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Abstract

In this note we consider branching processes whose behavior depends on a dynamic
random environment, in the sense that we assume that the offspring distributions of
individuals are parametrized, over time, by the realizations of a process describing
the environmental evolution. We study how the variability in time of the environment
modifies the variability of total population by considering two branching processes of
this kind (but subjected to different environments). We also provide conditions on the
random environments in order to stochastically compare their marginal distributions in
the increasing convex sense. Weaker conditions are also provided for comparisons at
every fixed time of the expected values of the two populations.
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1. Preliminaries and utility notions

Branching processes are commonly used in applied probability to model the development of
populations whose members produce offspring according to stochastic laws (see Harris (1989)).
Initially introduced as a tool for specific biological problems, today the range of applications
of branching processes includes molecular and cellular biology, human evolution, medicine,
physics, computer science, and actuarial science (see Rolski et al. (1999), Teich and Saleh
(2000), and Kimmel and Axelrod (2002), among others).

In the literature the classical definition of a standard branching process is the following. A
branching process is a process Z = {Zn, n ∈ N} such that Z0 has a known fixed distribution
and

Zn =
Zn−1∑
j=1

Xj,n, n ≥ 1.

The integer-valued random variables Xj,n, with j, n ∈ N, are usually assumed to be all
independent and identically distributed (i.i.d.) for every fixed n. Typically, the value Zn denotes
the size of a population at the nth generation (or season), while the random variable Xj,n

represents the number of offspring of the j th individual at the nth generation, with j, n ∈ N.
The assumption that the Xj,n are i.i.d. means that individuals reproduce independently of each
other according to some given offspring distribution.

In the literature there are several results about stochastic comparisons for population sizes
of branching processes in the case where the numbers of offspring are independent. In order
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Branching processes in random environments 143

to state two of them, we recall the definition of two well-known stochastic orders (see Shaked
and Shanthikumar (1994) for properties and applications of these orders).

Definition 1.1. Let X and Y be nonnegative random variables. Now, X is said to be smaller
than Y in the usual stochastic order (denoted by X ≤st Y ) if E[u(X)] ≤ E[u(Y )] for all
increasing functions u for which the expectations exist, and X is said to be smaller than Y in
the increasing convex order (denoted by X ≤icx Y ) if E[u(X)] ≤ E[u(Y )] for all increasing
convex functions u for which the expectations exist.

Now consider two standard branching processes Z1 = {Z1,n, n ∈ N} and Z2 = {Z2,n, n ∈
N}, where Z1,0 = Z2,0 = 1 almost surely (a.s.) and

Zi,n =
Zi,n−1∑
j=1

Xi
j,n, n ≥ 1, i = 1, 2.

We can prove that Z1,n ≤st Z2,n for all n ∈ N whenever X1
j,n ≤st X2

j,n for all n ∈ N, and that
Z1,n ≤icx Z2,n for all n ∈ N whenever X1

j,n ≤icx X2
j,n for all n ∈ N. The first of these cases is

easy to prove, while a proof for the second case may be found in Section 8 of Ross (1983).
In this paper, we are interested in generalizations of these results in the case that the offspring

distribution of individuals depends on environmental conditions (see, e.g. Smith and Wilkinson
(1969), Athreya and Karlin (1970), or Jagers and Lu (2002) for examples of applications of
branching processes defined on random environments). In particular, in this paper we focus
on studying how the variability in time of the environment modifies the variability of the total
population.

To this end, it is possible to generalize the setup above to situations in which the distribution
of the numbers of offspring depends on some random geographical or economic environment
�. This can be modeled as follows. Let X ⊆ R, and let θ = {θn ∈ X, n ∈ N ∪ {0}} be any
sequence of values in X. For each θ , let X(θ) be an infinite array of nonnegative integer-valued
random variables parametrized by θ as follows:

X(θ) =

∣∣∣∣∣∣∣
X1,0(θ0) X1,1(θ1) · · · X1,n(θn) · · ·
X2,0(θ0) X2,1(θ1) · · · X2,n(θn) · · ·

...
...

. . .
...

. . .

∣∣∣∣∣∣∣
. (1.1)

We will assume below that, for each fixed θ , the columns of X(θ) are independent, and that,
within each column, the variables are independent. Thus, if we consider only the first n + 1
components of θ (i.e. if we consider the restriction θn = (θ0, θ1, . . . , θn) ∈ Xn+1 ⊆ R

n+1

of θ ) then the restriction, Xn(θn), of X(θ) to the first n + 1 columns is of the form

Xn(θn) = |X0(θ0), X1(θ1), . . . ,Xn(θn)| =

∣∣∣∣∣∣∣
X1,0(θ0) X1,1(θ1) · · · X1,n(θn)

X2,0(θ0) X2,1(θ1) · · · X2,n(θn)
...

...
. . .

...

∣∣∣∣∣∣∣
,

where, given θn, the distribution of the kth column of Xn(θn) depends only on θk , k =
0, 1, . . . , n, and the variables in the column are independent.
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144 F. PELLEREY

Now let θ = (θ0, θ1, . . .) be a sequence of values in X describing the evolution of the
environment, and define, recursively, the stochastic process Z(θ) = {Zn(θ0, . . . , θn), n ∈ N}
by

Z0(θ0) = X1,0(θ0),

Zn(θ0, . . . , θn) =
Zn−1(θ0,...,θn−1)∑

j=1

Xj,n(θn), n ≥ 1.

In order to consider random evolutions of the environment, we can consider a sequence
� = (�0, �1, . . .) of random variables taking values in X. Thus, we will be interested in
stochastic processes Z(�) = {Zn(�0, . . . , �n), n ∈ N} defined by

Z0(�0) = X1,0(�0),

Zn(�0, . . . , �n) =
Zn−1(�0,...,�n−1)∑

j=1

Xj,n(�n), n ≥ 1, (1.2)

where, for every j, k ∈ N, Xj,k(�k) is a random variable such that [Xj,k(�k) | �k = θ ] =st
Xj,k(θ). Here, ‘=st’ denotes equality in law.

In the case of random environments having fixed identical marginal distributions, it has been
shown to be useful when dependence orders are used to compare the strength of positive de-
pendence within two multivariate distributions (see, e.g. Joe (1997), Shaked and Shanthikumar
(1997), or Bäuerle and Rieder (1997)). In this paper, we consider two of these dependence
orders, whose definitions are given here. Recall that a real-valued function φ defined on R

m is
said to be supermodular if φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x, y ∈ R

m. Here, ‘∨’
and ‘∧’ denote, respectively, the componentwise maximum and minimum.

Definition 1.2. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors
with equal marginal distributions. Then

(i) X is said to be smaller than Y in the supermodular order (denoted by X ≤sm Y ) if
E[φ(X)] ≤ E[φ(Y )] for every supermodular function φ for which the expectations exist,

(ii) X is said to be smaller than Y in the concordance order (denoted by X ≤c Y ) if
E[∏n

i=1 φi(Xi)] ≤ E[∏n
i=1 φi(Yi)] for every collection {φ1, φ2, . . . , φn} of nonnegative and

increasing functions for which the expectations exist.

We note that the supermodular order implies the concordance order (which is also called
positive quadrant dependence order), while (except in the case n = 2) the reversed implication
does not hold (see Müller and Scarsini (2000)), and both comparisons are interpreted in the
sense of Y being more positively dependent than X.

We also recall the definition of the usual stochastic order in the multivariate setting, and an
equivalent condition that will be used in Section 2.

Definition 1.3. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-dimensional random
vectors. Then X is said to be smaller than Y in the multivariate stochastic order (denoted by
X ≤st Y ) if E[φ(X)] ≤ E[φ(Y )] for all increasing real-valued functions φ defined on R

n for
which the expectations exist.
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Property 1.1. The random vectors X and Y satisfy X ≤st Y if and only if there exist two
random vectors, X̂ and Ŷ , defined on the same probability space, such that X =st X̂, Y =st Ŷ ,
and X̂ ≤ Ŷ a.s.

Finally, the following monotonicity property will be used in Section 2. In the definition,
the inequality u ≤ v, for vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm), means that
ui ≤ vi for all i = 1, 2, . . . , m.

Definition 1.4. Let {Y (p), p ∈ P ⊆ R
m, m ∈ N} be a finite or infinite family of random

vectors parametrized by an m-dimensional vector of parameters p. Then {Y (p), p ∈ P } is
said to be stochastically increasing in p if Y (p) ≤st Y (p′) for all p ≤ p′.

As we have mentioned above, the purpose of this paper is to study how the variability in
time of the environment influences the variability of the populations. To this end, we consider
two branching processes defined as in (1.2), but subjected to different random environments,
�1 = (�1,0, �1,1, . . .) and �2 = (�2,0, �2,1, . . .). Motivated by the comparison results
mentioned at the beginning of this section, we derive conditions on the environments in
order to ensure that the corresponding populations can be stochastic compared. In particular,
we state conditions under which the supermodular order between environments implies the
increasing convex order of the populations. Also, we identify conditions under which the
concordance order between environments provides comparisons of the expected values of the
corresponding populations at every fixed time.

Throughout the following sections, [X | E] denotes a random element whose distribution
is identical to that of X conditional on the event E, and the terms ‘increasing’ and ‘decreasing’
are used in the nonstrict sense. Also, for notational convenience, we define

∑0
j=1 xj = 0 for

every sequence of real numbers {xj , j ∈ N}.

2. Comparison results

Throughout this and the next section, we will make the following assumptions on the array
X(θ).

Assumption 2.1. (i) The array X(θ) is an infinite array of nonnegative integer-valued random
variables with independent columns of independent variables as described in (1.1).

(ii) For all k = 0, 1, . . . , the kth column of X(θ) is stochastically increasing in θk .

(iii) The variables in each column of X(θ) are stochastically increasing, in the sense that
Xj,k(θk) ≤st Xj+1,k(θk), for all j, k ∈ N and θk ∈ X.

Note that, as a particular case, Assumption 2.1(iii) is satisfied when all the variables in each
column Xk(θk) of X(θ) are i.i.d. for every fixed value of the parameter θk .

It is easy to verify that, under Assumption 2.1, the nth population size, Zn(θ1, . . . , θn),
is stochastically increasing in (θ1, . . . , θn). From this fact, it easily follows that the total
population increases in the usual stochastic order as the environment stochastically increases.
Actually, using Property 1.1 it is also easy to prove that, always underAssumption 2.1, the whole
process Z(�1) is stochastically smaller than the whole process Z(�2) (i.e. E[u(Z(�1))] ≤
E[u(Z(�2))] for all increasing functionals u such that both expectations exist) whenever the
sequence �1 is stochastically smaller than the sequence �2.

However, it is natural to imagine that the size of the population at any generation also depends
on monotonicity and regularity properties of the environmental process. The following theorem
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146 F. PELLEREY

is motivated by this observation, and it describes how dependence properties of the process �

modify, in increasing convex order sense, the distribution of Zn(�1, . . . , �n).

Theorem 2.1. Let X(θ) be an infinite array of nonnegative integer-valued random variables
satisfying Assumption 2.1, and let �1 = (�1,0, �1,1, . . .) and �2 = (�2,0, �2,1, . . .) be se-
quences of random variables taking values in X. Assume that both �1 and �2 are independent
of X(θ). Then, for every n ∈ N, the stochastic inequality

(�1,0, �1,1, . . . , �1,n) ≤sm (�2,0, �2,1, . . . , �2,n)

implies that

Zn(�1,0, �1,1, . . . , �1,n) ≤icx Zn(�2,0, �2,1, . . . , �2,n).

Proof. First of all we will prove by induction that, for every fixed n ∈ N, the function
φ(θ0, . . . , θn) = E[u(Zn(θ0, . . . , θn))] is supermodular in (θ0, . . . , θn) whenever the function
u is increasing and convex.

Since φ(θ0, θ1) is supermodular by Theorem 2.1 in Belzunce et al. (2006), it is enough
to prove that supermodularity of φ(θ0, . . . , θn) in (θ0, . . . , θn) follows from supermodularity
of φ̃(θ0, . . . , θn−1) = E[ũ(Zn−1(θ0, . . . , θn−1))] in (θ0, . . . , θn−1) whenever the function ũ is
increasing and convex. To this end, it suffices to show that φ(θ0, . . . , θn) is supermodular in
any couple (θi, θk), 0 ≤ i < k ≤ n (see, e.g. Kulik (2003)).

Let us first consider (θi, θn) for 0 ≤ i < n. Let (θi, θn) and (θ ′
i , θ

′
n) be any two vectors

defined on X2 such that θi ≤ θ ′
i and θn ≤ θ ′

n. Observe that, since Zn−1(θ1, . . . , θn−1) is
stochastically increasing in (θ1, . . . , θn−1), we can build on the same probability space the
random variables Ẑn−1 and Ẑ′

n−1 such that Ẑn−1 =st Zn−1(θ0, . . . , θi , . . . , θn−1), Ẑ′
n−1 =st

Zn−1(θ0, . . . , θ
′
i , . . . , θn−1), and

Ẑn−1 ≤ Ẑ′
n−1 a.s. (2.1)

Thus,

φ(θ0, . . . , θ
′
i , . . . , θ

′
n) − φ(θ0, . . . , θi , . . . , θ

′
n)

= E

[
E

[
u

(Ẑ′
n−1∑

j=1

Xj,n(θ
′
n)

)
− u

(Ẑn−1∑
j=1

Xj,n(θ
′
n)

) ∣∣∣∣ Ẑ′
n−1, Ẑn−1

]]

= E
[
E
[
g

Ẑ′
n−1

Ẑn−1
(Xn(θ

′
n))

∣∣∣ Ẑ′
n−1, Ẑn−1

]]

≥ E
[
E
[
g

Ẑ′
n−1

Ẑn−1
(Xn(θn))

∣∣∣ Ẑ′
n−1, Ẑn−1

]]

= E

[
E

[
u

(Ẑ′
n−1∑

j=1

Xj,n(θn)

)
− u

(Ẑn−1∑
j=1

Xj,n(θn)

) ∣∣∣∣ Ẑ′
n−1, Ẑn−1

]]

= φ(θ0, . . . , θ
′
i , . . . , θn) − φ(θ0, . . . , θi , . . . , θn),

where the inequality follows from (2.1), Assumption 2.1(ii), and the fact that the function
gm

l (ȳ) = u(
∑m

i=1 yi) − u(
∑l

i=1 yi) is an increasing function of ȳ = {y1, y2, . . .} whenever
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m ≥ l and ȳ is any sequence of nonnegative integers. Thus, clearly, we obtain

φ(θ0, . . . , θ
′
i , . . . , θ

′
n) + φ(θ0, . . . , θi , . . . , θn)

≥ φ(θ0, . . . , θi , . . . , θ
′
n) + φ(θ0, . . . , θ

′
i , . . . , θn),

i.e. φ(θ0, . . . , θn) is supermodular in (θi, θn), 0 ≤ i < n.
Now we consider (θi, θk) for 0 ≤ i < k < n. Observe that the function ũ(z) =

u(
∑z

j=1 yj ) is increasing and convex in z ∈ N whenever u is an increasing and convex
function and ȳ = {y1, y2, . . .} is any increasing sequence of nonnegative integers. Also, recall
that, by the inductive assumption, the function φ̃(θ0, . . . , θn−1) = E[ũ(Zn−1(θ0, . . . , θn−1))]
is supermodular in (θ0, . . . , θn−1) for every increasing and convex function ũ. Moreover,
by Assumption 2.1(iii) we can build on the same probability space the random sequence
X̂n = {X̂j,n, j ∈ N} such that X̂j,n(θn) =st Xj,n(θn) and

X̂j,n(θn) ≤ X̂j+1,n(θn) a.s., (2.2)

for all j, n ∈ N. Thus, letting X̂n(θn) = {X̂j,n(θn), j ∈ N}, we obtain

φ(θ0, . . . , θ
′
i , . . . , θ

′
k, . . . , θn) − φ(θ0, . . . , θi , . . . , θ

′
k, . . . , θn)

= E

[
E

[
u

(Zn−1(θ0,...,θ
′
i ,...,θ

′
k,...,θn)∑

j=1

X̂j,n(θn)

)

− u

(Zn−1(θ0,...,θi ,...,θ
′
k,...,θn)∑

j=1

X̂j,n(θn)

) ∣∣∣∣ X̂n(θn)

]]

= E[E[ũ(Zn−1(θ0, . . . , θ
′
i , . . . , θ

′
k, . . . , θn))

− ũ(Zn−1(θ0, . . . , θi , . . . , θ
′
k, . . . , θn)) | X̂n(θn)]]

≥ E[E[ũ(Zn−1(θ0, . . . , θ
′
i , . . . , θk, . . . , θn))

− ũ(Zn−1(θ0, . . . , θi , . . . , θk, . . . , θn)) | X̂n(θn)]]

= E

[
E

[
u

(Zn−1(θ0,...,θ
′
i ,...,θk,...,θn)∑

j=1

X̂j,n(θn)

)

− u

(Zn−1(θ0,...,θi ,...,θk,...,θn)∑
j=1

X̂j,n(θn)

) ∣∣∣∣ X̂n(θn)

]]

= φ(θ0, . . . , θ
′
i , . . . , θk, . . . , θn) − φ(θ0, . . . , θi , . . . , θk, . . . , θn),

where the inequality follows from remarks above on the function ũ, inequality (2.2), and the
subsequent supermodularity of E[ũ(Zn−1(θ0, . . . , θn−1)) | X̂n(θn)].

Thus, φ(θ0, . . . , θn) is also supermodular in (θi, θk), 0 ≤ i < k < n, and supermodularity
of φ(θ0, . . . , θn) in (θ0, . . . , θn) follows.

Now we get the increasing convex comparison between population sizes Zn(�1,0, �1,1, . . . ,

�1,n) and Zn(�2,0, �2,1, . . . , �2,n) just by observing that, for every fixed increasing and
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convex function u,

E[u(Zn(�1,0, �1,1, . . . , �1,n))] = E[φ(�1,0, �1,1, . . . , �1,n)]
≤ E[φ(�2,0, �2,1, . . . , �2,n)]
= E[u(Zn(�2,0, �2,1, . . . , �2,n))]

holds, where the function φ is defined as above.

Under weaker assumptions, we can also obtain weaker comparisons between the expected
margins of the two branching processes, as stated in the following result.

Theorem 2.2. Let X(θ) satisfy Assumption 2.1(i), and let �1 = (�1,0, �1,1, . . .) and �2 =
(�2,0, �2,1, . . .) be sequences of random variables taking values in X. Assume that both �1
and �2 are independent of X(θ), and that E[X1,k(θk)] is increasing in θk for all k = 0, 1, . . . .
Then, for every n ∈ N, the stochastic inequality

(�1,0, �1,1, . . . , �1,n) ≤c (�2,0, �2,1, . . . , �2,n) (2.3)

implies that

E[Zn(�1,0, �1,1, . . . , �1,n)] ≤ E[Zn(�2,0, �2,1, . . . , �2,n)].
Proof. Let (θ0, . . . , θn) ∈ Xn+1 and note that E[Z(θ0, . . . , θn)] = ∏n

k=0 E[X1,k(θk)] (the
equality trivially comes from the fact that all the random variables Xj,k(θk) are i.i.d. for fixed
values of k). Observing that, by assumption, every E[X1,k(θk)] is increasing in θk , by (2.3) we
obtain

E[Z(�1,0, . . . , �1,n)] = E[E[Zn(�1,0, . . . , �1,n) | (�1,0, . . . , �1,n)]]

= E

[ n∏
k=0

E[X1,k(�1,k)]
]

≤ E

[ n∏
k=0

E[X1,k(�2,k)]
]

= E[E[Zn(�2,0, . . . , �2,n) | (�2,0, . . . , �2,n)]]
= E[Z(�2,0, . . . , �2,n)],

i.e. the assertion.

3. An example of an application

Assume that the random evolutions of the environment are described by a stationary discrete-
time homogeneous Markov process � = {�n, n ∈ N} that is stochastically monotone (i.e. such
that [�2 | �1 = θ ] is stochastically increasing in θ ). Using the criteria described in Section 2,
we can define stochastic bounds for the total population at any generation. In fact, let �1 =
{�1,n, n ∈ N} be a sequence of variables such that �1,n = �1,0 a.s. for all n ∈ N, where �1,0
has the same distribution as �0 (i.e. the stationary marginal distribution of �). Then it is well
known that (�0, �1, . . . , �n) ≤sm (�1,0, �1,1, . . . , �1,n), for every n ∈ N (see, e.g. Tchen
(1980)).
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Now let �2 = {�2,n, n ∈ N} be a sequence of i.i.d. variables such that �2,n =st �0
(i.e. having the same distribution as the stationary marginal distribution of �). It has been shown
(see, e.g. Hu and Pan (2000)) that, in this case, (�2,0, �2,1, . . . , �2,n) ≤sm (�0, �1, . . . , �n)

holds, for every n ∈ N.
Therefore, for the branching process Z(�) defined as in (1.2), and subjected to an underlying

stationary discrete-time homogeneous Markov process �, the following two assertions hold.

Corollary 3.1. Let X(θ) be an infinite array of nonnegative integer-valued random variables
satisfying Assumption 2.1. If X(θ) is independent of � then we obtain

Zn(�2,0, �2,1, . . . , �2,n) ≤icx Zn(�0, �1, . . . , �n) ≤icx Zn(�1,0, �1,1, . . . , �1,n),

for every n ∈ N.

Corollary 3.2. Let X(θ) be an infinite array of nonnegative integer-valued random variables
satisfying Assumption 2.1(i). If E[X1,k(θk)] is increasing in θk , for all k = 0, 1, . . . , and if
X(θ) is independent of �, then

E[Zn(�2,0, �2,1, . . . , �2,n)] ≤ E[Zn(�0, �1, . . . , �n)] ≤ E[Zn(�1,0, �1,1, . . . , �1,n)],
for every n ∈ N.

The interest in these results is due to the fact that the distributions of Zn(�2,0, �2,1, . . . ,

�2,n) and Zn(�1,0, �1,1, . . . , �1,n) can be calculated in closed form by observing that these
two processes are nothing else than a standard branching process and a mixture of standard
branching processes. Note also that if � describes the behavior of the environment and the
columns of X(θ) are stochastically increasing in the parameters θk , then the assumption that �

is stochastically monotone is realistic and common in applicative contexts.
Always assuming that the underlying process � is a stationary discrete-time homogeneous

Markov process, other interesting examples of the application of the results presented in
Section 2 may be provided by considering Theorem 3.2 and Theorem 4.1 of Hu and Pan
(2000).
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