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Cryogenic electron microscopy (Cryo-EM) produces high-resolution 3D images at angstrom levels used 

by researchers across a broad range of fields including structural biology, life Science, materials science, 

nanotechnology, semiconductors, energy, environmental science, and food science. Advancements in 

microscopy hardware enable production of 2D and 3D micrographs with near sub-Angstrom resolution, 

but require exponentially increasing data processing and storage capability. Images generated by cryo-

EM are visually noisy, and each project can produce more than 100,000 images and take weeks to arrive 

at one viewable 3D structure. Many steps in the cryo-EM workflow require manual intervention and 

analysis that can take several weeks and result in errors due to user bias, time waiting and user fatigue. 

Current image processing and data analysis solutions are not well-integrated, requiring extensive manual 

user involvement and long wait times before assessing image quality. Here we describe our development 

of machine learning models for automation of single particle classification during cryo-EM image 

processing with repeatable accuracy levels and integrated into the cryo-EM workflow for easy deployment 

with a new machine learning platform, called CryoDiscovery. 

We tested several Convolution Neural Network (CNN) designs for ML training and inference using a 

private set of over 20,000 images and metadata files. CNN architectural considerations include network 

depth, activation function and hyperparameters. Our CNN processed image data via a layered approach, 

iteratively through repeated transformations (in the “hidden” layers) to extract features before classifying 

them (in the “output” layer) 2-D and 3-D class selection. CNN models were trained using image data 

found in mrcs files, non-image metadata found in star files, and image annotations (ground truth) found 

in selection files using a computer with a dual socket 2
nd

 gen Intel Xeon® CPU (8 cores each) with 4 

NVIDIA 2070-Ti GPUs and 96GB of physical memory. Data preparation was conducted by trained 

researchers prior to ML training, and consisted of image retrieval, resolution normalization, image 

augmentation, and non-image data selection. Verification of our models was done by analyzing maximum 

prediction accuracy with low variance, and false negatives to minimize misclassification of good data, 

and the impact of using non-image data to improve model prediction accuracy. Model boosting was used 

to generate strong prediction algorithms and more consistent results from multiple simple models [1]. 

Three models were trained sequentially and used for inferencing, as shown in Figure 1. The third model 

was used as a tie-breaker when results from the first two models disagreed on the classification of the 

results. 

Fourier Shell Correlation vs. Resolution (1/Aº) [2] was used to verify that the resolution (at threshold) 

meets published results. Secondly, we calculated the Mean Square Error (MSE) of 2D predicted images 

vs. ground truth images to provide a leading indicator of 3D model differences. Lastly, we examine 

Structural Similarity Index (SSIM) for structure level comparison [3 & 4]. Our prediction results reached 

over 90% accuracy with only a 3% false negative rate (Figure 2). These image processing steps (2D 

classification, 3D Init model and classification, & 3D Refinement) took only hours to complete with our 
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system. In order to verify the model with larger datasets, we verified our ML inference results using 

publicly available datasets, such as EMPIAR, and other private and public datasets. 

The objective of this research is to produce a software tool that consistently classifies particles with a 

high-level of accuracy and is easily integrated into the cryo-EM workflow. The approach will be to 

increase the training and validation datasets from a wide range of users and particle types (research labs, 

proteins, etc.), utilize existing convolutional neural network frameworks and develop new techniques 

running experiments to optimize the models, integrate the prototype into established cryo-EM workflows 

for end-to-end processing, and produce a delivery method for easy deployment. The expected results will 

improve accuracy and productivity reducing the time to produce cryo-EM 3D structures from weeks to 

hours. 

 
Figure 1. Boosting allows CryoDiscovery to use multiple models to arrive at more consistent 

classification results. Models are trained sequentially, but only two (d1 and d2) are used for initial 

classification inference. The third model, d3, is used for tie-breaking when d1 and d2 disagree on 

classification results. 

 
Figure 2. Preliminary results from training ML models indicate high accuracy of classification over 60 

training epochs. 
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