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Hilbert modular forms and p-adic Hodge theory

Takeshi Saito

ABSTRACT

For the p-adic Galois representation associated to a Hilbert modular form, Carayol has
shown that, under a certain assumption, its restriction to the local Galois group at
a finite place not dividing p is compatible with the local Langlands correspondence.
Under the same assumption, we show that the same is true for the places dividing p,
in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also
prove that the monodromy-weight conjecture holds for such representations.

1. Introduction

We consider the p-adic Galois representation associated to a Hilbert modular form. Carayol has
shown that, under assumption (C) of Theorem 2.1, its restriction to the local Galois group at a
finite place not dividing p is compatible with the local Langlands correspondence, see [Car86b].
In this paper, under the same assumption (C), we show that the same is true for the places
dividing p, in the sense of p-adic Hodge theory [Fon94], as is shown for an elliptic modular form
in [Sai97] complemented in [Sai00]. We also prove that the monodromy-weight conjecture holds
for such representations.

We prove the compatibility by comparing the p-adic and ¢-adic representations, for it is
already established for ¢-adic representations [Car86b]. More precisely, we prove it by comparing
the traces of Galois actions and proving the monodromy-weight conjecture. The first task is to
construct the Galois representation in a purely geometric way in terms of étale cohomology
of an analogue of the Kuga—Sato variety and algebraic correspondences acting on it. Then
we apply the comparison theorem of p-adic Hodge theory [Tsu99] and the weight spectral
sequences [Mok93, RZ82] to compute the traces and the monodromy operators in terms of the
reduction modulo p. We obtain the required equality between traces by applying the Lefschetz
trace formula which has the same form for ¢-adic and for crystalline cohomologies. We deduce the
monodromy-weight conjecture from the Weil conjecture and a certain vanishing of global sections.
The last vanishing result is an analogue of the vanishing of the fixed part (Symk_zT gE)SLQ(ZZ)
for k > 2 for the universal elliptic curve E over a modular curve in positive characteristic.

We state the main compatibility result, Theorem 2.2, and the monodromy-weight conjecture,
Theorem 2.4, in §2 after briefly recalling the basic terminology on the ¢-adic representation
associated to a Hilbert modular form. We recall a cohomological construction of the f-adic
representation in §3. After introducing Shimura curves in §4 and recalling their modular
interpretation in §5, we give a geometric construction of the ¢-adic representation in §6. We
extend the geometric construction to semi-stable models in §7 and prove Theorems 2.2 and 2.4
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in §8, admitting Proposition 8.3 on the vanishing. The last §9 is devoted to the proof of
Proposition 8.3.

The strategy of the proof is the same as in the previous work in [Sai97] complemented
in [Sai00]. An essential part of the work consists of understanding the papers [Car86a, Car86b]
of Carayol.

2. The f-adic representation associated to a Hilbert modular form: main results

Let F' be a totally real number field of degree g >1 and I ={oy,...,04} be the set of real
embeddings F'— R. We fix a multiweight

k=(ki,... kg, w)€e NIt (2.1)

satisfying the conditions k; > 2 and k; = w mod 2.

We recall some terminology on the -adic representation associated to a Hilbert modular form.
Let m = @), ™y be a cuspidal automorphic representation of the adele group GLa2(Ar) such that,
for the infinite places, the o;-component 7., is a holomorphic discrete series representation Dy, .
The finite part 7 =@, mp is an admissible representation of the finite adeles GLa(AF),
where A% = F ®7 Z. Let n C Op be the level of .

Let L be a sufficiently large number field of finite degree over @Q such that 7*° admits
an L-structure n7°. The fixed part (WEO)Kl(“) is of dimension 1 and generated by an eigen
newform f. Let n7°=@), mp 1 be the factorization into the tensor product of irreducible
admissible representations w2° of GLy(Fy) over L. To attach an L-rational representation of
the Weil-Deligne group to the L-representation my ; of GLQ(FP), we briefly recall the local
Langlands correspondence.

To an irreducible admissible representation 7 of GLy(F}) defined over L, the local Langlands
correspondence associates an L-rational F-semi-simple representation o(m) of the Weil-Deligne
group ‘W (Fy /Fy,) of degree two. An F-semi-simple representation of the Weil-Deligne group is a
pair of a semi-simple representations (p, V) of the Weil group W (Fy,/F,) with open kernel and
a nilpotent endomorphism N of V satisfying p(c)Np(c)™! = (qp)"(")N. Here gy, is the norm of p
and n: W(F,/F,) — Z is the canonical surjection sending a geometric Frobenius in W (F,/F})
to 1. A representation (p’, N) of the Weil-Deligne group is called unramified if p’ is unramified
and N =0. Among several ways to normalize the local Langlands correspondence, we consider
the so-called Hecke correspondence: 7 +— oy (m) (see [Del73]).

We apply the construction 7 +— o,(7) to the local component 7y, 1, of a cuspidal automorphic
representation and further take the dual representation (7). Thus, we obtain an F-semi-simple
L-rational representation &p,(mp) of the Weil-Deligne group "W (F}, /F},). For a finite place p{n,
the representation 7, is an unramified principal series and hence the L-factor Ly (m, T) € L[T]
is equal to the characteristic polynomial det(1 — Frp,T : 5,(mp)) of the geometric Frobenius F'ry,
and is of degree two.

Let A be a finite place of L and p: Gal(F/F) — GLy(L)) be a continuous representation of
degree two. We say that p is attached to 7 if, at almost all finite place p { n, the representation p
is unramified and we have an equality

det(1 — p(Frp)T) = Ly(x, T). (2.2)

The finite subset of places to be omitted actually consists of those dividing the product nf of
the level n of f and the prime ¢ below .
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The existence is established by an accumulation of works of many people: [BR93, Car86b,
Oht82, RT83, Tay89]. Since it is known to be irreducible by [Tay95, Proposition 3.1], Chebotarev
density implies the uniqueness. In the following, we recall a theorem of Carayol (see [Car86b])
which asserts not only the existence but also gives a precise description of the restriction to the
decomposition group Gal(F, /F}) at finite places p { £ including those dividing the level n.

To an (-adic representation of the local Galois group G, = Gal(F,/Fy), we attach a
representation of the Weil-Deligne group 'W(F,/F}). First we consider the case where p{¢.
Let Ly be a finite extension of Q. Let p: Gg, — GLr, (V) be a continuous ¢-adic representation.
Take a lifting F' € W(F,/F,) of the geometric Frobenius and an isomorphism Z(1) — Z, and
identify them. Let ¢, : I, — Z¢(1) — Z, be the canonical surjection. Then, by the monodromy
theorem of Grothendieck, there is a representation p = (p/, N) of the Weil-Deligne group
"W (Fy/Fy) characterized by the condition

p(F"0) = p/(F"0) exp(te(0)N)

for n € Z and o € I,. The isomorphism class of the representation (p', N) of the Weil-Deligne
group is independent of the choice of the lifting F' or the isomorphism Z,(1) — Z; and is
determined by p.

For an (-adic representation p of Gal(F/F), let p, denote the restriction to Gal(F,/Fy).
Let pp denote the representation of the Weil-Deligne group attached to p, and let ’pg % denote
its F-semi-simplification.

THEOREM 2.1 [Car86b]. Let f be an eigen newform of multiweight k and A|¢ be a finite place

of the number field L. We assume the following condition is satisfied.

C) If the degree g = |F': Q] is even, there exists a finite place v such that the v-factor mwr lies
( gree g !,
in the discrete series.

Then there exists an {-adic representation
p=pin: Gal(F/F) —> L, (V) (2.3)

satisfying the following property.
For a finite place p 1 ¢, there is an isomorphism

P = on(mrp) (2.4)

of representations of the Weil-Deligne group 'W (F, /Fy,).

Remark. Since the right-hand side is L-rational, Theorem 2.1 implies that so is the left-hand
side. For p {n/, the isomorphism means that we have an equality

det(1 — FrpT : Vi) =det(l — FrpT :o5(m)) = Lp(f, T). (2.5)
Hence Vy\ in Theorem 2.1 is the f-adic representation associated to f.

In this paper, we study the case where p divides £. Let p be the characteristic of a finite
place p of F. Let F}, o denote the maximal absolutely unramified subfield in Fj,.

We describe the construction attaching a representation of the Weil-Deligne group to a p-adic
representation of the local Galois group due to Fontaine [Fon94]. Let By be the ring defined by
Fontaine. It is an F/’E)—algebra and it admits a natural action of the absolute Galois group Gg,,
a semi-linear action of the Frobenius ¢ and an action of the monodromy operator N. For an
open subgroup J C I of the inertia, the fixed part BS‘]t is the completion F/’% of a maximal
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unramified extension of Fy, o. In this paper, we neglect the filtration. Let L, be a finite extension
of Q, and consider a continuous p-adic representation Gal(Fy/Fy) — GLp, (V) of finite degree.

Let fﬁ denote the completion of the maximum unramified extension of L,. We choose an
arbitrary factor of Fnr ®q, Ly This is the same thing as fixing an embedding Fg‘ro — fﬁ\r For
an L, representauon G Fp — GL L, (V) of finite degree, we put
_ _ J Tor
D(V) = Dps(V) = | (Ba @ V) @5 o, 1,y Li" (2.6)
JC1

Here J runs through the open subgroups of the inertia subgroup I =1, and — 7 denotes the
J-fixed part. The union |J;;(Bst ® V)7 is an Fn0 ®q, Ly-module since Bl = Félfo. It is known
D(V) <dimg, V. We say V is
D(V)=dimg, V.

that D(V) is an Lnr vector space of finite dimension and dimz
n
potentially semi-stable (pst for short) if we have the equality dim— oy

For a pst-representation V, Fontaine defines a natural representation on D(V') of the Weil-
Deligne group 'W(F}, /Fy) as follows (see [Fon94]). By the Galois actions on By and on V, the
quotient G'r, /J acts on the J-fixed part (Bg ® V)7 for a normal subgroup J C G F,- Passing to
the limit, we obtain an action of Gal(F/F) on the F/',ﬁ] ®q, Ly-module |J;-;(Bst ® V))7. The
kernel is open in the inertia I,. This Galois action is semi-linear with respect to its natural
action on f—’pn?o and the trivial action on L,. We modify it by using the Frobenius ¢ to get a
F/"?\fo ®q, Ly-linear action of the Weil group W (Fy/Fy) as follows.

Let F, denote the residue field of p. Recall that the Weil group W (Fy/Fy) is the inverse
image of the inclusion Z — Gal(F,/Fy) sending 1 to the geometric Frobenius Fry, by the
canonical map Gal(F,/Fy) — Gal(Fp /Fp). Let n: W (F,/F,) — Z be the canonical map and
gp =p’ be the norm of p. Then by letting o € W(Fp/Fp) act on D(V) by (/™) @1)0
o®o, we get a o p.0 0, L,-linear action. Taking the Lnr -component, we obtain an Lnr linear
representation D (V') of the Weil group W (Fy, /Fy). The monodromy operator N on Byt induces an
ff—linear nilpotent operator on D(V) satisfying oN = (qp)”(U)N o since N =pNp. Thus
an f/?-linear action p, r . of the Weil-Deligne group on D(V) is defined.

We apply the construction V +— D(V') (2.6) to the restriction py,, , of the p-adic representa-
tion associated to 7y, to the decomposition group Gal(Fy /F}) for a place p|p. Thus we obtain an
f{?—representation s up of the Weil-Deligne group 'W (F}, /Fy). Our main result is the following.

THEOREM 2.2. Let the assumptions including (C) be the same as in Theorem 2.1 and let i be
a place of L dividing the characteristic of a prime p of F'. Then, the representation py , , of
Gal(Fy /Fy) is potentially semi-stable and there is an isomorphism

Df s~ on(mrp) (2.7)
of representations of the Weil-Deligne group 'W (F, | Fy).

Remark. By the semi-stability of ps, ,, the representation py , , is of degree two. Similarly as

in the f-adic case, Theorem 2.2 implies that the left-hand side ’pJIf Mssp is L-rational.

Since the Dpg-functor of Fontaine does not preserve the integral structure, the author does
not know how to remove the assumption (C) in Theorem 2.2 and in Theorem 2.4 below, by trying
to apply for example the congruence argument as in [Tay89]. A partial result in this direction
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was recently obtained by Kisin (see [Kis08]). More recently, Liu has announced a proof in the
general case [Liu09].

By the argument using a quadratic base change as in [Car86b], we may assume that the finite
place v in the condition (C) is different from p in the case where g = [F' : Q] is even.

We will prove Theorem 2.2 by comparing p-adic cohomology with f-adic cohomology. Let A
be a place of L dividing a prime ¢ # p. By Theorem 2.1 applied to py,» p, it is enough to compare
Prap with pr, . More precisely, we prove the following.

CrAM 2.3. Let the notation be as in Theorem 2.2. Let p|p be a finite place of F' and let \|[¢ # p
and p|p be places of L. Then the following hold.

(i) The representation py,, , is potentially semi-stable.

(ii) For 0 € W ={o € W(F,/F,) | n(c) >0}, we have an equality in some finite extension
of L,

Tr Ipf,)\’p (U) =Tr lpf,,u,p (0’) (28)
(ili) Let Ny and N, be the nilpotent monodromy operators for py r and p, xp respectively.
Then Ny =0 if and only if N, = 0.

By [Sai97, Lemma 1], Theorem 2.2 follows from Claim 2.3. In assertion (ii), we may allow a
finite extension since we already know that the left-hand side is in L.

The assertion (i) is a special case of assertion (ii) where o = 1. We deduce the assertion (iii)
from assertion (ii) together with the monodromy-weight conjecture, Theorem 2.4 below, asserting
that the monodromy filtration coincides with the weight filtration up to a shift.

Let V' be a representation of the Weil-Deligne group 'W,. We assume N 2=0. Then
0CW_1V=Image N CWoV =Ker NC W1V =V is a filtration by subrepresentations of V.
It is called the monodromy filtration. We put G}V (V) =V/ Ker N, Gr}/ (V) = Ker N/Image N
and Gr" (V) =Image N. Then each graded piece is a representation of the Weil group. The
monodromy operator N induces an isomorphism Grl¥(V)(1) — G, (V). For a lifting F of
the geometric Frobenius F'r, the eigenvalues, up to roots of unity, are independent of the choice
of the lifting. We say an algebraic number is pure of weight n if the complex absolute value of its
conjugates are (qp)"/ 2 where qp denotes the norm of p. Then, for an integer n € Z, we say that
the monodromy filtration of V' is pure of weight n, if the eigenvalues of a lifting F of Fr acting
on GTZW for each i are algebraic numbers of weight n + 4.

THEOREM 2.4. Let the notation be as in Claim 2.3. Then the monodromy filtration of the
representations ps xp and s p o{ the WeilfDeligrLe group are pure of Weighﬁ w — 1._ In other
words, the eigenvalues o of py \ » (F) and of pys,, (F') for an arbitrary lifting F' € W (Fy, /Fy) of
the geometric Frobenius is of weight n, where
w—1 if N=0,
n=<w—2 if N#0 and « is the eigenvalue on Ker N, (2.9)
w if N #0 and « is the eigenvalue on Coker N.

Remark. The assertion for the case N #0 is easy since we know the determinant and N :
GV (V) (1) — G} (V) is an isomorphism.

We show that Theorem 2.4 and the assertion Claim 2.3(ii) imply Claim 2.3(iii). In fact, by
assertion (ii), the eigenvalues of a lifting I of Frobenius are the same for A and p. By Theorem 2.4,
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we distinguish the two cases N = 0 and N # 0 by their absolute values. Thus assertion (iii) follows
from assertion (ii) and Theorem 2.4. Thus Theorem 2.2 is reduced to the assertion Claim 2.3(ii)
and Theorem 2.4.

3. Cohomological construction of the £-adic representation

Carayol constructs an ¢-adic representation associated to a Hilbert modular form by decomposing
the étale cohomology H* (M k.7 ) of a Shimura curve with coefficient sheaf . Here, we briefly
recall the construction with a slight modification. Using that construction, we state Claim 3.2,
which implies the main results.

First, we recall the definition of the Shimura curve. We fix a real place 11 of the totally real
field F' and regard F' as a subfield of R C C by 7. If the degree g = [F': Q] is even, we also fix a
finite place v. Let B be a quaternion algebra over F' ramifying exactly at the other real places
{mo, ..., 74} if g=[F:Q] is odd and at {7, ..., 74, 0} if g is even.

Let G = Resp/gB™ denote the Weil restriction to Q of the algebraic group B* over F'. Here
and in the following, we identify algebraic groups over Q and their Q-valued points. Let X be
the G(R)-conjugacy class of the map

h:  C© = GR)=(BegR)*~ GLy(R)xH*- - x HX,
a b\ (3.1)
a+by=1 — <_b a) 1,...,1]) . ‘

The conjugacy class X is naturally identified with the union P!(C) — P!(R) of the upper and lower
half planes. Let M = M (G, X) = (Mk)k be the canonical model of the Shimura variety defined
for G and X. Here and in what follows, we call a projective system of varieties simply a variety,
using a standard abuse of terminology. The Shimura variety M = (M) i is defined over the reflex
field F. Here K runs through the open compact subgroups of G(A>) = (B @r A¥)*. Each Mg
is a proper and smooth, but not necessarily geometrically connected, curve over F. Since the
reciprocity map F* — G?P = F* is the identity, the constant field Fx of My is the abelian
extension of F' corresponding to the compact open subgroup Nrdg,p K C A% *. The projective
system (M )k has a natural right action of the finite adeles G(A>). For g € G(A*°) and open
compact subgroups K, K’ C G(A*) such that g~'Kg C K’, we have g: My — M. The set of
C-valued points Mg (C) are identified with the set of double cosets G(Q)\X x G(A*°)/K. The
action of G(Q) = B* on X is induced by B* — (B g, R)* ~ GLy(R). For g, K, K’ as above,
the map g: Mg (C) — Mg/(C) is induced by (z, g1) — (z, g19).

We will define a smooth Ljy-sheaf F )(\k) on the Shimura curve M. It is the dual of the sheaf
denoted F) in [Car86b]. We prefer the dual because it is related directly to a direct summand of a
cohomology sheaf as we will see in later sections. Let k = (k1, ..., kg, w) € N9+1 be a multiweight
as in (2.1) and put n=n(k) =][;(ki — 1). The algebraic group denoted G¢ in [Mil90, ch. III]
for our group G = B* is the quotient of G by Ker(Ng/q : F* — Q*). Here we identify algebraic
groups over Q and their Q-valued points, and F* C B* denotes the center of G.

In order to define the sheaf F /(\k), we take a number field L C C splitting F’ and B and we fix an
isomorphism B ®q L ~ My(L)!. We identify {r; : F — L} = {r; : F — C} by the inclusion L — C.
We define a representation p = p¥) : G — GL,, defined over L. We have B ®g C =~ My(C)! where
I={7,...,74} is the set of embeddings F' — C. It induces an isomorphism G¢ = GLQ(C. We
define the morphism p = p(k) : G — GL,, to be the composite of this isomorphism with the tensor
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product @, ((Sym" 2 @ det (w=ki)/2) o pr,). Here pr; denotes the contragradient representation
of the ith projection pr;: GL;C — GLac. Since the restriction to the center F* is the
multiplication by N ;/(5 _2), it factors through the quotient p*) : G¢ — GL,,. The representation
p¥) . G — GL, is defined over L.

We define the smooth Ly-sheaf f)(\k) on M to be the Ly-component of the smooth L ® Q-
sheaf V;(p®)) attached to the representation p*) [Mil90, ch. ITI, § 7]. We consider the inductive

limit
k . k
HY (Mg, F) = lim HY (M p, Fie)- (3.2)
K

By the natural action of G(A*°) on the projective system (M, .7-}(?))\)[(, it is a representation of
G(A™) x Gal(F/F). The structure as a birepresentation is described as follows.

LEMMA 3.1. Let k be a multiweight as in (2.1) and let L C C be a number field splitting F
and B. If the degree g = [F': Q] is even, let v be a finite place of F.

Then, we have the following.

(i) Let m be a cuspidal automorphic representation of GLo(Ar) of multiweight k such that
the finite part m° is defined over a number field L. Assume, if the degree g=[F : Q) is
even, that the v-factor my, lies in the discrete series. Then the finite part ©'*° of the
representation ©' of G(A) corresponding to m by the Jacquet—Langlands correspondence
has an L-structure w/2°.

(ii) There exists an isomorphism

k 00
f A

of representations of G(A*) x Gal(F/F) over Ly. Here f' runs through the conjugacy
classes over L, up to scalar multiplication, of eigen newforms of multiweight k, such that,
if g=[F : Q) is even, the v-component m¢ y lies in the discrete series. The extension of L
generated by the Hecke eigenvalues acting on f’ is denoted by L(f") and X' runs finite places
of L(f") above A.

Although the proof of Lemma 3.1 is well-known to specialists, we include it here for the sake
of completeness.

First we define an admissible representation Sy, of G(A*°) over L. We define the automorphic
vector bundle (see [Mil90, ch. ITI]) V(J) associated to a G®-equivariant vector bundle J = J*)
on the compact dual X and its canonical model V(J)r. Then Sy, is defined as the limit of the
spaces of global sections

Sp=T(M ®p L,Q); @ V(J)1) =lim T (Mg ®F L, 2y @ V(J)1). (3.4)

K

We use the notation of [Mil90, ch. ITI] The compact dual X is PL in our case. We define a
G¢-equivariant vector bundle J =7 %) on X in the following way. Let w be the dual of the
tautological quotient bundle on X = PL. We put J*) = w12 @ ®7_, Sym*i~2(C#2). We define
the action of G¢ = GLQ,(CI on J® by giving the action of each factor in the following way.
The first factor GLyc acts on X in the natural way. On w®"1~2 we consider det—(w=k1)/2
times the natural action. For ¢ # 1, the ith factor GLy ¢ acts on X trivially. On Sym*i—2(C®?),
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we consider det™((“=F)/2) times the action induced by the contragradient action of GLs. By
taking the tensor product, we obtain a Gg¢-equivariant bundle J =7 (%), Since the center G{n
acts by the inverse of (w —2)nd power of the product character, it defines a Gg-equivariant
bundle. It is clearly defined over the number field L D F. Hence by [Mil90, Theorem 5.1(a),
ch. III], we obtain a G(A>)-equivariant vector bundle V(J)r, on M. Thus the representation
S, =T(M®L,Q, @ V(J)L) is defined.

By the Jacquet—Langlands correspondence (see [JL70]), we have an isomorphism

Sr oL C~EP 7 (3.5)
f/
as a representation of G(A*) over C where f’ runs cuspidal automorphic representation of
GLy(AY) of multiweight k such that, if [F': Q] is even, the v-component 7 ,, is in the discrete
series.

Attached to the representation p¥): G¢ — GL,, defined over L, we have a local system
F®) =V (p*)) of L-vector spaces on M(C). We construct a Hodge decomposition, which is

a generalization of the Eichler—Shimura isomorphism. Let F k) = ) ®r, C. We regard it as a
local system of R-vector spaces endowed with a ring homomorphism C — End(]—"((ck)). We consider
the filtration on f(ék) @r Oy (c) defined by po hy. It defines on f((ck) a structure of variation of
polarizable R-Hodge structures of weight w — 2.

We put ]—"g) ®c Onc) = VE (=V(p*)) and let o: M(C) — M(C) denote the complex
conjugate. We identify F((Ck) ®r O (c) =V®) g o*Y*) The Hodge filtration Fw*2(V(k) @
a*V®) is given by V(J®) @ o*V(J*)). Hence the Hodge decomposition gives a G(A™)-
equivariant isomorphism

H' (M(C), F&) = H' (M(C), 23 V)
~ HO(M(C), QM ® V(J(k))) ®o*HO(M(C), @} @ V(ITW)).  (3.6)
We have S¢ = HY(M(C), Q}; @ V(J*)) by definition and its complex conjugate o* H°(M(C),
QL @V(J®)) is identified with HO(M(C),Q},; @ V(o*T®)). The G(A®)-equivariant
bundle J®*) on X is isomorphic to its complex conjugate o*J (k) since the GLg-action on the

tautological quotient bundle on P! is defined over R, and the standard representation H* — G Loy
defined over C is GL2(C)-conjugate to its complex conjugate. Thus, we obtain an isomorphism

HY(Mp, F®) @, C~SF? @1 C (3.7)
as a representation of G(A>) over C.

Proof of Lemma 3.1. (i) We show 7%, is defined over L(f"). If g=[F:Q] is odd, we have
G(A™) = GLy(Ay) and mp =, and there is nothing to prove We show the case where g is
even. It is enough to show that each factor 7%, . of 7} = @), 7 . is defined over L(f’). Let n
be the level of f” and K(n) = Ki(n). - K1(n)* C GL2(A%). Then the representation 7y . is given
as the fixed subspace 7 = Wfl(n)t and is defined over L(f’). For t # v, we have 7y . = W}Ct
and it is defined over L(f’). Finally we consider the case t = v. Then by the isomorphism (3.5), we
see that the intertwining space Homg(aooo) (@ 4o 7T},7t,L(f,), St ®r L(f")) is an L(f’)-structure
of ml

(ii) In [Car86b], it is shown that for F), we have a direct sum decomposition of the
form HY(Mp, Fy) ~ @, 7’ @ 5p(n’) over Ly. Since ]—"/Sk) here is the dual of F) there and
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since &p,(7') ~ o (') (—1), we have an isomorphism HY(Mp, ff\k)) ~@. 7 @op(n') over Ly
by Poincaré duality. Since the Gal(F'/F)-representation

k
Vf/))\/ = Homg(Aoo),L(f/))\/ (W}’,L(f’) ®L(f’) L(f,))\/, Hl (MF, f>(\ ))) (38)

gives an L(f’)-structure, the assertion follows. O

Using Lemma 3.1, we reduce Theorems 2.2 and 2.4 to a statement below, Claim 3.2, on
the cohomology. Let K C G(A*) be a sufficiently small open compact subgroup. We take an
integral ideal n of Op, divisible by p and by v if g is even. We assume K to be of the form
K =Ky K". Here Ky, C Ht‘n 2 is an open compact subgroup and K" = Ht)m GL3(Op,) for
some isomorphism [T’ o~ ch‘ M>s(Fy). Let T™ = L[T%; t{n] be the free L-algebra generated

by the Hecke operators Ty for t{n. We consider H* (M K. T /(\k)) as a T"-module. In the following
statement, the letter D denotes Fontaine’s Dpg-functor (2.6).

t)m

Cramm 3.2. Let K C G(A*) be a sufficiently small open compact subgroup and let n C Op be
an integral ideal. We assume K = K, K" as above. Then the following hold.

(i) The representation HY (M p, f,gk)) of G, for ¢ =0, 1,2 is potentially semi-stable.
(i) For c € W* and T € T", we have equalities in a finite extension of L,

2 2
S (1)1 Te(o o TIHU My g, F\)) = Y (~1)4 Te(o o TID(HI (M 5, FSP))). (3.9)

q=0 q=0
(iii) For the representations H' (M f, F(k)) and D(H' (M f, .’F(k))) of the Weil-Deligne group
"W, , their monodromy filtrations are pure of weight w — 1.

We prove that the assertions in Claim 3.2 imply the corresponding assertions (i) and (ii)

in Claim 2.3 and Theorem 2.4. Let f be a normalized eigen new cuspform of multiweight k.
100

By Lemma 3.1, the finite part 77 is defined over L(f). Replacing L by L(f) if necessary, we
may assume L = L(f). Let K be a sufficiently small open compact subgroup satisfying 7r K0
and Claim 3.2. The representations Vy, and Vy,, are direct summands of H'(M K. f)(\k)) and
HY{(M K ]:,Sk) ) by Lemma 3.1 respectively. Hence the assertion Claim 3.2(i) implies the assertion
Claim 2.3(i) and the assertion Claim 3.2(iii) implies Theorem 2.4.

We show that the equality (3.9) of the traces implies the equality (2.8). First we show that
the equality (3.9) for the alternating sum implies the equality for each piece

Te(o o T|HY (M g, F\)) = Tr(o o TID(H My ., ) (3.10)

for ¢ =0, 1, 2. In fact, it is sufficient to show the equality (3.10) for ¢ =0, 2.
We show that H? = H? =0 if k# (2,...,2,w). The fundamental group T (Mg ) of the

geometric fiber is isomorphic to Ker(Nrd B/F K — O}X,) Hence its Lie algebra generates B =
Ker(Trdg/p : B — F) over F. The Lie algebra BY ®@q L ~sly(Ly)Y is also generated by the Lie
algebra of m1 (Mg ) over L. It follows easily from this that the representation of w1 (M )
corresponding to the sheaf F), hence the sheaf itself, is irreducible. Hence its largest geometrically
constant subsheaf and quotient sheaves are zero, unless k= (2, ..., 2, w).

We assume k=(2,...,2,w) and we show the equality (3.10) for ¢=0,2. Then the

sheaf ]:)(\k) is defined by the character N F/(S 2/2 oNrdg/p: G — Gy, and is isomorphic to
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the Tate twist Ly(—(w — 2)/2). It is sufficient to show the assertion for H? since H? ~ H°(—1).
Let Fx =T' (Mg, On, ) be the constant field of M. Then there is an isomorphism

k . — w — 2
HO (M, FL )):%nHO<FK ®F F, LA<2>) (3.11)
of Gal(F/F) x G(A*)-module. On the right-hand side, the Galois action is the natural one.
The action of G(A*) is defined by that induced by its action on anK Spec Fx multiplied by
the character

N(w—2)/2

F/Q ONI‘dB/F

G(A™) A® X JQP s gx —=7X C LY.

From this, we easily deduce the equality (3.10) for ¢ = 0.

We deduce the equality (3.9) from the equality (3.10) for ¢ = 1. By the strong multiplicity one
theorem, the image of the Hecke algebra T™ in End (S j{( ), where Sf denotes the K-fixed part,
is [] £ L(f") where f’ runs the conjugacy class of eigen newforms f’ as in Lemma 3.1 such that
71}[/{ #0. Let e € T™ be an element whose image is the idempotent corresponding to f’ = f. Then

if we put d = dim W}K, we see that e - H' (Mg z, ]—"ik)) is isomorphic to the direct sum &y, (7)®¢
by Lemma 3.1(ii). Hence we have

d-Tr bA,ﬁp((T) =Tr(oo e|H1(MK,F7f)(\k))),

d-Tr pufplc)=Tr(oco G\D(HI(MK,R ]:;(Lk))))

Thus the equality (2.8) follows from (3.9). It is clear that the assertion Claim 3.2(iii) implies
Theorem 2.4. Therefore Theorems 2.2 and 2.4 are reduced to Claim 3.2.

4. Shimura curves and sheaves on them

The construction of the sheaf F /(\k) in the last section is geometric in the sense that it is defined
by using a Barsotti-Tate group on M. However, it is not geometric enough in a stricter sense
that it is not a part of a higher direct image of a proper, smooth family of varieties parametrized
by M. This is due to the fact that M is a so-called exotic model and is not a Shimura variety of
PEL-type (polarization, endomorphism and level structure). However, the argument, by Carayol
in [Car86a|, showing that the Barsotti-Tate group extends to the integral model of M, enables
a geometric construction, in the stricter sense.

To give this geometric construction, we introduce two more Shimura curves M’ and M”
in what follows that are related to each other in the diagram (4.4) below. We show in §5
that the Shimura variety M’ has a modular interpretation and we construct the required sheaf
using the universal family of abelian varieties in §6.1. After extending the family to M” in §6.2,
we complete the construction on M in §6.3.

First, we recall the definition of several Shimura varieties introduced in [Car86a]. We take
an imaginary quadratic field Fy= Q(yv/—a). We fix an embedding Ey C C. We assume that
the prime p splits in Fy and we also fix an embedding Eo C Q, defined by a prime ideal g
of O, above p. We put £ =FEy=F ®q Fo and D =B ®pr E =B ®q Ey. We consider the
reductive group G” = B* xpx E* ~ B* - E* C D*. We keep the abuse of notation to use its
Q-valued points G(Q) to denote an algebraic group G over Q. As in [Car86al, the notation
B* xpx E* does not mean the fiber product but the amalgamate sum. Let G’ be the inverse
image of Q* C F* by the map v =Nrdg,p X Ng/p:G" — F*. We also consider tori T'= E*
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and Tp = Ej. We consider the G'(R)-conjugacy class X’ (respectively G” (R)-conjugacy class X”)
of the morphism

B Cx — G'R)C
G"R)= GL(R)-C* xH*-C* x---x H*-C*,

- -1 (4.1)
z=z++v-1ly — <<_y i{) ®1,1®z‘1,...,1®z_1>.
We also consider morphisms
hgp: C*—=TR)=C*xC*x---xC*, 2z (271,1,...,1), (4.2)

ho: C*—=TH(R)=Cx*, z 2 L

The conjugacy classes X', X” have natural structures of complex manifolds and are isomorphic
to the upper half plane X and to the union of upper and lower half planes X, respectively.
Let M'=M(G', X"), M"=M(G",X"), N =M(T, hg) and Ny = M (Tp, ho) be the canonical
models of the Shimura varieties defined over the reflex fields F, F, F and Ejy, respectively. The
reciprocity map E* — E* is the identity for (T, hg). For an open compact subgroup K C A% *,
the canonical model Ng is the spectrum of the abelian extension Ex corresponding to K by
class field theory. The same thing holds for the canonical model of Nj.

We define morphisms between Shimura curves. We consider the morphism o : G x T — G”
of algebraic groups inducing

B* x EX - G"(Q)C(BRE)“:(be) = b® Ng/p,(e) e (4.3)

on Q-valued points. Since h' =« o (h X hg), it induces a homomorphism of Shimura varieties
M x N — M" defined over E. We let « also denote the morphism M x N — M". The inclusion
G' — G@" induces a natural map M’ — M" of Shimura varieties over E. Let : G x T — Ty be
the morphism inducing Ng /g, o pry: B* x EX — E; on Q-valued points. Since hy = Ng/g, o h,
a homomorphism of Shimura varieties M x N — Ny defined over F is thus induced. We also let
the map M x N — Ny be denoted by 5. We consider the diagram

M<ﬂMXNL>M”<7M’ (4_4)

|

No
of (weakly) canonical models of Shimura varieties over E.

We define an Ljy-sheaf ]-';\/(k) on M" analogous to ]-}(\k). Let k= (k1,..., kg, w) be the
multiweight and put n =n(k) =[[,(ki — 1). The algebraic group denoted G”° in [Mil90, ch. III]
for the group G” is the quotient of G” by Ker(Np/q: F* — Q). Here F'* is regarded as a
subgroup of the center Z(G") = E*. We define a representation of algebraic group p = p"*)
G" — GL,, factoring the quotient G as follows. Recall that we have an isomorphism B ®g C ~
M(C)L. Tt induces an injection G¢ — (GLac x GLac)!. For each i € I, the first component
corresponds to the inclusion Fy — C and the second one corresponds to its complex conjugate.
We define the morphism p” = p”*) : G — GL, to be the composite of the injection with the
tensor product (giel((Symki_2 ® det (W—Fi)/2) opry;). Here pry; denotes the contragradient
representation of the (2,i)th projection (GLac x GLac)! — GLac. Since the restriction to

the subgroup F* C G” is the scalar multiplication by N;/((g _2), it factors through the quotient
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p"®) . G"¢ — GL,. The morphism p” = p"*) : G — GL, is defined over the composite field LFE,.
Replacing L by LFj if necessary, we assume it is defined over L.

We may also define it as follows. Let ps : G” — G be the map defined over Ej induced by the
second projection on (D ®q Ep)* = D* x D* corresponding to the conjugate Ey — Ey. Then
we have p""(%) = p(¥) o p,.

We define the smooth L)-sheaf ]_.;\/(k) on M" to be the Ly-component of the smooth L ® Q-
sheaf V;(p"(®)) attached to the representation p”(*) [Mil90, ch. IIL, § 6]. By restriction, we obtain
a smooth Lj-sheaf ]:;\(k) on M’ attached to the representation p'*) = p"®)|q.

We also define a sheaf F(x)x on Ny. The algebraic group 7§ in [Mil90, ch. III] is Tp itself.
We define a character x : Ty — G,,. Over C, we have Ty ¢ ~ Gy, X Gyy,. Here the first component
corresponds to the inclusion Fy — C and the second one corresponds to its complex conjugate.
We define the morphism x : Ty — G, to be the inverse of the first projection. We also define
the morphism y to be the inverse of the second projection. Their product xo = xx is the inverse
of the norm map yo=N 5/1(@ : Ty — Gy,. They are defined over Fy C L. We define the smooth
Ly-sheaf F(x) on Ny to be the Ly-component of the smooth L ® Qg-sheaf Vy(x) attached to the
representation x. The sheaf F(xo) is defined similarly.

We have p"®) oa = (p®) o pri) x (=201 o Ng/g, oprz2). In other words, we have a
commutative diagram

ax
GxT——G" % T
p(k)oprli ip//(k)XX(g1)(w2)xo(91>(WQ> (4.5)

GL, <~——GL, x G,,

product

of homomorphisms defined over L. By the commutativity of the diagram, we obtain an
isomorphism of smooth Ly-sheaves

prf]:(k) Q ﬁ*}_(Xo)@)(g_l)(w_Q) ~ a*}'”(k) ® I@*f-(x)®(g—1)(w—2) (46)

on M x N. The isomorphism is equivariant with respect to the action of G(A>) x T'(A*>).
The sheaf §*F(xo) together with the action of T'(A*) on it is identified as follows. Let
B1: N — N denote the map induced by Ng /g, . It is sufficient to describe 57 F(xo). If we forget

the action, it is just the Tate twist Ly(—1). The action of T'(A*) is that induced by the natural
action of T'(A*) on N multiplied by the character

N
T(A®) — 212

A x/@—i—x éZX HZZX C L;. (4.7)

Thus the geometric construction of priF (%) is reduced to that of F”*) and that of F (x)-

Before constructing F”(*) geometrically in the next section, we will study its restriction F')
to M’'. We prepare some notations. We consider the representation

b—b—1

oG cG"c D* D* Cc GL(D) (4.8)

defined over Q. Since the algebraic group G’ for G’ is equal to G’ itself, the representation p’ gives
rise to a smooth ¢-adic sheaf F, on M’ for each prime £. It is a smooth sheaf of D ®g Q-modules
of rank one.

Recall that we have an isomorphism

D ®q L=~ (My(L) x Ma(L))". (4.9)
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For each i € I, the first component corresponds to the embedding £y C L C C and the second to
its conjugate. For each i € I, let e; € D ®q L denote the idempotent whose (2, ¢)th component is
((1] 8) and the other components are zero under the isomorphism (4.9). For each finite place A|¢, we
regard the Ly-sheaf 7' ®q, Ly as a D ®g L ~ (Ms(L) x M(L))!-module. For each i € I, let F!
denote the e;-part e;(F’ ®q, Lx). It is easy to see that

Flk) — ®(Symki_2fi/ ® (det F)B(w=k)/2) (4.10)
icl
as a smooth Ly-sheaf on M’ with an action of G'(A*).

In §6.1, we will construct the sheaf 7' and the idempotents e; after recalling a modular
interpretation of M’ in §5. We will also construct F(x) on Ny in a similar way. After that, we
study the relation between M’ and M” and extend F' to M" in §6.2.

5. Modular interpretations of M’ and Ny

We recall the modular interpretation of the Shimura curve M’ on the category of schemes over F
(see [Car86a, 2.3]). In the notation of [Del71, (4.9) and (4.13)], we put L=V = D. Let the
involution * on D = B ®f F be the tensor product of the main involution of B and the conjugate
of E and let ¥ be the non-generate alternating form on D defined by

U(x,y) = Trg/o(vV—aTrdp pry®). (5.1)
Then the group G in [Del71, (4.9)] is G’ here and G in [Del71, (4.13)] is G” here.

We prepare some terminology to formulate a moduli problem for M’. Let Op be a maximal
order in D stable under the involution *. An abelian scheme A over a scheme S is called an
Op-abelian scheme over S when a ring homomorphism m : Op — Endg(A) is given. Let Lie A
denote the locally free Og-module Lie(A/S) = Homey (0*9}4/5, Os), where 0: S — A denotes
the 0-section. When S is a scheme over Spec E, for an Op-abelian scheme A on S, we define
direct summands Lie?A O Lie'"?A of the Op ®7 Og =D ®q Og-module Lie A as follows. The
submodule Lie?A is defined to be the submodule on which the action of Ey C D and that of
FEy C Og are conjugate to each other over Q. Similarly Lie’?A is the submodule where the
action of £ C D and that of £ C Og are the conjugate to each other over F'. They are the same
as the tensor products Lie’?A = Lie A ® Eo®Ey £0, Lie'?A =Lie A ® ese F and hence are direct
summands. If A is an Op-abelian scheme, the dual A* is considered as an Op-abelian scheme
by the composite map

m*:Op — OPP —"=End(A)°PP —— End(A4*)
where opp denotes the opposite ring. A polarization 6 € Hom(A, A*)*™ of an Op-abelian

scheme A is called an Op-polarization if it is Op-linear.

Let K C OIX) C G'(A*) be a sufficiently small compact open subgroup. Take a maximal order
Op of D and Alet OD =0p® y/ CAD ® A*>° be the correspogdingA maximal order. We assume
K C Of. Let T'C D ® A*™ be an Op-lattice satisfying ¢(T", T') C Z. We define a functor M;(, 7

on the category of schemes over E' as follows. For a scheme S over E, let M ;(/ T(S ) be the set of

isomorphism classes of the triples (A, 6, k) consisting of the following data.

(i) An Op-abelian scheme A on S of dimension 4g such that Lie?A = Lie? A and that it is a
locally free Og-module of rank two.
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(ii) An Op-polarization 6§ € Hom(A, A*)%¥™ of A.

(iii) A K-equivalent class k of an Op ® Z-linear isomorphism & : T(A) — T such that there exists
a Z-linear isomorphism &’ making the diagram

. . 10.) . .
T(A) x T(A) S50 Ay x T(ar) —= 2(1)
kxkl K (5.2)
Pxh — 7

commutative.

Only in this section, changing the notation from previous sections, k will denote a level structure
k:T(A) — T as in property (iii) above. It is shown in [Car86a, (2.3), (2.6.2)], that the scheme
M., represents the functor M ;(, e It is easily checked that the functor is independent of the

choice of T up to unique canonical isomorphism. Let A, 7 denote the universal abelian scheme
over M. They form a projective system A = (A, #) s 7

We give a modular interpretation of the action of G'(A*) on M’ and on A. Let g € G'(A>)
and K, K’ C G'(A>®) be sufficiently small open subgroups satisfying ¢ '!Kg C K’. We take a
maximal order Op and let 7' and 7" be a K-stable Op ® Z-lattice and a K'-stable 0% ® 7-
lattice of V @ A® satisfying g7 c 1" and (T, T), (1", T") C Z. The functor

s Mg — Mg, [(A 0, k)] — [(A, 0, K)) (5.3)

is described as follows. (Ind-)étale locally on S, we take an isomorphism k:7 — T'(A) in the
K-equivalent class k and identify T(A) with T by k. Let g,: A — A’ be the isogeny of Op-
abelian schemes such that T(A") = g1" 5T =T(A). The K’-equivalent class k' is the class of
the isomorphism g : 7" — g1 = T(A’). The pair (A’, k') is independent of the choice of k. The
polarization 6’ on A’ is the map making the diagram

vT(g)0
A (9) A

g*l Ttg* (5.4)

A/ > A/*
9/
commutative. Here vt : G'(A®) — Q> is the composite
G/ (A™) Y o pCOX _)AOOX/ZX = Qx. (5.5)
We have the universal Op-isogeny g: A KT gtA K1 g and a commutative diagram.

. 9% .
AK,T — AK’,T’

]

/ !
Mje —— M,

For later use, we will extend the action of G'(A>*) on M’ and on A to a larger
subgroup G C G"(A*). Let G"(R); be the inverse image of GLy(R)TC* C GL2(R)C* by
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the first projection G”(R) — GLy(R)-C* and let G"(Q)+ =G"(Q)NG"(R)L ={ye G"(Q) |
v(7y) is totally positive}. We put

G=G"Q)y G'(A®) c G"(A®). (5.7)
We extend the action of G'(A>) on M’ to an action of G. For g € G”(A*) and open compact
subgroups K’ C G'(A*) and K” C G"(A>) such that g7'K'g C K", let g: M}., — M}, denote
the composite MY, —>M£’,’K,,g,1 2 MY.,,. For ge G and open compact subgroups K}, K C
G'(A*) such that g~ 1 K}g C K}, the map g: M}q — M}{é is defined as follows. We may take an
open compact subgroup K” D K} of G”(A*) such that the canonical map M}(é — My, is
an open immersion (see Lemma 6.1 in §6.2). Then since My, (C) = G'(Q)\G'(A>®) x X'/K' =
G"(Q)+\G x X'/K', the image of g : M;q — M7, is contained in M}(é. Hence the required map
M }q — }% is thus induced. The modular interpretation of the action of G on M’ is described

in the same way as above. The only modification is that v is extended to G as the composite.
64’/>F><+A(<§x N F><+A(<E§></Z>< éFx—i- (5.8)

Similarly, we have a modularAinterpretation for Ny in terms of elliptic curves with complex
multiplication by Op,. Let H C OEO be a sufficiently small open subgroup. We take a fractional
ideal R C Ejy satisfying Trp, /Q(\/TCLRR) CZ. Let R=R® Op be the corresponding ideal. We
define a functor N, ,; 5 on the category of schemes over Ey as follows. For a scheme S over Ej,
let Ny g #(S) be the set of isomorphism classes of the pairs (A, k) of the following data.

(i) An elliptic curve A endowed with a ring homomorphism Op, — Endg(A) such that the
induced homomorphism Op, — Endpg(Lie A) =Og is the same as that defined by
the structure morphism S — Spec Ej.

(ii) An H-equivalent class k of an Op,-isomorphism k:T(A) — T such that there exists a
Z-isomorphism k' making the diagram

T(A) x T(A) Z(1)
kxkl lk’ (5.9)
RxR Z

(z,y)—Trp ,0(vV—azy)
commutative.
It is easily checked that the functor N07 R is independent of the choice of R up to unique
canonical isomorphism.
By the theory of complex multiplication, for a sufficiently small H, the functor N,

0.,k 18
represented by Ny = Spec Ey i where Ey f is the abelian extension corresponding to the open

subgroup H C AOE%X by the isomorphism AOEOOX JE* ~ Gal(E&"/Ey) of class field theory. Similarly
as above, a natural action of Tp(A>) = AZ* on the projective systems N = (Nk)x and on the
universal CM elliptic curve b: Ag = (A, j )7  — N is defined.

6. Geometric constructions

In this section, we construct the sheaves F’, F” etc. geometrically, using the modular
interpretation. In §§6.1, 6.2 and 6.3, we study M’, M" and M, respectively.
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6.1 Geometric construction on M’, Ny

We show that the direct image R'a,Qy of the universal abelian scheme a: A — M’ gives the
sheaf F'. Using it, we construct the sheaf ') on M’ in a purely geometric way. We will also
define geometrically F(x) on Np.

Let K'c OX, T and the universal Op-abelian scheme a g tApy s — My, be as in the

modular interpretation in §5. By the ring homomorphism Op — En&M;{,(AK/ 7), we regard

the direct image R'ar,Q; as a sheaf of D ® Qp-modules for every ¢. It is independent
of the choice of lattice 7. A canonical action of G'(A™) is defined on the system of sheaves
R'a.Q; = (R'ag+Q¢)x. By the modular interpretation, it is easy to see that the sheaf R'a.Qy
is isomorphic to the sheaf F’ with the action of G'(A>°) defined at the end of § 5. We will identify
them in the following.

For each i1 €1, let e; € D ®g L be the idempotent defined at the end of §5. We regard
R'a.Ly as a sheaf of D ®g L-modules. Then e; € D ®g L acts on it as a projector and the
e;-part e; - R'a, L) is isomorphic to F;. Since D is generated by 1+ pOp, we may write each e;
as an L-linear combination of elements in 1 + pOp. Therefore e; is an L-linear combination of
endomorphisms of A over M’ whose degrees are prime to p.

One finds easily an idempotent e(ki) e Q[S4—2] of the group algebra of a symmetric group
such that the e®)-part e(¥i) . ]:i’®w_2 is equal to Sym* ~2F! @ (det F})®(w=ki)/2 The action of the
symmetric group S,,_g on F; ®w=2 is induced by its action on the fiber product a¥ =2 : A¥~2 — M’
over M’ as permutations. One can also find easily a Q-linear combination e! of the multiplications
by prime-to-p integers on A such that e! R'a,Q; = R'a,.Q, and e' R%a,Q, =0 for ¢ # 1.

Taking their product, we obtain an algebraic correspondence ¢’ on the (w — 2)g-fold self-fiber
product A®=2)9 of A — M’ with coefficients in L satisfying the following conditions.

(i) It is an L-linear combination of permutations in &(,,_2) and endomorphisms of AW=2)9 a5
an abelian scheme over M’ whose degrees are prime to p.

(ii) It acts as an idempotent on the cohomology sheaf Rig\™D9L » where a(*=2)9 denotes the

map A®@=29 — M’ We have e/Rqaﬁw_z)ng = F'®) for g = (w—2)g and e’Rqaiw_mgL)\ =0
otherwise.

Similarly, we construct F(x). Let H C OXO, R and the universal Og,-elliptic curve by : A, ;4 —

No,g be as in the modular interpretation in §5. We regard the direct image R'1,Q as a
sheaf of Ey ® Qg-modules by the ring homomorphism Op, — Endy, (4, 5 ), for every £. It

is independent of the choice of lattice R. A canonical action of AOE%X is defined on the system
of sheaves R'0,Q; = (R'b6y.Q¢)y. By the modular interpretation, it is easy to see that the
sheaf R'0,Qy is isomorphic to the sheaf on Ny associated to the inverse of the tautological
representation EX — GLg(E) :t+— t~! x — We will identify them in the following.

Let eg € By ®g L be the idempotent corresponding to the inclusion Eg— L. We regard
RICLO’*L)\ as a sheaf of Ey ®g L-modules. Then eg € Ey ®g L acts on it as a projector and the
ep-part eo-Rlao,*L,\ is isomorphic to F(x). Similarly as above, we may write each ey as
an L-linear combination of elements in 1+ pOp. Therefore ey is an L-linear combination of
endomorphisms of Ag over Ny whose degrees are prime to p. Similarly as above, after modifying
eg if necessary, we also have eg - R1b, Ly =0 for ¢ # 1.
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6.2 Geometric construction on M"”
We extend the geometric construction on M’ to M”. We first study the relation between them.
Recall that G” = B* x px E* and G’ is the inverse image of Q* C F'* by

V:NrdB/F X NE/FlG”—>F><.

For an open compact subgroup K” C G”(A*) and for g € G"(A*>), we put K'9=G'(A*)N
gK"g7'. Recall that g: M}, — MJ., denotes the composition M-, — M;’K,, L M”",. The
double coset G\G" (A®)/K{ = F*T\AY* /A" v(K/) is finite where the subgroup G' C G”(A>)
is defined in (5.7). If ¥ C G"(A) is a complete set of representatives, we have a finite étale
surjection I g : [ s, M Terg — M.

LEMMA 6.1. Let K" C G"(A*) be a compact open subgroup and put K' = K" N G'(A*). Then
for a sufficiently small open subgroup K{ C K" containing K' and for a complete set % of
representatives of the finite set G\G”(AOO)/K{’, the map

H g: H M}(/g — }/(i/ (61)
geX

is an isomorphism.

Proof. Since it is an étale surjection, it is enough to show the map is injective on the C-valued
points. Since ¥ is a complete set of representatives, it is enough to consider each map g. Let
v:G"(A®) — AR /AZ™ denote the map induced by v. We show the following.

SUBLEMMA 6.2. The equality v(K") N (O F/ZX) (K”OO ) implies the injectivity of the
map g: Mp.,(C) — M}, (C).

We prove Lemma 6.1, admitting Sublemma 6.2. Namely, we prove that for a sufficiently small
open subgroup K{ D K’ of K", we have an equality v(K{)N (0;/Z*)=v(K{ NO}). Since
Ng/p(Op) is of finite index in O, the right-hand side (K" N Op) is an open subgroup of the
left-hand side 7(K") N (O /Z*). Hence, for a sufficiently small open subgroup Ky of K"/K' ~
v(K") we have K1 N (05 /Z*) = K1 N (K" N O%). For the corresponding open subgroup K =
K" N v~ Y(Ky), this is nothing but the required equality 7(KY) N (O F/ZX) =v(K!NOy).

We prove Sublemma 6.2. Namely, we assume 7(K”) N (O ~/Z*)=p(K"N OE) and prove
the map g: My, (C) — M}.,(C) is injective. Replacing K" by gK"g™', it is enough to show
that the map My, (C) — M, (C) is injective for K' = K" N G'(A®) = Ker(v: K" — O} /7%).
We consider the commutative diagram of exact sequences.

K"nOj —=K"/K' —= K"/(K"N O} K' —=1

|k |

1 ——=0}/2* — OF /L~ Oy /2*0F

The middle vertical arrow is injective by the definition of K’. By the snake lemma, the equality
(K”) (O F/ZX) = (K" N O}) is equivalent to the injectivity of the right vertical arrow. Since

O/ ZXO; is a subgroup of A%/ AY XFX, we get an exact sequence.

K'/(K' N Of) —= K"/(K" N OF) —= AR AT F* (6.2)
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We consider the following commutative diagram.

M/(C) == @K/ M;(/ (C) _— M”(C) — liLnK” M}é// (C)

| |

Q*\AZ* FR\AR™

The horizontal arrows are injective by [Del71, Variante 1.15.1 and Lemme 1.15.3]. We have
M., (C)=M'(C)/K" and M}.,,(C) = M"(C)/K". From these facts, it is straightforward to show
that the exactness (6.2) implies the injectivity of the canonical map M., (C) — M}.,(C). O

We extend the universal Op-abelian scheme A on M’ to an Op-abelian scheme also denoted
by A on M". Let K" C G"(A™) be a sufficiently small open subgroup. We assume that the map
g: e Miy — My " (6.1) is an isomorphism. We take an Op-lattice T in D ® A>. For each

1

g € X, we have a gOpg™~'-abelian scheme A, + on Mj, since gT is K!-stable. We define an
99 g 9

abelian scheme A K g 0N M }/{,, tobe A K} T on the image of M x We define an O p-multiplication

oao—1
on Ay, p as Op 229, 4Opg~! — EndM/ (A ) on M, x By the action of G described in

K. gT
§ 5, we see that the abelian scheme A K. g 7 1s independent of the choice of representatlves 3. We

also see by the action of G that, for g € G’ ! (AOO) compact open subgroups K{, KJ ¢ G"(A*) and
K-stable Op-lattices Tj satisfying g~ ' K7 g C K, we have an isogeny AKN = g AKN 5 . Thus

we obtain an action of G”(A>) on the projective system A = (A, 4);cn 4 over M" = (MK,,)K//.

On the (w — 2)g-fold self-fiber product A®=29 of A — M” we define an algebraic
correspondence €’ with coefficients in L exactly in the same way as in the case of M’. Then,
it is an L-linear combinations of permutations in &4(,,_9) and endomorphisms of AW=2)9 55 an
abelian scheme over M’ whose degrees are prime to p. Further, it acts as an idempotent on the
cohomology sheaf Rqasﬁw*mgLA where a(*=2)9 denotes the map A®~29 — M’. We have

e/Ran{w—Q)gL)\ — ® Symki*Q(ez‘ . Rla*L)\) ® (det e; - Rla*L)\)®(w7ki)/2

for g = (w —2)g, and e’Rqagw”)gL,\ =0 otherwise. By the modular interpretation of M’ we

see that the K”-equivalent class of the isomorphism 7" — T(A K",T) is well-defined. Passing to
the limit, we obtain an isomorphism D ® A*® — R'a,Q, on @K,, M. The isomorphism is
compatible with the action of G”(A°). On the left-hand side D ® A*°, the group G”(A*>) C
(D ® A*)* acts by the multiplication by the inverse of the main involution: ¢ — #~! x —. Thus
similarly as on M’, we have

e/R(w_Q)gaj(kw_Q)gL)\ — F(k) (6.3)

6.3 Geometric construction on M

We will define an analogue c¢: X — M x N of the Kuga—Sato variety and an algebraic
correspondence e =e) on X with coefficient in L satisfying the following property: it is an
L-linear combination of endomorphisms of X as an abelian scheme over M x N, whose degrees
are prime to p. The algebraic correspondence e acts as an idempotent on the higher direct
image Ric,Qy® L = HW Ric,Ly. The image of the projector e - Ric, Ly is a smooth Ly-sheaf
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isomorphic to
o FB) @ g F ()220 = prr 7k @ g* F(yo) @21 (6.4)

for ¢ =qo= (29 — 1)(w — 2) and is zero otherwise.
We define X to be the fiber product

X =A%) 5,y gr A2 (6.5)

Here a*A9w=2) denotes the base change by «: M x N — M" of the g(w — 2)-fold self fiber

product of A — M”. Similarly ﬁ*Ag(wJ) denotes the base change by 8: M x N — Ny of the
(9 — 1)(w — 2)-fold self fiber product of Ag — Ny. The symbol X denotes the projective system
X =Xy gip)x.mr.p of abelian schemes over M x N = (Mg X Nu)k,H-

Next we define an algebraic correspondence e =e®) on X. We have defined algebraic

correspondences €/ on A9“=2) over M" and ey on Ay over Ny at the end of §§6.2 and 6.1

respectively. Let e(? (9-Dw=2) _ H(gll)(w 2) prieg be the algebraic correspondence on the

(g — 1)(w — 2)nd self fiber product AY V™™ defined as the product of the pull-back of the

algebraic correspondence ey on Ag by projections. We define an algebraic correspondence e on X

as the product of the pull-back of ¢’ by o with the pull-back of e? (g-1)(w=2)

*ol % 6*6?(9—1)(1”_2)

by B. Namely we
put e=« . Then it satisfies the required property stated at (6.4).

Let H C A% be a sufficiently small open compact subgroup. Let m = nOg be a sufficiently
divisible integral ideal of Op. We assume H = H™ - Hy, is the product of the prime-to-m
component H™ =[], Op, with the m-primary component Hy,. Let Tj" = L[Ps; s{m] be the
free L-algebra generated by the class Ps of the inverse of prime element for s{fm. We consider
HY Xy gip®F E, L)) as a T" x Tf"-module and HO(NHE, F(xo0)) as a T§*-module.

Applying the Leray spectral sequence to ¢: X KHTR ™ My X Ny, we obtain the following
lemma.

LEMMA 6.3. Let K C G(AOO) and H C AR™ be sufficiently small open compact subgroups
and let TCV ®@A>® and R C Ey® A be an OD lattice and an OEO -lattice respectively. Let
X = XKH’T’R be the analogue of the Kuga—Sato variety (6.5). Then there is an algebraic
correspondence e on X with coefficients in L satisfying the following properties.

(i) There exists elements a; € L, permutations 7; € Gg(,,—9) of the first g(w — 2)-factors in X
and endomorphisms @; € Endj; X of degrees prime to p such that

e= Z a;TiP;- (6.6)
(ii) For each finite place A of L, the action of e on H(X . ;7 5 OF E, L)) is a projector. Put
go = (29 — 1)(w — 2). Then, there is an isomorphism
e HY Xy yp s 8 E, L))
~ HI® (M ®p F, F) @g, H'(Ng ®5 E, F(d ")) (6.7)

The E'somorphism is compatible with the actions of the absolute Galois group Gg =
Gal(E/E) and of the Hecke algebra T™ & T".

Using Lemma 6.3, we state Claim 6.4, in terms of X and e, that implies Claim 3.2 and hence
Theorems 2.2 and 2.4. Recall that we fixed an isomorphism FEy 4, — Q). Let q be the place of F
dividing p and qq. The local field Eq is canonically isomorphic to F},. We identify Fy, = E4 by
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the canonical isomorphism. Since we want to prove the assertions on the action of Galois group
Gal(Fy/F}y), it is enough to consider the action of Gal(Fq/Eq), induced by the isomorphism.

CLAIM 6.4. We keep the notation in Claim 3.2. Let K C G(A*) and H C A%”™ be sufficiently
small open compact subgroups. Let X =X denote the analogue of the Kuga—Sato
variety (6.5). Then, the following hold.

K,HT,R

(i) The p-adic representation HY(X ®p Eq,Qp) of Gp, = Gal(Eq/Eq4) is potentially semi-
stable for all q.

(i) Let 0 e Wt ={0 € W(Eq/Eq)|n(c) >0}, T €T, PeT{*, 7€ Syy_2) and let ¢: X —
X be an endomorphism of degree prime to p. Then for the composite '=T o RoT o
as an algebraic correspondence, we have an equality in Q

> (-1)! Tr(o o T|HYX ®p Eq, Q) = > (~1)?Tr(0 o T|D(HY(X ®p Eq, Qp))). (6.8)

(iii) Let e be the algebraic correspondence in Lemma 6.3 and let plp be a ﬁni_te place of
L > Ep. Then the monodromy filtration of the representations e - H1(X ®g Eq, L)) and
D(e-HY(X ®g Eq, L,,)) of the Weil-Deligne group 'W(Eq/Eq) are pure of weight g.

We deduce each assertion in Claim 3.2 from the corresponding assertion in Claim 6.4. Since
we identify F}, = Eq, it is sufficient to consider the representations of the Weil-Deligne group
'W(Eq/Eq). The representation Hq(MEq,}')(\k)) is a direct summand of e- Hq+q0(XEq,LA)
((9 —1)(w —2)) by Lemma 6.3. Therefore the assertions (i) and (iii) in Claim 3.2 follows from
the assertions (i) and (iii) in Claim 6.4 respectively. We deduce the equality (3.9) from the
equality (6.8). By the definition of F(xo) given in the middle of §4, we find easily an element
e® € Ti™ acting as a projector H'(Ny ®p E, ]-'(X(()gfl)(wq))) — L)x(—=(g — 1)(w — 2)). Thus by
Lemma 6.3, there is an isomorphism

¢®oe HY(X ko ®@p B, Ly) — H"0 (Mg @p F, F) (= (g — 1) (w — 2)) (6.9)

compatible with the actions of the Galois group Gg = Gal(E/E) and of the Hecke algebra T™.
Hence the equality (6.8) implies the equality (3.9). Thus Theorems 2.2 and 2.4, are reduced to
Claim 6.4.

We may deduce the assertion Claim 6.4(i) using alterations [dJo96]. We will give a proof
without using alterations by constructing a semi-stable model of X.

For later use, we describe the Hecke operators Ty € T" and P, € T§" for primes t{n of Op
and s{m of O respectively. Write X = X . ,, #+ 70 and M x N = Mg x Ny for short. For v, it
is defined as Ty = pi1« © ¢* o p5 where p1, p2, ¢ are as in the following diagram.

p1 A q L. P2
X XKg,H,T,R — XKg,H,gT,R — X

i l i l (6.10)

MXN<LMK9XNH:MK9XNHL>MXN

In the diagram, g=g. € G(A*®) is an element whose t-component is (”81 ?) and other

components are 1 and K, =K N gKg~!'. The map p; is induced by the inclusion K, — K, the
map p2 = g4 is induced by g and the left and right squares are cartesian. The map ¢ is an isogeny
corresponding to the inclusion T" — ¢7T'.
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Similarly for s, the operator is defined as Ps = ¢* o p5 where py, ¢ are as in the following
diagram.

~ ~ p2
X XK,H,gT,NE/EOgR —X

T

MxN=———=MxN—2" > MxN

In the diagram, g € A% denotes an element whose s-component is the inverse of a prime element
75+ and the other components are 1. The map ps = g, is induced by g and the right square is

cartesian. The map ¢ is an isogeny corresponding to the inclusions ' — g7" and R — Ng/g,g - R.

7. Semi-stable model

In the last section, we defined an analogue of the Kuga—Sato variety as an abelian scheme on a
Shimura curve. The goal of this section, Lemma 7.1, is to extend it to a semi-stable model of
the Shimura curve.

We introduce some terminology. Let K, H, T , R be as in the last section. We assume that each
component of the generic fiber Mg @ F is of genus greater than 1. Then by the stable reduction
theorem for curves [DMG69], for a sufficiently large finite extension V' of the maximal unramified
extension f{;} , the base change My = Mg ®p V admits a semi-stable model (not necessarily
connected) over the integer ring Oy . We do not need to go to the maximal unramified extension
to get a semi-stable model. However, since we will work over the maximal unramified extension in
the following sections, we state the result as such already in this section. We take the minimal
one among the semi-stable models over Oy and denote it by Mg o,,. Recall that we identified the
local field £y with Fj,. From now on, we consider V' as an extension of E4 by this identification.
Since Ny is the disjoint union of the spectrum of finite extensions of F, the base change
(Mg xp Ng) ®@g V also admit semi-stable models over the integer ring Oy . We also take the
minimal one among them and name it (Mg X5 Np)o, . We claim the following.

LEMMA 7.1. Let K, H and V' be as above.

(i) Letge G(A®),he A% and let K; C gKg¢~', Hy C H be open compact subgroups. Assume
that the groups are of the form K =K,KP?, g7 'K19=K,(g~'K19)®, H=HqH% and
H = Hquq. Then the pull-back of the map (g, h)s: Mg, Xp Npgy — Mg xp Ng to 'V
extends uniquely to a finite étale morphism (g, h). : (Mg, Xr Nu,)o, — (Mrk X Nu)o,
of the minimal semi-stable model.

(ii) Let T, R be as above. Then the pull-back of the abelian scheme XK,H,T,R — Mg xrp Ny

to the base extension (Mg xr Niy) ®g V' extends uniquely to an abelian scheme over a
semi-stable model.

(iii) Let Ty, Ry be sublattices in T and R in assertion (ii), respectively. Assume that their
p-components are the same. Then the pull-back of the isogeny X KHT R X K. Ry O
My xp Ny to the base extension (M Xp Ni) ®p V' extends uniquely to an étale isogeny
over a semi-stable model.

Proof. (i) We may assume g =1 and h = 1. Further we may assume H = H;. In fact, the map

Np, — Npg is unramified at g by the assumption that their g-components are the same by class
field theory. Further, it is sufficient to show that the map Mg, — Mg extends to a finite étale
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morphism of minimal semi-stable models Mg, o, — Mg o, . In fact, then the fiber product
Mk, oy X Mo, (Mg x Ni)o, is a semi-stable model of (Mg, x Np)y and does not have a
(—1)-curve. Hence it is the minimal semi-stable model (Mg, X Ng)o, and (Mg, X Ng)o, —
(MK X NH)OV is finite étale.

In the case where the p-components of Ky = K1 are GL2(Op,), it is shown in [Car86a,
Propositions 6.1, 6.2] that the canonical map M, F, — M F, extends to a finite étale morphism
Mg, ,0r, = MK,0p, of proper, smooth models. We consider the general case. Let K D K, K1 D
K1 be the groups obtained by replacing their p-components K, = K1 by GL2(Or,). First,
we show that the canonical map Mgy — My, extends to the minimal semi-stable model
Mg oy — Mg o, - In fact, it extends on a suitable blow-up. However, the exceptional divisors
are contracted to points in the image and hence the map is defined on the semi-stable model.
We consider the fiber product Mg, o, X, oy Mg o, . It is a semi-stable model of Mg, v and

does not have a (—1)-curve. Hence it is minimal and the assertion is proved.
(ii) We assume there exists an open compact subgroup K” C G”(A*) containing K" > KH
and satisfying the following conditions (a) and (b).

(a) The open subgroup K " satisfies the conclusion of Lemma 6.1. Namely for a complete set &
of representatives G\G"(A>)/K", the map Ilg: ], M}q} — M7}, is an isomorphism.

To state the other condition (b), we identify the group G'(Q,). By the assumption that Ey splits
at p, we have an isomorphism

G'(Qy) =———= Q) x (B®q Q) —— Q) x GLa(Fy) x (B&r F})*
ml mi (7.1)
G"(Qp) == (F ® Q)" x (B ®q Qy)*

(see [Car86a, (2.6.3)]). Here F} denote the product [1;/p,prp Fp- The second condition is the
following.

(b) The intersection K’ = K" N G'(A*®) is of the form K'=7Z; x GL2(OF,) x K,P x K'P for

some choice of isomorphism as above.

Here K,¥ denotes [Tpp2p K- 1t is shown in [Car86a, Proposition 5.4] using a modular
interpretation that the condition (b) implies that M; . has good reduction over Op, and the
abelian scheme A K} g O1 the generic fiber extends to a (unique) proper, smooth model M; 105,
We will recall this modular interpretation in §9. Hence by the condition (a), M}, has also
good reduction over O, and the abelian scheme A K extends to the proper, smooth model

%,,70Eq. By the same argument as in the proof of (i), the map (Mg x Ng)v — My, , extends
uniquely to a map (Mg X Ng)o — M ;/(H70Eq ® Oy . Hence we obtain the extension of an abelian

scheme X by taking the pull-back.

K,HT R
(iii) Since (Mg xr Ng)o, is normal, an endomorphism on the generic fiber extends to the
integral model by a theorem of Grothendieck (see [Gro66]). O

In the proof of assertion (iii), we could also use the modular interpretation recalled in §9.
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8. Proof of Theorems 2.2 and 2.4

We prove Theorems 2.2 and 2.4 by showing the assertions in Claim 6.4. The argument is the same
as in [Sai97] complemented in [Sai00]. Let the notation be as in Claim 6.4. We fix sufficiently
small open compact subgroups K C G(A*), H C AOOX, an Op-lattice T and OEO lattice R. To
simplify the notation, we will write M x N for My x Ny and X for X KHT.R Recall that we
identify Fy = F}.

We prove that the p-adic representation H4(X ®p Eq, Qp) of the Galois group Gal(E’q/Eq)
is potentially semi-stable. Since we have a semi-stable model Xo,, of the base change Xy to an
extension V' of Ey by Lemma 7.1, we may apply the Cg-conjecture proved by Tsuji [Tsu99).

We compute D(HY(X ®p Eq,Q,)) in terms of the minimal semi-stable model Xo of X
defined in Lemma 7.1. Let Y denote the closed fiber of the minimal semi-stable model X with
the natural log structure. Then further by [Tsu99], we have a canonical isomorphism

D(H*(X ®g Eq, Qp)) 2 Hijy o1 (Y/W) ®2, Qp. (8.1)

It follows from the functoriality of the comparison isomorphism for finite étale morphism and from
the compatibility with the Poincaré duality that the isomorphism is compatible with the action
of endomorphisms and permutations that appeared in Claim 6.4. We define Hecke operators
on the log crystalline cohomology and compare them with those on the left-hand side of (8.1)
induced by the Hecke operators on the étale cohomology. Let n C O and m C O be sufficiently
divisible ideals as in §6.3. Let t{n be a prime ideal of Op. Then the projections p1, p2 and the
isogeny ¢ described at (6.10) is extended to a finite étale morphism of the minimal semi-stable
model by Lemma 7.1. On log crystalline cohomology, we define the Hecke operator T as the
composite pi1s o ¢* o p5. Similarly we define the Hecke operator P for a prime ideal s{m of Op
as the composite ¢* o p3, using the description at (6.11) . Then it follows from the functoriality
that the isomorphism is compatible with the Hecke operators thus defined.

We define the Galois action on the log crystalline cohomology and compare it with that
on the left-hand side defined in §2. We may and do assume that the finite extension V
of Eg" is the completion of a Galois extension of Ey. We have a natural action of the Galois
group Gg, = Gal(FEq/Eq) on V and hence on the base change My . Since the minimal semi-
stable model is unique, the action of G, on the generic fiber My extends to the minimal
semi-stable model Mg, . Further it uniquely extends to the abelian scheme X, . It induces
a semi-linear action of the Weil group Wy on the log crystalline cohomology. By modifying
the action of o € Wg,_ by ©™?) oo as in §2 and together with the monodromy operator N, we
define a linear action of the Weil-Deligne group W};q on the log crystalline cohomology. We verify
the compatibility of the isomorphism with the action of Weil-Deligne group defined above. By
transport of the structure, it is compatible with the semi-linear action of the Weil group before
modification. Since the comparison isomorphism is compatible with the action of F' and N, the
compatibility is established.

Therefore, Claim 6.4 is reduced to the following.
CraM 8.1. Let the notation be as in Claim 6.4. Then, the following holds.

(i) Let ce Wr={oceW(Eq/Eq)|n(c) >0}, T€T, RET",7€&? , and let ¢¥: X — X
be an endomorphism of degree prime to p. Then for the composite ' =T o Ro 701 as an
algebraic correspondence, we have an equality in Q

S (1) Tr(o o TIHUX @ B, Q) = S (=) Te(o o THE . (V/W)).  (8.2)
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(ii) Let e be the algebraic correspondence in Lemma 6.3 and let A{p, u|p be finite places of
L > Ey. Then the monodromy filtration of the representations e - HY(X ®p Eq, L)) and

(Hff)g erys Y/W) ® EE) of the Weil-Deligne group 'W (Eq/Eq) are pure of weight g.

In assertion (ii), the tensor product is taken with respect to the map W = OEnr - E/g\fo &

F/’pr% — ff? where the last map was fixed in §2. We prove Claim 8.1 by studying the weight
spectral sequences for ¢ # p and for p.

We prove assertion (i). It suffices to apply Lemma 2 of [Sai97]. However, since we will use the
weight spectral sequences in the proof of assertion (ii), we give more details. First, we compute
the ¢-adic side. We consider the weight spectral sequence [RZ82, 11194]

= @ BT, Q) = Y (X, Q) (8:3)

r>max(0,—1%)

for the semi-stable model X, . Here Y ® denotes the disjoint union of i + 1 by 7 + 1 intersections
of the irreducible components of the closed fiber Y = X ®¢ Fq. The schemes V¥ are projective
and smooth over Fq. We have Y9 = () for i > 1 since the semi-stable model X is proper smooth
over the semi-stable model (M x N)o of a curve. The spectral sequence degenerates at Fs-terms
as a consequence of the Weil conjecture.

Since the action of the Galois group Gg, extends to the semi-stable model Xo,,, the spectral
sequence is compatible with its action by transport of structure. It is also compatible with the
action of Hecke operators, endomorphisms and permutations by the same argument as in the case
of the p-adic comparison isomorphism (8.1). Hence, from the spectral sequence, we immediately
deduce that the left-hand side of the equality (8.2) is equal to

Z Z 2" Z 1)4 Tr(o o T[HY(Y®), Q) (8.4)

where ¢4 denotes the norm of q.

Let 0 € W, be an element in the Weil group with n(c)>0. The action of o on Y@ s
compatible Wlth the action on the base field ]F and hence is not geometric. Thus, in order to
apply the Lefschetz trace formula, we modify it and define an endomorphism ogeom of Y@ to be
Ogeom = 0 © (abs. Frob.)[FQ’FP]'”(U) for each i. It is a geometric endomorphism of a scheme Y@ over
the base field F q- Since the absolute Frobenius acts trivially on étale cohomology H q(Y(i), Qp),
we have o, = Ogeoms @S an operator acting on it.

Let I', denote the composite of ogeom With I" as an algebraic correspondence and let (I'y, A) be
the intersection number. We apply the Lefschetz trace formula to a proper, smooth scheme y®
and an algebraic correspondence I',. Then we obtain

D (1)1 Tr(o o TIHUY W, Q) = (s, A). (8.5)
q

Next we compute the p-adic side. For log crystalline cohomology, we also have the weight
spectral sequence (see [Mok93])

B = P  HGEEUW)(—r) = HE L (Y/W). (8.6)

log crys
r>max(0,—1)

Here the Tate twist (—r) means that we replace the Frobenius ¢ by p"¢. Since the maps
involved in the definitions of the Hecke operators are finite étale, by the same argument as
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in the f-adic case, we see that the spectral sequence is compatible with the action of Hecke
operators, endomorphisms and permutations. It is also compatible with the semi-linear action
of the Galois group and the Frobenius operator. Hence by modifying it in the same way on
both sides, it is also compatible with the linear action of the Weil group. For ¢ € W, the
modified action o, o F@FaFpl g the same as the action of the geometric endomorphism
Tgeom = 0 © (abs. Frob.)[Faifel () Hence the right-hand side of (8.2) is equal to

STty ”"”Z 1)? Tr(0geoms © T H s (Y /W) (8.7)
7 r=0

where ¢4 denotes the norm of g. Agaln by the Lefschetz trace formula (see [GM87, Gro85]),
we have
S (=) Tr(0geom 0 T|Hiyy (YO /W) = (T, A). (8.8)
q
Thus both sides give the same answer and the equality (8.2) is proved.

Finally we prove assertion (ii), the monodromy-weight conjecture. The algebraic
correspondence e in Lemma 6.3 acts as an projector on the spectral sequences. We consider
their e-parts. We compute the Fi-terms of the e-parts. Let C' denote the closed fiber of the
semi-stable model (M x N)o. Then the disjoint union C© of the components is the same as
the normalization of C' and the disjoint union C')) of the their intersections is the singular locus
of C. To describe the Ej-terms, we introduce some sheaves on C(9).

For a place A|¢ of L, we define a smooth Ly-sheaf ff\k) to be ®,(Sym"?®
det(=F/2)(¢; R'a, Ly) @ (egR by L)®®@=2@=1 Tt is the restriction of the extension of .’F/gk) on
(k)
R! axOcrys Qw Lnr and R'b, Ocrys Qw Lnr where the tensor product is taken as remarked after
Claim 8.1. We regard them as an Op ®Z L-module and an Op, ®z L-module respectively. Then
we define E,Sk) to be

®(Symki_2 ® det(w_k")m)(eiRla*Ocrys Qw f}?) @ (eoR b Oerys @w f}?)(@(w_”(g_l). (8.9)

)

M to Mop. Slmllarly for a place u|p of L we define an F-isocrystal £,,”. We consider F-isocrystals

Similarly as in Lemma 6.3, we have eR%c,L) = ]:/(\k) if g=qo=(w—2)(2g—1) and zero
otherwise. Also in the p-adic case, we have e R9¢,Ocrys Qw f;? = El(f) if ¢ = gp and zero otherwise.
The e-part of the Leray spectral sequence EY? = Hf”(C(i)7 Ric,Ly) = HP(Y(i), L)) degenerates
at Eo-terms and defines an isomorphism HP(C(’), fik)) Se-HotP(Y® [, as in Lemma 6.3.

We have a similar assertion in the p-adic case. Since HP (C(i), F )(\k)) is zero except for i =0,p =
0,1,2 and for ¢ =1, p =0, there are only five non-vanishing F;-terms
E;1:QO+2 E%QOJFQ

ot (8.10)
E?aQO E117q0
where o = (29 — 1)(w — 2). Each term is described as follows. In the ¢-adic setting, we have
gttt — gac©® M) plo — prhot2q) = goe® 7F), (8.11)

In the crystalline setting, we replace F /(\k) by 8}]‘:). The map dl_l’qOJr2 is the Gysin map and di’qo
is the restriction map.
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By the Weil conjecture, the eigenvalues of a lifting of the geometric Frobenius acting on each
Ei-term E}’ are algebraic integers purely of weight j and the spectral sequence degenerates
at FEo-terms. Hence the monodromy-weight conjecture is equivalent to the statement that
the monodromy filtration is equal to the filtration defined by the weight spectral sequence.
By the definition of the monodromy filtration, it is further equivalent to the statement that
the monodromy operator induces an isomorphism E, 1’qo+2(1) — E21’q°. Since the monodromy
operator N on the FEs-terms is induced by the canonical isomorphism N :E Laot2(qy
E11 1 [Mok93, RZ82], it is further equivalent to the statement that the isomorphism N on the Ej-
term induces an isomorphism on FEs-terms. Thus we are reduced to showing the following claim.

CrLAamM 8.2. Let go = (29 — 1)(w — 2). The canonical map
N : By Y012 — Ker(B; 0T Y02 (1) o B9 = Coker(EY® — E}9) (8.12)

is an isomorphism.

First we prove it in the case where the multiweight & is of the form k= (2,2, ..., 2, w). In this
case, the sheaves F )(\k) and S;(Lk) are constant. Let I be the set of irreducible components and J
be the set of singular points. Then it is enough to show that Ker(Q’ — Q') — Coker(Q’ — Q”)
is an isomorphism. It is proved easily by extending scalars to R.

We assume the multiweight k is not of the form k= (2,2,...,2,w). To show Claim 8.2, we
prove Proposition 8.3 below in the next section. To state it, we introduce some terminology.
Take a sufficiently small open compact subgroup K" such that M}, has a proper, smooth
model My, 5 and that KH C K". We consider the natural map (M x N)o — Mg 5. We say a
component C; in C' = (M x N)o ®¢ F,, is ordinary, if it dominates a component C” of the closed
fiber of M }/(“,O' Otherwise, we say it is supersingular.

PROPOSITION 8.3. Let C; be an ordinary irreducible component of (M x N)o ®¢ F,. Then we
have

HO(Cy, FP) = B2 (Cy, FP) = 0, (8.13)
H(C;, &0y = H*(C;, &) =0 (8.14)
unless k= (2,2,...,2,w).

The proof will be given in the next section.

We show Claim 8.2, admitting Proposition 8.3. Let ¥ C (M x N)o be the union of the image
of supersingular components and of singular points. Then for each s € 3 the sheaves F /(\k) and Eﬁk)
are constant in the inverse image. Let I be the set of supersingular components and Js be the set
of singular points in the inverse image. Then the claim holds if Ker(Q”’s — Qs) — Coker(Q!s —

Q7#) is an isomorphism, which is proved in the same way as in the case k= (2,...,2, w).

9. Vanishing of H°

We prove Proposition 8.3. First we restate it in terms of the closed fiber of the proper, smooth
model of M}, and Tate modules. Let K’ C G'(A*) be a sufficiently small open subgroup
satisfying the condition (b) in the proof of Lemma 7.1(ii) in § 7: K’ =7 x GL3(OF,) X KP x
K'P. Then as is recalled there, Carayol has shown that M), has good reduction and the

abelian variety A’ v extends to the proper, smooth model M7, 0p. - Let C be an irreducible
) ’ q
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component of the geometric closed fiber M, 0p. @ I_Fq. We define a smooth ¢-adic sheaf ]::(k) and
" Eq

an F-isocrystal Eﬁ(k)
L-sheaf f;(k) to be

on C in a similar way as for F;\(k): For a place A|£ of L, we define a smooth

w_k;

QSym* (e TH(A) @z, Ln) @ (det(eiTy(A) 9z, Ln)* 7). (9.1)

i
Here the idempotents e; € Endps(A) ® L act on Ty(A) ®z, Ly by the covariant functoriality of
Tate modules. We define an F-crystal. Let 7,(A) denote the F-crystal associated to the p-
divisible group A[p>] on M’. Let u|p be a place of L. We regard the crystal 7,(A) @w LI as an
Op ®yz L-module by the covariant functoriality as above. For each i, we define an F-isocrystal &;

to be e;(7,(A) Qw ff?) and put Ez(k) = ®,(Sym*72&; @ (det &)®(w-Fi)/2),

PROPOSITION 9.1. Let C' — C be a finite covering of proper smooth curves and assume the
multiweight k is not of the form (2,2, ...,2, w). For M\{ # p, the pull-back to C' of the smooth
sheaf f;(k) has no non-trivial (geometrically) constant subsheaf or quotient smooth sheaf.

)

For plp, the pull-back to C' of the underlying isocrystal Ez(k has no non-trivial constant sub-

isocrystal or quotient isocrystal.

We show that Proposition 9.1 implies Proposition 8.3. Let C’ = C; be an ordinary component
as in Proposition 8.3 and C" C My, 5 ® F4 be the image. By the construction of .7:>(\k) and Sﬁk),
"~ Eq

we may assume that C'=C" is in M}(,qu ®Fq C M}’(,,70Eq ® Fq where K’ is as above. Then,

Proposition 9.1 implies a similar statement where we replace C’, ]—';(k) and Sz(k) by Cj, fik)

and S,Sk). It immediately implies the assertion for H° in Proposition 8.3. For H?, it suffices to
use Poincaré duality,

Proof of Proposition 9.1 for \{ p. First, we prove the (-adic case. The argument is similar to the
proof of vanishing of HY and H? in the reduction of the equality (2.8) to (3.9) given in §3. It is
enough to show that the image of the action of 7 (C') is sufficiently large. We show that the action
on the Tate module defines a surjection 71(C') — SK; =Ker(v: K, — Z, x (Op @ Z¢)*). Let V
denote the maximal unramified extension of £y and M?’,Ov be the connected component of the

proper smooth model whose closed fiber is C. Since Ty(A) is locally constant on M, +,70V, the
map Wl(M;;r,y) — (Og)p factors through a surjection Wl(M;;r/"—/) — Wl(M%,Ov) ~ 71 (C). Since
Wl(M;;r,y) ~ wl(M};r/’C) ~ SKj, we obtain the surjection. The rest of the argument is identical
to the reduction to Claim 3.2 in §3 and we will not repeat it here. a

To proceed to the crystalline case, we recall the modular interpretation due to Carayol of
the integral model of M’ over the integer ring O = Op, (see [Car86a]). Let K’ C G'(A*) be a
sufficiently small open subgroup satisfying the condition (b) in the proof of Lemma 7.1(ii) in § 7:
K' =175 x GLy(Op,) x K} x K'. Recall that K;" =[], 2, K- We take an order Op C D

such that K’ C Of) We take an Op-lattice T C D ® A®. We assume they satisfy the following
conditions:

Op is stable under the involution ,

Op ®z Zy, is maximal in D ®g Qy,

Te (T, T) C Z,

and Trd)(T D6, Og,, T D6, Og,) — Zy is perfect.

(9.2)
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We put /= Hq;ép Ly, OE =0 @z 2P, TP =T ®; 7P etc. Then, 17 is a free Op -module of rank
four and has a symmetric bilinear form Tr v : TP x TP — ZP. We also put OP Fp= HP’I%P’#P O Fp-
We define a free Op y-module T, ¥ of rank 4 as follows. By the isomorphism OF ® Zy =

[1,,(OF,, x OF,,), we have a direct sum decomposition T®Z,= [T, ‘p( p; % Tpy ). Here the
first factors correspond to the embedding Op, — Z, fixed in §4. We put

0= [ T (9.3)

p'lp,#p

For an Op-abelian scheme A on an Ofg o-Scheme S, we define direct summands Lie?A and
Lie"?A of Lie A similarly as in §5. We define T} (A) similarly as 7} in (9.3). On the category
of schemes over O, there is a proper, smooth model M, 0p. Of M 1 representing the functor

_ “Eq
S+ {isomorphism classes of (A, 0, k)} where the following hold.
(i) An Op-abelian scheme A of dimension 4¢g such that Lie?A = Lie'?* 4 and it is a locally free
Og-module of rank two.
(ii) An Op-polarization 6§ € Hom(A, A*)%¥™ of A.
(iii) A pair k =k} x kP of a K,F-equivalent class of a Hp,‘p#p Op,,-isomorphism kb T (A) —
T} and a K'P-equivalent class of a [1,4, Op,,-isomorphism kP : T¥(A) — T? such that there

exists a Zp—isomorphism k' making the diagram

TP(A) x TP(A) 0L Tp(4) % TP(A%) —= 20 (1)

TP x TP oo 7P

commutative.

In condition (iii), the Op ® ZP-module TP(A) is free of rank four and, by the condition (i), the
Ia/1p,artag,q'2q Or,-module TF (A) is also free of rank four. As is shown in [Car86a], the generic
fiber M}(70Eq ®0p, E4 represents the restriction of the functor M}, to the schemes over Ejg.
Hence the smooth, proper scheme M }(70Eq is a model of the base change M ®g Eq and the
universal abelian scheme A is a unique extension on M. oy Of the pull-back.

M Eq

We state Lemmas 9.2 and 9.3 on the p-divisible group A[p™] on C. We will deduce
Proposition 9.1 in the crystal case from the Lemmas 9.2 and 9.3. As in [Car86a, 2.6.3], we put

Ty (A) = Ty(A) ®opsz, H Og, - (9.4)
a’lptaoitp
We identify  [Tg/p1q04p OBy = lprppp OFp = OFp and regard Ty (A) as an Of Bp=

Hp’lpﬁép Op,-module. By the modular interpretation recalled above, it is a smooth étale sheaf
on the proper scheme M 'O, of Ogvp—modules of rank one. Let q5|p, # q be the other prime
ideal of O dividing p. We identify Op,, = Op,, and take an isomorphism Op,, ~ M3(OF,). Let
e € Op,, be the idempotent corresponding to (%, 8) ~ M3(OF, ). Similarly as in [Car86a, 5.4], let
E be the p-divisible group

Eoo = e(A[p™] ®0gez, Ok, )- (9.5)
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In the terminology of [Car86a, Appendix 1], it is an Op,-divisible group of height 2. As a p-
divisible group, it is of height 2[F}, : Q,] and of dimension one. Let & and 7P be the F-crystals
associated to the p-divisible group E., and to the Tate module Tlf (A), respectively.

The F-isocrystal 5*(k) ®,(Sym* 28, @ (det &)(-*)/2) is related to them in the following
way. We regard & and 7P as an Op,-module and an (0 p—module respectively, by the covariant
functoriality. Let [y C I ={7;: F — L} be the subset I} = {r;: F; — L,}. Then for i € I, the

F-isocrystal &; is isomorphic to & R0, Lnr with respect to 7;: Op, — L. Here we identify
OF, with Og,. For i € I — I, we take an isomorphism B ®p L~ Ms(L) for the tensor product
with respect to 7; and let e be the idempotent corresponding to ((1) 8). Then the F-isocrystal &; is

isomorphic to e(7P ®Op Lnr) with respect to 7; : O}'}p — f?? Here we also identify Og_, = Or,,
for primes p'|p, # p and 'p',{ -

It is shown in [Car86a, (6.7), (9.4.3)] that there exists a finite nonempty set 3 C C' of closed
points satisfying the following condition.

— At each point in X, the p-divisible group E, is connected. On the complement U = C — X,
the p-divisible group E,, is an extension of an étale p-divisible group Egg by a connected
p-divisible group E2 .

We call a point in 3 a supersingular point and a point in U an ordinary point. The p-divisible
groups E$! and ES have natural structures of O Fp-modules. The Tate module T(ES) is a smooth
sheaf of Op,-modules of rank 1.

LEMMA 9.2. The morphism m(U) — O;p X O%; defined by the smooth sheaf T,(ES) x T} (A)

of Of, X ng—modu]es of rank 1 defines a surjection
m(U) — O;p x SK'1. (9.6)

Let &) and &) be the F-crystals associated to the p-divisible groups ES and ES, on the
ordinary locus U, respectively. The restriction of & on U is an extension

0 &) & &l 0, (9.7)

since E, is an extension.
LEMMA 9.3. The extension of the underlying isocrystal

0—=&0Q,—=5E®Q, —=E&f®Q,—0 (9.8)
is non-trivial.

Proof of Proposition 9.1 for i | p. The argument is similar to that in [Cre92|. First, we prove it,
admitting Lemmas 9.2 and 9.3. It is sufficient to show that, on the inverse image U’ C C’ of the
ordinary locus U, the restriction of Sﬁ(k) has no constant sub-isocrystal or quotient isocrystal.
Before starting the proof, note that an F-(iso)crystal is constant if and only if the underlying
(iso)crystal is constant. In fact, if the underlying (iso)crystal £ is constant, the Frobenius pull-
back F*& and the Frobenius map F': F*E — £ defining the structure of F-(iso)crystal is constant.
The ‘only if” part is trivial.

We put r = [F}, : Q] and Iy =Hom(Fy, L,) ={71,..., 7} CI=Hom(F, L) ={r,..., 74}
We define a decreasing filtration on the restriction of Sfj(k) on U with multi-index Z* as follows.
On &, we define a filtration F'® on & by F& =&, F'& 256,F250 =0. For each 7 € I, it
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induces a filtration on &; and hence on Symkiﬂé’i by the isomorphism &; ~ & ®0Fp L,. Taking

symmetric powers and tensor product, we obtain a filtration on Sz(k) = Qic I(Symki_Q& ®
(det &)®(w=ki)/2)  We consider the graded piece Gr%é’;(k) :Fqé';(k)/ > d>q Fqlé’;(k) for each
a=(q1,...,q) €z

We deduce from Lemma 9.2 that the isocrystal Gqué’;(k) has no constant sub-isocrystal or
quotient isocrystal except for at most one multi-index ¢ = (q1, . . ., ¢,) satisfying (k1,...,ky) =
(2¢1 +2,...,2¢,+2,2,...,2). In the exceptional case, we will see that the graded piece is in
fact constant. The graded pieces are computed as

Gri.&x® = R)((det &) FI/210 @ (Grig,) R —2720) @ (R) (Sym™ 2 @ (det &) F)/2)
iel iel—I)

(9.9)
for 0 < q; <k; —2 for i € I} and as zero otherwise. By the Weil pairing of the Drinfeld basis
(see [Car86a, 9.2]), the determinant isocrystal det &; is geometrically constant for ¢ € I;. Similarly,
but more easily, det &; is also constant for i € I — I;. Therefore it is sufficient to show that
the isocrystal ®i€[1(Gr%$i)®ki_2_2qi ® Qicr_1, Sym*~2€; has no mnon-trivial constant sub-
isocrystal or quotient isocrystal unless (ki,...,kg) = (2q1 +2,...,2¢, +2,2,...,2).

The F-isocrystals Gr%gi for t € I1 and &; for ¢ € [ — I; are defined by smooth p-adic étale
sheaves on U. Let £; and F; be the corresponding smooth p-adic sheaves. Since an F-isocrystal
is constant if and only if the underlying crystal is constant, we are reduced to showing that
the smooth p-adic sheaf @), E?ki_2_2qi ® Qier—1, Sym*—2F; is irreducible. It follows from
the surjectivity of the map m(U) — SK,, (see Lemma 9.2) by the same argument as in the
{-adic case.

We complete the proof by using Lemma 9.3. We assume that there exists a non-trivial
constant sub-isocrystal of Ez(k) for (ki,...,kg) #(2,...,2) and deduce a contradiction. The
proof for the quotient is similar and is omitted. By the study of the graded pieces (9.9), the
proof is complete except for the case where k; are even for ¢ € Iy and k; =2 for i1 €1 — I.
We put (ki,...,kg)=2¢ +2,...,2¢,+2,2,...,2) and assume ¢ = (q1, ..., ¢ )#0. By the
computation of the graded pieces, if we had a non-trivial constant sub-isocrystal, it should be

*) and mapped isomorphically to Gr qE;(k). Namely, the extension F' qé’;(k) of

contained in F qé’;
Grqé';(k) is split. Take an index ¢ € I1 such that ¢; > 0 and let ¢’ (respectively ¢”) be the multi-

index obtained from ¢ by replacing ¢; by ¢; + 1 (respectively by ¢; + 2). Then the extension
00— Grqlf/’:(k) _ Fq(c/';(k)/FqNgZ(k) - Grqé';(k) —

is also split. Its extension class is ¢; times the class of the extension (9.8) and hence is non-zero.
Thus we get a contradiction. We have proved that Lemmas 9.2 and 9.3 imply Proposition 9.1. O

We prove Lemmas 9.2 and 9.3 to complete the proof of Proposition 9.1, hence of Theorems 2.2
and 2.4. We prove Lemma 9.2 using a supersingular point which exists by [Car86a, (9.4.3)].
Lemma 9.3 will be proved using an ordinary point.

Proof of Lemma 9.2. Since T} (A) is smooth on the proper, smooth model M} ' 0p. » the
"~ Eq

same argument as in the f-adic case shows that we have a surjection 71(C) — SK,’. Take a
supersingular point x € ¥ # () and let I, denote the inertia group. It is enough to show that the
restriction I — Of is surjective. Let U, be the finite étale covering U,, = Isom(Op, /p", Eet)
of U trivializing the p"-torsion part ES'. Here an isomorphism means an isomorphism of

1110

https://doi.org/10.1112/50010437X09004175 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004175

HILBERT MODULAR FORMS AND p-ADIC HODGE THEORY

Or, /p"-group schemes. The covering U, is an analogue of an Igusa curve. It is sufficient to show
that U, is totally ramified at a supersingular point. Namely, we show the following lemma. O

LEMMA 9.4. Let K, denote the completion of the function field of C at a supersingular point x.
Then the base change U, X ¢ Spec K, is the spectrum of a totally ramified extension of K.

Proof Let E denote the formal group associated to the p-divisible group E, over the completion
C = Spec OC:v Let m be a prime element of Op,. For an integer n, let E™) denote the base
change of E by the (gy)"th power Frobenius and F": E — E(™ be the (gy)"th power relative
Frobenius over C'. Then the multiplication [1"] : E — E is factorized as [7"] = V" o F™ for a map
V™. E™ — E. Outside the closed point z, the map V™ is étale and hence Ker V" is a finite flat
group scheme over C extending the étale quotient ES on the generic point. Let C,, = (Ker V™)
be the scheme of Op, /p"-basis of Ker V" in the sense of Drinfeld. Namely, it is a closed subscheme
of Ker V" representing the functor

R— {s € Ker V"'(R)

Z [as] = Ker V" as a divisor in Eg)} (9.10)
aEOFp /p"

for a ring over @C@. Outside the closed point, the scheme C,, is the same as the base change
of U,. Therefore, it is sufficient to show that C, is regular and the inverse image of the closed
point x by C,, — C contains only one point. The second assertion is clear since C), is a closed
subscheme of a local scheme Ker V™. We show that the intersection Cj,, N [0] of C,, with the
zero-section [0] of the formal group E(™ is equal to Spec (z). This will imply that C,, is regular
since the zero section is a divisor in (™.

Let R =T(C, N[0], ©). It is an Artin O¢ ,-algebra. Since [0] is a Cartier divisor of the formal
group E™ it is sufficient to show that the surjection @qx — R factors through the surjection
@C,x — k(). By the assumption, the zero-section is an OF, /p"-basis of Ker V™. Hence, we
have Ker[7"] = Ker F>" on R and an isomorphism Ep ~ Egn) o~ Egmn) for m > 1. Since R is
Artinian, for sufficiently large m, the map a — a@a)™™™ factors through R — k(x) — R and we
obtain Fgr ~ Egmn) ~ By ®g(z) R. This means that (’}CJ — R factors through k(z) since Eo

over @c@ is the universal deformation of Ey |, [Car86a, Proposition 5.4]. Thus we have proved
Lemma 9.4 and hence Lemma 9.2. O

To prove Lemma 9.3, we show the following.

LEMMA 9.5. Let C = Spec @Qx be the completion at an ordinary closed point x € U. Let
[E] € Ext!(E®, E°) be the class of E as an extension of Op,-divisible groups on C. Then the
class [E] is not torsion.

We derive it from the following statement proved in [Car86a, Proposition 5.4, App.
Théoreme 3.

LEMMA 9.6. On the completion C at an ordinary closed point, the connected part E° is
isomorphic to the pull-back of the Lubin-Tate formal group. The étale part E¢* is isomorphic
to the constant OF,-divisible group Fy, /Op,. The completion C pro-represents the functor R —
Extg(Fy/OF,, Eg) = Eo(R) on the category of Artin [Fy-algebras R together with a surjection
R — k(). It is isomorphic to E° as a formal scheme. The extension E on C =Y is identified
with the universal extension.
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Proof of Lemma 9.5. We identify the formal schemes E? = C. By Lemma 9.6, the universal
extension E corresponds to the identity C' — E°. Hence it is the universal section of the formal
group EY and is not torsion. O

Proof of Lemma 9.3. 1t is enough to prove that the restriction to the completion at an ordinary
closed point is not the trivial extension. Since the p-divisible groups E° and E* are constant
on C , the F-isocrystals £’ ® Qp, £” ® Q, and hence their underlying crystals are constant there.
If the extension of the underlying isocrystal were trivial, the underlying isocrystal and hence the
F-isocrystal £ ® Q, would be constant. It means that the extension class [E] € Ext! (E®, E°) is
torsion and contradicts Lemma 9.5. O

Thus the proof of Proposition 9.1 and hence of Theorems 2.2 and 2.4 are now complete.
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