof. Choose m to be even and $\delta=\left(4 \mathrm{~km}^{-1} \log m\right)^{2}$. Set

$$
\begin{equation*}
q_{m}(x)=\frac{T_{m+1}(1+\delta)-T_{m+1}(1+\delta-(2+\delta) x)}{x T_{m+1}(1+\delta)}, \tag{34}
\end{equation*}
$$

where as usual $T_{m}(x)$ denotes the Chebyshev polynomial of degree m.
It is easy to verify that $q_{m}(x)$ is a polynomial of degree at most m. Then for $0 \leqq x \leqq \delta(2+\delta)^{-1}$,

$$
\begin{align*}
& \left|\begin{array}{l}
\left.x^{k}-\frac{x^{k-1}}{q_{m}(x)} \right\rvert\, \\
=\left\lvert\, x^{k}-\frac{x^{k} T_{m+1}(1+\delta)}{T_{m+1}(1+\delta)-T_{m+1}((1+\delta)-(1+2 \delta) x)}\right.
\end{array}\right| \tag{35}\\
& \leqq x^{k}\left|\frac{T_{m+1}(1+\delta-(1+2 \delta) x)}{T_{m+1}(1+\delta)-T_{m+1}(1+\delta-(1+2 \delta) x)}\right|=x^{k-1} L \\
& \quad \leqq c_{1}\left(\frac{\delta}{2+\delta}\right)^{k-1} \leqq c_{2}\left(\frac{\log m}{m}\right)^{2 k-2}
\end{align*}
$$

since for $0 \leqq x \leqq \delta(2+\delta)^{-1}, L \leqq C_{1}$. For $\delta(2+\delta)^{-1} \leqq x \leqq 1$,

$$
\begin{align*}
& x^{k}\left|\frac{T_{m+1}(1+\delta-(1+2 \delta) x)}{T_{m+1}(1+\delta)-T_{m+1}(1+\delta-(1+2 \delta) x)}\right| \tag{36}\\
& \quad \leqq \frac{1}{T_{m+1}(1+\delta)-1} \leqq\left(\exp \left(\frac{m}{2} \sqrt{ } \delta\right)-1\right)^{-1} \leqq 2 m^{-2 k}
\end{align*}
$$

(33) follows from (35) and (36).

Remarks on Theorems 3 and 4. It is interesting to note that the error
estimates obtained in (33) cannot be improved very much. From (32) we can get with $n=k, l=k-1$, for some constant $c_{3}>0$,

$$
\left\|x^{k}-\frac{p(x)}{q(x)}\right\|_{L \infty[0.1]} \geqq \frac{c_{3}}{m^{2 k}}
$$

Concluding remarks. The approximation to x^{n} on $[0,1]$ by polynomials and rational functions of degree at most n having only non-negative coefficients has been considered in [3].

References

1. N. I. Achieser, Theory of approximation (Frederick Ungar Publishing Co., New York, 1956).
2. D. J. Newman, Rational approximation to x^{n}, J. Approximation Theory 22 (1978), 285-288.
3. D. J. Newman and A. R. Reddy, Rational approximation to x^{n}, Pacific J. Mathematics 67 (1976), 247-250.
4. A. F. Timan, Theory of approximation of functions of a real cariable, International series of monographs in pure and applied mathematics 34 (Macmillan, New York, 1963).
5. E. V. Voronovskaja, The functional method and its applications (English translation), American Math. Society, Providence, RI (1970).

Temple University,
Philadelphia, Pennsylvania;
University of Hyderabad,
Hyderabad, India

