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STRICT COHERENCE ONMANY-VALUED EVENTS

TOMMASO FLAMINIO, HYKEL HOSNI, AND FRANCOMONTAGNA

Abstract. We investigate the property of strict coherence in the setting of many-valued logics. Our main
results read as follows: (i) a map from an MV-algebra to [0, 1] is strictly coherent if and only if it satisfies
Carnap’s regularity condition, and (ii) a [0, 1]-valued book on a finite set of many-valued events is strictly
coherent if and only if it extends to a faithful state of an MV-algebra that contains them. Remarkably this
latter result allows us to relax the rather demanding conditions for the Shimony-Kemeny characterisation
of strict coherence put forward in the mid 1950s in this Journal.

§1. Introduction and motivation. This paper contributes to the logical founda-
tions of probability by investigating strict coherence on many-valued events. The
notion of strict coherence was introduced in this Journal by Abner Shimony and
John Kemeny as a logically inspired refinement of the notion of coherence used by
Bruno de Finetti to ground his subjective interpretation of probability. Informally,
coherence demands that a rational agent avoids the logical possibility of “sure loss”
in suitably specified betting situations. Its strict counterpart, in addition, demands
that each prospect of losing should be balanced by a prospect of gaining.
Interest in the condition of strict coherence was prompted by Carnap’s analysis
of what he termed “regular” probability functions in [4] (see also [37, Chapter
10]). Informally those functions arise by strengthening the usual normalisation
axiom of probability in the right-to-left direction. That is to say that 1 (respectively,
0) is assigned only to tautologies (respectively, contradictions). The rationale for
Carnap-regular functions is that, however unlikely, possible events may happen.
In [38] Shimony proved that imposing strict coherence to a map from finite
boolean algebras to [0, 1] was sufficient to single out Carnap-regular functions.
Shortly after, the converse was established by Kemeny in [21], a result proved
independently in [24]. The Shimony–Kemeny characterisation is obtained under far
more restrictive conditions than those yielding de Finetti’s theorem, which holds
for books on arbitrary sets of events (see Section 2 below for precise details). This
may suggest that the refinement of coherence to its strict counterpart is obtained at
the price of giving up the full generality of de Finetti’s foundation.
By investigating the problem of strict coherence for many-valued events we con-
clude, as a welcome side effect, that this is not the case. More centrally, this paper
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shows that taking many-valued events as elements of MV-algebras [5, 6] allows us
to investigate the notion of coherence in a framework which is both general and
methodologically perspicuous. In this respect the present paper complements the
groundbreaking contributions of [23,31,35].
Our main results read as follows. Theorem 5.2 shows that a map from an MV-
algebra to [0, 1] is strictly coherent if and only if it satisfies Carnap’s regularity
condition. Theorem 6.4 establishes an extension result for strictly coherent books
on many-valued events. This result is obtained for finite-dimensional MV-algebras
(see Section 3 below).Despite being a particular case,Corollary 6.5 shows that finite-
dimensional MV-algebras are general enough to provide de Finetti-like extensions
for all boolean events. In other words, the refinement to strict coherence does not
come at the expense of generality.
The next Section collects the basic concepts and results on (strict) coherence.
Readers who are familiar with this material may still wish to flip through it to get
acquainted with the notation and terminology used in the paper.

§2. Coherence and strict coherence. In a series of seminal contributions, starting
with [8] and culminating in [9], Bruno de Finetti provided a rather general justifica-
tion for the probabilistic representation of rational beliefs. To this end he identifies
degrees of belief with the price of gambles in a suitably defined betting situation. In
this setting incoherent behaviour is defined as the disposition to choose prices in a
way which may lead to sure loss. (See [13] for a logical account of the topic in the
notation and spirit of the preset paper.)
Let a1, . . . , an denote events and suppose a bookmaker B publishes a book Φ :
a1 �→ α1, . . . , an �→ α1, where α1, . . . , αn are real numbers in [0, 1]. A gambler G
then chooses real-valued stakes �1, . . . , �n and for i = 1, . . . , n, pays �iαi to B.
When a (classical propositional) valuation v determines ai , B gains �i , if v(ai) = 1
and 0 otherwise. Note that �i may be negative, in which case, paying �iαi means
receiving −�iαi and receiving �iai means paying −�iαi . The book Φ is said to be
coherent if there is no choice of stakes �1, . . . , �n such that for every valuation v,

n∑
i=1

�i(αi − v(ai)) < 0. (1)

The left hand side of (1) captures the bookmaker’s payoff, or balance, relative to
book Φ under valuation v. De Finetti’s theorem then reads as follows.

Theorem 2.1 ([8]). Let a1, . . . , an be an arbitrary set of events of a boolean algebra
B and let Φ : ai �→ αi , i = 1, . . . , n be a book. The following are equivalent:
(1) Φ is coherent.
(2) Φ is extended by a finitely additive and normalised measure on B.
This result, which de Finetti had no inclination to express logically, turns out
to be remarkably robust to the variation of the underlying logic of events. This
was first illustrated by the generalisation of the “Dutch Book Method” obtained
by Paris [35], and reinforced by the further developments in the MV-algebraic
domain initiated by Mundici [23, 31]. In the latter papers, events are regarded as
elements of anMV-algebraA, and valuations are regarded asMV-homomorphisms
v from A to the MV-algebra whose carrier is the real unit interval [0, 1]. Except

https://doi.org/10.1017/jsl.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.34


STRICT COHERENCEONMANY-VALUEDEVENTS 57

for the fact that valuations range on [0, 1] (rather than on {0, 1}) the notion of
coherence which underpins this research thread does not differ from the condition
captured by inequality (1) above. Indeed this literature led to the generalisation
of de Finetti’s theorem to states of MV-algebras, which will be introduced in
Section 4.
De Finetti’s coherence guards bookmakers against the possibility of sure loss
by simultaneously barring them from what they should reasonably aim to, namely
making profit. The condition of strict coherence has been put forward as a natural
reaction to this rather odd feature. As a terminological aside, [18] pointed out that
Shimony termed his refinement of de Finetti’s notion simply “coherence”, whilst
Kemeny dubbed his own “strict fairness”, but the term “strict coherence” quickly
stuck, and so we conform to this usage.
Shimony’s intuitive rendering of his criterion is the following. A book is strictly
incoherent when

there exists a choice of stakes [. . .] such that [. . .] no matter what the actual truth
values of [of the events] may be, [the bookmaker] can at best lose nothing and in
at least one possible eventuality will suffer a positive loss. [38]

Hence a bookmaker’s book is strictly coherent if every possibility of loss is paired
with a possibility of gain. This intuition motivates the following definition.

Definition 2.2. Let Φ : a1 �→ α1, . . . , an �→ αn be a book (either boolean or
MV). We say that Φ is strictly coherent if for every choice of real-valued stakes
�1, . . . , �n, the existence of a valuation v such that

n∑
i=1

�i
(
αi − v(ai)) < 0

implies the existence of a valuation w such that
n∑
i=1

�i(αi − w(ai)) > 0.

To illustrate the idea, suppose a book contains a �→ 0 for some noncontradictory
event a. Then the book is not strictly coherent. For, if the gambler bets 1 on a, then
her balance is as follows: she pays 1 · 0 = 0 and gets back 0 if v(a) = 0 and 1 if
v(a) = 1. Hence, the bookmaker never wins and possibly loses, i.e., she violates
strict coherence.
In spite of its intuitive appeal, the notion of strict coherence has attracted a
number of criticisms over the decades. De Finetti himself was not persuaded the
strengthening of his coherence condition for reasons analogous to those which
led him to argue against countable additivity [9, Section 3.11, Appendix 18.2].
As recently pointed out in [33], the Kroupa-Panti theorem ([22, Corollary 29],
[34, Proposition 1.1]) shows that de Finetti goes to great lengths for no reason of
substance. Finite additivity on the boolean algebra of events is in fact sufficient for
�-additivity on the dual Stone space. In light of this we can avoid potential termino-
logical confusion by referring to finitely additive and normalised measure which
satisfy Carnap’s condition as Carnap-regular measures. The Shimony–Kemeny
characterisation then reads as follows.
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Theorem 2.3 (Shimony,Kemeny). LetΦ be a [0, 1]-valuedmap on a finite boolean
algebra. The following are equivalent:

(1) Φ is strictly coherent.
(2) Φ is a Carnap-regular measure.

We end this Section by pointing out explicitly the relation between the setting
of Theorem 2.3 and that of Theorem 2.1, a comparison which will be clarified
significantly by our main results.

Remark 2.4. The algebraic setting of de Finetti’s theorem is more general than
the one used by Shimony and Kemeny. Logically speaking, the conditions of de
Finetti’s theorem apply to events expressed in a possibly infinite language, whereas
Theorem 2.3 effectively requires events to be expressed in a finite language. Even
more restrictive is this theorem’s hypothesis that the map Φ is defined over the
algebra of events. No such assumption is required for Theorem 2.1.

§3. MV-algebras, abelian �-groups and Riesz spaces. This section introduces the
algebraic framework for many-valued events, namely MV-algebras [5, 6]. After
recalling their definition and key properties, we focus on how those structures relate
Riesz MV-algebras [10], lattice-ordered abelian groups [17] and Riesz spaces [26].
Section 5 will illustrate their central role in the characterisation of strict coherence
for many-valued events.

Definition 3.1 ([5, 6]). AnMV-algebra is an algebra A = (A,⊕,′ , 0) where:
(a) (A,⊕, 0) is a commutative monoid,
(b) the equations x′′ = x, x ⊕ 0′ = 0′ and y ⊕ (x′ ⊕ y)′ = x ⊕ (y′ ⊕ x)′ hold.
In anyMV-algebra, we set x�y = (x′⊕y′)′ and 1 = 0′. Obviously,MV-algebras
form a variety.

Definition 3.2 ([17]). A lattice ordered abelian group (�-group for short) is an
algebra G = (G,+,−,∨,∧, 0) such that:
(a) (G,+,−, 0) is an abelian group.
(b) (G,∨,∧) is a lattice.
(c) The equationsx+(y∨z) = (x+y)∨(x+z) andx+(y∧z) = (x+y)∧(x+z)
hold.

A unital �-group is an algebra (G, u) whereG is an �-group and u ∈ G is a constant
such that for every x ∈ G there is a natural number n such that x ≤ nu.
Without risk of confusion, we shall denote unital �-groups by (G,≤, u),
emphasizing, in this way, the lattice order ≤.
Let us denote by Gu the category whose objects are unital �-groups and whose
morphisms are �-group homomorphisms preserving the strong unit, and letMV
be the algebraic category whose objects are MV-algebras. Given a unital �-group
(G,≤, u), the structure

Γ(G,≤, u) = (A,⊕,′ , 0), (2)

where A = {x ∈ G | 0 ≤ x ≤ u}, x′ = u − x and x ⊕ y = (x + y) ∧ u is
an MV-algebra. For every morphism h of unital �-groups, say from (G,≤, u) to
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(G′,≤′, u′), the map Γ(h) obtained by restricting the domain of h to Γ(G, u), is an
MV-homomorphism. Indeed, Γ is a functor from Gu toMV. By a famous result by
Mundici [29], Γ has an adjoint, Γ−1, and the pair (Γ,Γ−1) constitutes a categorical
equivalence between Gu andMV .

Example 3.3. (1) Every boolean algebra is an MV-algebra. Moreover, for
everyMV-algebraA, the set of its idempotent elements B(A) = {x | x⊕x =
x} is the domain of the largest boolean subalgebra of A: its boolean skeleton.

(2) (R, 1) (the additive group of reals with the constants 1) is a unital �-groupand
Γ(R, 1) is an MV-algebra, denoted by [0, 1] in the sequel. The MV-algebra
[0, 1] stands to the variety of MV-algebras as the two-elements boolean alge-
bra stands to the variety of boolean algebras. In particular, the variety of
MV-algebras is generated by [0, 1] (see [5]).

(3) LetX be a compact Hausdorff space and let CX = C (X,R) be the �-group of
all continuous functions from X into R, with the operations defined point-
wise. Let 1 denote the constantly 1 function from X into R. Then (CX ,≤, 1)
is a unital �-group, and Γ(CX ,≤, 1) is an MV-algebra which is a subalgebra
of [0, 1]X . When X is finite, say |X | = k, we will denote by [0, 1]k the MV-
algebra of all functions formX to [0, 1] andwe shall call it a finite-dimensional
MV-algebra. We anticipate that these structure will play a key role in
Section 6.

We will henceforth denote by CX the �-group of all continuous functions
from a compact Hausdorff space X into R. We write H(A) for the set of MV-
homomorphisms of an MV-algebra A in [0, 1]. For every MV-algebra A, H(A) is a
closed subset of the product space [0, 1]A equipped with the Tychonoff topology. It
can be shown thatH(A) is a compact Hausdorff space (cf. [30, Theorem 2.5]).
AnMV-algebraA is said to be semisimple if it is so in the usual universal algebraic
sense, i.e., A is isomorphic to a subdirect product of simple MV-algebras (see [3,
Definition 12.1]).

Proposition 3.4. For an MV-algebra A, the following are equivalent:

(i) A is semisimple,
(ii) A is isomorphic to an algebra Â of separating and continuous [0, 1]-valued
functions over the compact Hausdorff spaceH(A),

(iii) for every a ∈ A, if a > 0, then there is v ∈ H(A) such that v(a) > 0.
Proof. (i) ⇔ (ii) is proved in [5], while the equivalence between (ii) and (iii) is
immediate. �

Definition 3.5 ([10]). A Riesz MV-algebra is an MV-algebra A equipped with a
family {α(·)}α∈[0,1] of unary operations on A so that the following conditions hold
for every α, � ∈ [0, 1] and every x, y ∈ A:
(i) If α + � ≤ 1, then α(x)⊕ �(x) = (α + �)(x).
(ii) If x � y = 0, then α(x ⊕ y) = α(x)⊕ α(y).
(iii) α(�(x)) = α�(x).
(iv) 1(x) = x.
(v) α(x) = 0 iff either α = 0 or x = 0.
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For the sake of a lighter notation, in the sequel, we shall write αa instead of α(a),
for every α ∈ [0, 1] and every element a of a Riesz MV-algebra A.
Definition 3.6 ([10,26]). A unital Riesz space is an algebra (V,≤, u) where V is
a vector space over the real field, ≤ is a lattice order and u is a constant such that,
denoting by V− the group reduct of V, (V−,≤, u) is a unital �-group.
The equivalence between the categories of MV-algebras and unital �-groups
extends in the same fashion to Riesz MV-algebras and unital Riesz spaces. Indeed,
given a unital Riesz space (V,≤, u), let

ΓR(V,≤, u) = (A, {α(·)}),
where, denoting by V− the group reduct of V, A = Γ(V−,≤, u) as in (2) and,
for every α ∈ [0, 1], α(·) : A → A is the scalar product of V restricted to scalars
in [0, 1]. Now, if we denote by RSu the category of unital Riesz spaces whose
morphisms are vector-lattices homomorphisms preserving the unit, and by RMV
the algebraic category of Riesz MV-algebras, ΓR is a functor between RSu and
RMV . Furthermore, ΓR has an adjoint Γ−1R and the pair (ΓR,Γ−1R ) establishes a
categorical equivalence betweenRSu andRMV (cf. [10]).
For any unital Riesz space (V,≤, u), we shall henceforth denote by H(V) the set
of all morphisms of (V,≤, u) in (R,≤, 1).
Lemma 3.7. Let (V,≤, u) be a unital Riesz space. Then every element x ∈ V may
be represented asx = ma+ku for some integer k ≤ 0, for some natural numberm > 0
and for some a ∈ ΓR(V,≤, u). Moreover, the restriction toΓR(V,≤, u) of a morphism
w ∈ H(V) is a morphism inH(ΓR(V,≤, u)), and amorphism v inH(ΓR(V,≤, u)) has
a unique extension to a morphism w in H(V), defined by w(ma + ku) = mv(a) + k.
Proof. Since (V,≤, u) is unital, we can find a natural number n such that −x ≤
nu. Hence, 0 ≤ x + nu. Moreover, there is a natural number m > 0 such that
x + nu ≤ mu. Now let a = 1

m (x + nu). Then 0 ≤ a ≤ u and a ∈ ΓR(V,≤, u).
Finally x = ma − nu and letting k = −n we get the result.
The other claims are a direct consequence of the categorical equivalence between

RSu andRMV, see [10, Theorem 4.2]. �
Notation 3.8. Let A is a semisimple MV-algebra and let Â be as in Proposition
3.4(ii). In what follows we shall adopt the following notations:

– R(A) stands for the Riesz MV-subalgebra of [0, 1]H(A) generated by Â.
– (VL(A),≤, 1) denotes the unital Riesz subspace of (RH(A),≤, 1) generated
by Â.

As usual,we shall denote byR(A) andVL(A) the carriers ofR(A) and (VL(A),≤, 1)
respectively.

Let A be a semisimple MV-algebra, let (G,≤, u) = Γ−1(A) and let
H =

{ g
2n

| g ∈ G, n ∈ N

}
. (3)

As proved in [12, Corollary 3.7], H is the domain of a dense unital �-subgroup of
(the unital �-group reduct of) (CH(A),≤, 1). Hence, any element of (VL(A),≤, 1)
can be approximated by the elements of H . The next lemma provides a slightly
stronger statement.
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Lemma 3.9. For every semisimple MV-algebra A, for every z ∈ VL(A) and for
every real number ε > 0, there are z+ε , z

−
ε ∈ H such that z−ε ≤ z ≤ z+ε and for every

v ∈ H(A), z(v)− z−ε (v) < ε and z+ε (v)− z(v) < ε.
Proof. We shall prove the claim by induction on the structural complexity of
z ∈ VL(A). To this end, let us recall that (VL(A),≤, 1) is generated by Â, and every
a ∈ Â is a separating and continuous function from H(A) in [0, 1], Proposition
3.4(ii).
Clearly, if z ∈ Â, then we take z+ε = z−ε = z and we are done.
Let us assume that z = z1 + z2. Then, by the inductive hypothesis, for i =
1, 2, there are z+i ε2 , z

−
i ε2

∈ H such that z−i ε2 ≤ zi ≤ z+i ε2 and for every v ∈ H(A),
zi (v)− z−i ε2 (v) <

ε
2 and z

+
i ε2
(v)− zi(v) < ε

2 . Then it suffices to take z
+ = z+1 ε2 + z

+
2 ε2

and z− = z−1 ε2 + z
−
2 ε2
.

If z = z1 ◦ z2, where ◦ ∈ {∨,∧}, then, the inductive hypothesis ensures that for
i = 1, 2 we have z+iε , z

−
iε ∈ H such that z−iε ≤ zi ≤ z+iε and for every v ∈ H(A),

zi (v) − z−iε (v) < ε and z+iε (v) − zi(v) < ε. Then it suffices to take z+ = z+1ε + z+2ε
and z− = z−1ε + z

−
2ε .

If z = −u, then by the inductive hypothesis for i = 1, 2 there are u+ε , u−ε ∈ H such
that u−ε ≤ u ≤ u+ε and for every v ∈ H(A), z(v)−u−ε (v) < ε and u+ε (v)−z(v) < ε.
Hence, it suffices to define z+ε = −u−ε and z−ε = −u+ε .
Finally, suppose z = αu, α a real number. Since we have already treated the case
z = −u, we can assume without loss of generality that α ≥ 0. LetM be a natural
number such thatM ≥ α + 1 and, for every v ∈ H(A), −M + ε ≤ u(v) ≤M − ε.
By the inductive hypothesis, there are u+, u− ∈ H such that u− ≤ u ≤ u+ and, for
every v ∈ H(A),

u(v)− u−(v) < ε

2M
and u+(v)− u(v) < ε

2M
.

Moreover, −M ≤ u−(v) ≤ u+(v) ≤ M , and u+(v) − u−(v) < ε
M . Let n be such

that 12n <
ε
2M and let k be the maximum integer such that

k
2n ≤ α. Then k+12n > α.

Let us consider

r =
k

2n
and t =

k + 1
2n
.

Now let

z+ = t(u+ ∨ 0) + r(u+ ∧ 0) and z− = r(u− ∨ 0) + t(u− ∧ 0).
We verify that z− ≤ z ≤ z+. Let v ∈ H(A) and let us consider the following cases:
(i) If u−(v) ≥ 0, then u+(v) ≥ 0 as well, whence

z+(v) = tu+(v) ≥ αu(v) ≥ ru−(v) = z−(v).
(ii) If u+(v) ≤ 0, then also u−(v) ≤ 0 and hence

z+(v) = ru+(v) ≥ αu(v) ≥ tu−(v) = z−(v).
(iii) If u+(v) ≥ 0 and u−(v) ≤ 0, then

z+(v) = tu+(v) ≥ αu(v) ≥ tu−(v) = z−(v).
This settles the claim. �
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§4. States and faithful states of MV-algebras. The purpose of this section is to
present states of an MV-algebra, a notion which was introduced in [30] and further
investigated in [22,23,31,34].

Definition 4.1 ([30]). A state of an MV-algebra A is a [0, 1]-valued map s on A
such that s(1) = 1 and s(x ⊕ y) = s(x) + s(y), whenever x � y = 0.
A state s of A is said to be faithful, if s(x) = 0 implies x = 0.

If A is a Riesz MV-algebra, a (faithful) state of A is a (faithful) state of its
MV-algebraic reduct [10].

Definition 4.2 ([17]). A state of a unital �-group (G,≤, u) is a map � from G
to R which is additive (i.e., for all x, y, �(x + y) = �(x) + �(y)), monotonic (i.e.,
x ≥ 0 implies �(x) ≥ 0) and normalized (i.e., �(u) = 1).
A state � on a unital �-group is said to be faithful if for all x > 0, �(x) > 0.

A (faithful) state of a unital Riesz space (V,≤, u) is a (faithful) state of its unital
�-group reduct. From [10, Lemma 11], it is clear that every state of a unital Riesz
space (V,≤, u) is a linear functional, that is, for every z ∈ V and every α ∈ R,
�(αz) = α�(z).
The following result has been proved in [12, Theorem 3.2].

Lemma 4.3. Every state on a semisimple MV-algebra A has a unique extension to
a state on (CH(A),≤, 1), and hence to a state on Γ(CH(A),≤, 1). Hence, any state on a
semisimple MV-algebra A has a unique extension to a state of R(A).

The problem of extending a faithful state of an MV-algebra A to a Riesz MV-
algebra that contains A was studied in [25]. There, the author shows that every
faithful state s of A can be extended, in a unique way, to a faithful state of what
was called theRiesz completion ofA (see [25, Theorem 4.2]). The following theorem
establishes a slightly stronger result with an alternative technique.

Theorem 4.4. Every faithful state of anMV-algebraA can be extended to a unique
faithful state of (VL(A),≤, 1), and hence, to a unique faithful state on R(A).
Proof. Let s be a faithful state of A, and let � be its unique extension to the
(unique up to isomorphism) unital �-group (G,≤, u) such that A = Γ(G,≤, u) (cf.
[30, Theorem 2.4]). Then � is a faithful state on (G,≤, u), because every positive
element g ∈ G is the sum of elements ai of A, g =

∑n
i=1 ai (see [6, Section 7] for

details), and �(g) =
∑n
i=1 s(ai) > 0. Let H be as in (3). Then � has a unique

extension � ′ to H , defined by � ′( g2n ) =
�(g)
2n . Moreover, by Lemma 4.3, s has a

unique extension to (CH(A),≤, 1) and hence, a unique extension � ′′ to a state on
(VL(A),≤, 1).
We conclude by proving that � ′′ is faithful. Let z ∈ VL(A), z > 0. By the very
definition of (VL(A),≤, 1) and since Â is an algebra of [0, 1]-valued continuous
functions, z is a continuous function on the compact spaceH(A), whence it admits
a maximum point v0. LetM = z(v0) > 0. Now let, by Lemma 3.9, z− = g

2n (with
g ∈ G) be such that for every valuation v, z−(v) ≤ z(v), and z(v)− z−(v) < M

2 .
After replacing g by g ∨ 0, we may assume without loss of generality that z− =
g
2n ≥ 0.Moreover the conditions z(v0)−z−(v0) < M

2 and z(v0) =M imply z
− > 0
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and g > 0. Since � is faithful, then �(g) > 0 and � ′(z−) = �(g)
2n > 0. Finally,

� ′′(z) ≥ � ′( g2n ) > 0, whence � ′′ is faithful. �

§5. Strictly coherentmaps. Weare now in a position to address themain question
of this paper, namely the investigation of strict coherence on many-valued events.
In what follows, we will say that a [0, 1]-valued map Φ defined on a semisimple MV-
algebra A is (strictly) coherent, if for every finite subset A′ of A, the book obtained
by restricting Φ to A′ is (strictly) coherent according to Definition 2.2.
We begin by extending to the general case of MV-algebras a result [31, Theorem
5.6] which was proved in the framework of free MV-algebras over arbitrary sets of
generators.

Lemma 5.1. Let A be an MV-algebra and let Φ be a [0, 1]-valued map defined on
A. Then Φ is coherent iff it is a state.

Proof. The right-to-left direction is trivial. Indeed, if Φ is a state, its restriction
to any finite subset of A extends to a state, namely to Φ. Thus Φ is coherent from
[23, Theorem 3.2].
In order to prove the left-to-right direction, suppose Φ is not a state. Then either
Φ(1) < 1 or there are x, y such that x � y = 0 and Φ(x ⊕ y) �= Φ(x) + Φ(y).
In the former case, betting 1 on the certain event clearly causes a sure loss for the
bookmaker. In the latter case, we need to consider the two possible inequalities. If
Φ(x ⊕ y) < Φ(x) + Φ(y), we can cause a sure loss to the bookmaker by betting 1
on x ⊕ y and−1 on both x and y. Finally, if Φ(x ⊕ y) > Φ(x) +Φ(y), a sure loss
to the bookmaker is caused by betting −1 on x ⊕ y and 1 on both x and y. Thus,
Φ is not coherent. �
We can now characterise strictly coherent maps.

Theorem 5.2. LetA be a semisimpleMV-algebra andΦ a [0, 1]-valuedmap defined
on A. Then Φ is strictly coherent iff it is a faithful state.

Proof. (Left-to-right). By contraposition, let us suppose that Φ is not a faith-
ful state. By Lemma 5.1 it suffices to assume it is not faithful, i.e., Φ(x) = 0
for some x > 0. Since A is semisimple, by Proposition 3.4(iii), there exists
v ∈ H(A) such that v(x) > 0. Hence, a bet of 1 on x shows that Φ is not strictly
coherent.
(Right-to-left). Suppose that Φ is a faithful state of A and let Φ′ be its
unique extenstion to (VL(A),≤, 1) as ensured by Theorem 4.4. Assume, by way
of contradiction, that Φ is not strictly coherent. Thus, there are a finite subset
A′ = {a1, . . . , an} of A and real numbers �1, . . . , �n such that for every v ∈ H(A),∑n
i=1 �i(αi − v(ai)) ≤ 0 and for some w ∈ H(A),∑n

i=1 �i(αi − w(ai)) < 0.
Now, let us define

z =
n∑
i=1

�i(αi1− ai)

and let, for every v ∈ H(A), v+ be its unique extension in H(V) as ensured by
Lemma 3.7. Clearly z ∈ VL(A). In addition, the assumption that Φ is not strictly
coherent implies that for every v ∈ H(A), v+(z) ≤ 0 and there is at least aw ∈ H(A)
such that w+(z) < 0. So z < 0, hence −z > 0. However,

https://doi.org/10.1017/jsl.2017.34 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.34


64 TOMMASO FLAMINIO, HYKEL HOSNI, AND FRANCOMONTAGNA

Φ′(−z) =
n∑
i=1

�i(Φ(ai)− αi) = 0,

so Φ′ is not faithful: a contradiction. �
It is well known that any boolean algebra is a semisimple MV-algebra (this
holds as a consequence of Example 3.3(1) plus the fact that any boolean algebra is
semisimple [3]). Hence Theorem 5.2 yields immediately the following.

Corollary 5.3. A [0, 1]-valued map Φ on a boolean algebra A is strictly coherent
iff it is a Carnap-regular measure.

In other words, the restriction concerning the finiteness of the boolean algebra
of events assumed in the Shimony–Kemeny characterisation can be dispensed with.
This addresses the first problem raised in Remark 2.4.

§6. Strictly coherent books. The main result of the previous section naturally
prompts the question as to whether an extension result à la de Finetti (see Theorem
2.1 above) can be obtained for strict coherence. As a consequence of seminal results
by Mundici [30, 3.2], Kelley [20], and Gaifman [16], an MV-algebra A may not
have a faithful state. This implies that our desired result cannot be formulated, in
general, as an equivalence between strict coherence and extensibility to a faithful
state of A. The main result of this section shows that such a characterisation can be
obtained for the class of finite-dimensional MV-algebras. Corollary 6.5 shows that
this restriction does not prevent us from encompassing the most general case of
boolean algebras.
Our argument is geometric and draws heavily on the following presumably known
Lemma, which is proved in the Appendix for the sake of clarity. Readers who are
not familiar with elementary convex geometry may wish to consult [11, 27]. For
C a closed convex subset of Rn, we will denote by ext(C ) the set of its extremal
points, by relint(C ) its relative interior and by ∂r(C ) its relative boundary. In this
notation a polytope C is a closed and convex subset of Rn such that ext(C ) is
finite.

Lemma 6.1. Let C ⊆ R
n be a polytope. Then the following hold :

(1) If ext(C ) ⊆ {x1, . . . , xt}, then

relint(C ) =

{
t∑
i=1

	ixi | 	i > 0,
t∑
i=1

	i = 1

}
.

(2) Let x ∈ C . Then x /∈ relint(C ) iff there is a p ∈ R
n properly supporting C at

x, i.e., p · x − p · z ≤ 0 for all z ∈ C and p · x − p · y < 0 for some y ∈ C .
(3) Let x ∈ ∂r(C ). Then there is a r ∈ R

n such that r · z − r · x ≤ 0 for all z ∈ C
and r · x − r · y < 0 for all y ∈ relint(C ).

Proof. See Appendix. �
Let H([0, 1]k) denote, as usual, the set of homomorphisms from [0, 1]k to [0, 1].
In the terminology of [7], the MV-algebra [0, 1]k is weakly finite and hence [7,
Lemma 2.7] shows that H([0, 1]k) is finite and its elements are the k projections

i : [0, 1]k → [0, 1].
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Fix a1, . . . , an ∈ [0, 1]k and identify a book Φ : ai �→ αi with the n-tuple
(α1, . . . , αn) ∈ [0, 1]n. Let us denote

C(a1, . . . , an) = {(α1, . . . , αn) | Φ : ai �→ αi is coherent},
Q(a1, . . . , an) = {(
i(a1), . . . , 
i(an)) | 
i ∈ H([0, 1]k)}.

It is well-known that C(a1, . . . , an) is a polytope (see for instance [23, Proposition
2.4] and [35, Theorem 2]). In addition,Q(a1, . . . , an) is finite and we will denote its
elements by q1, . . . , qk .
Furthermore, [30, Theorem 2.5] and the fact that every 
i ∈ H([0, 1]k) is a state
of [0, 1]k , show the following inclusions:

ext(C(a1, . . . , an)) ⊆ Q(a1, . . . , an) ⊆ C(a1, . . . , an). (4)

Lemma 6.2. Let a1, . . . , an ∈ [0, 1]k and let Φ ∈ C(a1, . . . , an). Then the following
are equivalent:
(1) Φ is strictly coherent,
(2) Φ ∈ relint(C(a1, . . . , an)).
Proof. (1) ⇒ (2). Suppose Φ /∈ relint(C(a1, . . . , an)), and let us prove that Φ
is not strictly coherent. Since Φ is coherent and Φ /∈ relint(C(a1, . . . , an)), then
Φ ∈ ∂rC(a1, . . . , an), and by Lemma 6.1(3), there exists a � ∈ R

n such that, for all
� ∈ C(a1, . . . , an), � ·Φ ≤ � · � and for all � ∈ relint(C(a1, . . . , an)), � ·Φ < � · �.
Since C(a1, . . . , an) is closed and convex, by the Krein–Milman theorem for
finite dimensional spaces [17, Theorem 5.17] and (4), its elements are convex com-
binations of the elements q1, . . . , qk of Q(a1, . . . , an). Take 	1, . . . , 	k > 0 such that∑k
i=1 	i = 1 and let

b =
k∑
i=1

	iqi .

Then, Lemma 6.1(1) implies that b ∈ relint(C(a1, . . . , an)) and hence, by Lemma
6.1(3), there is � = (�1, . . . , �n) ∈ R

n such that � · Φ ≤ � · qi and � · Φ < � · b. It
follows that for at least a qi0 ∈ Q(a1, . . . , an) one has � ·Φ < � · qi0 . For otherwise,
if � ·Φ = � · qi for every qi , we would have � ·Φ = � · b. Thus,

n∑
j=1

�j(αj − 
i(aj)) ≤ 0 and
n∑
j=1

�j(αj − 
i0 (aj)) < 0.

Hence, Φ is not strictly coherent.
(2) ⇒ (1). Suppose Φ = (α1, . . . , αn) is not strictly coherent. Then, there exist
� = (�1, . . . , �n) ∈ R

n such that for every 
i ∈ H([0, 1]k),
n∑
j=1

�j(αj − 
i(aj)) = � ·Φ− � · qi ≤ 0, (5)

and for some 
h ∈ H([0, 1]k),
n∑
j=1

�j(αj − 
h(aj)) = � ·Φ− � · qh < 0. (6)

Again by theKrein–Milman theorem for the finite dimensional case and (4), every
element of C(a1, . . . , an) has the form x =

∑k
i=1 	iqi for some non-negative real
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numbers 	1, . . . , 	k such that
∑k
i=1 	i = 1. From (5–6), � ·Φ− � · x ≤ 0 for all x ∈

C(a1, . . . , an) and � ·Φ−� ·y < 0 for some y ∈ C(a1, . . . , an). Therefore, � properly
supports C(a1, . . . , an) at Φ and by Lemma 6.1(2), Φ /∈ relint(C(a1, . . . , an)). �
Remark 6.3. As an immediate consequence of [32, Theorem 10.5], the set of
states of [0, 1]k is affinely isomorphic to the simplex, Δk = {(	1, . . . , 	k) ∈ R

k |∑k
i=1 	i = 1} via the map 	 �→ s	 which associates, to every 	 = (	1, . . . , 	k) ∈ Δk ,

the state s	 defined as follows: for every a ∈ [0, 1]k ,

s	(a) =
k∑
i=1

	i
i(a) (7)

(cf. [14, Corollary 4.1.2]).
Now, the restriction of the above map 	 �→ s	 to the relative interior of Δk
determines an affine isomorphism between relint(Δk) and the set of faithful states of
[0, 1]k . As a matter of fact, 	 ∈ relint(Δk) iff 	i > 0 for every i = 1, . . . , k (Lemma
6.1(1)) whence, if a ∈ [0, 1]k is strictly positive, a straightforward computation
shows that (7) implies s	(a) > 0.

Theorem 6.4. Let a1, . . . , an ∈ [0, 1]k and letΦ : ai �→ αi , i = 1, . . . , n be a book.
Then Φ is strictly coherent iff Φ extends to a faithful state of [0, 1]k .
Proof. (Right-to-left). If s is a faithful state that extends Φ, then Φ is strictly
coherent by Theorem 5.2.
(Left-to-right). By Lemma 6.2, Φ is strictly coherent iff Φ ∈ relint(C(a1, . . . , an))
iff, by Lemma 6.1(1), there is 	 = (	1, . . . , 	k) ∈ (0, 1]k such that

∑k
i=1 	i = 1 and

Φ =
∑k
i=1 	iqi . Thus, the state s	 defined as in (7) is faithful (Remark 6.3) and

(s	(a1), . . . , s	(an)) =
n∑
i=1

	iqi = Φ.

It follows that Φ is extended by a faithful state, and the claim is settled. �
We conclude this section by presenting a remarkable corollary of Theorem 6.4,
which depends on the observation that boolean algebras form a locally finite variety
(see for instance [1]).
Recall that by the above-mentioned results of Kelley and Gaifman, Carnap-
regular measures may not exist for boolean algebras. As a consequence, the
following is the most general de Finetti-like result for strict coherence on boolean
events.

Corollary 6.5. Let A be any boolean algebra, let {a1, . . . , an} be a finite subset
ofA and let A[a1, . . . , an] be the subalgebra ofA generated by a1, . . . , an. Then a book
Φ on {a1, . . . , an} is strictly coherent iff it extends to a Carnap-regular measure of
A[a1, . . . , an].

§7. Conclusion. Our last corollary adds to a series of recent results which clearly
give MV-algebras a twofold prominent role in the foundations of probability. First
the MV-algebraic setting allows naturally for greater generality compared to its
boolean counterpart [23, 31, 35]. Second MV-algebras provide a rich framework
capable of shedding new light on standard probability, i.e., on boolean valued
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events. As pointed out in [33] the Kroupa–Panti theorem paved the way to this, and
recent results obtained by the authors in [15] point out the wide applicability of the
method. Given that generality and applicability usually pull in opposite directions,
this twofold role of MV-algebras is all the more remarkable.
Theorem 5.2 immediately implies that if a book on a semisimple MV-algebra
is extensible to a faithful state then it is strictly coherent. Whether the converse
holds as well remains an open question which is currently under investigation. The
motivation for pursuing this goal is the fact that, in the setting of our paper, it would
yield the most general characterisation of strict coherence.
As a consequence of results of [2, 36], NP constitutes the lower bound on the
computational complexity of deciding strict coherence. Ongoing research by the
authors is investigating the upper bound for this problem.
Finally, further work will also tell us whether the characterisation of strict coher-
ence for many-valued events provided in this paper has an interesting counterpart
when probabilities are extended to the hyperreals along the lines of [19, 28]. As
implied by [28, Theorem 4.2] this setting is immune to the limitations arising from
the potential lack, in general, of faithful states of MV-algebras.

§8. Appendix A: Proof of Lemma 6.1. For the sake of keeping the paper self-
contained we provide a proof of Lemma 6.1.

Proof. (1) If ext(C ) = {x1, . . . , xt} the claim is known to be true by [27,
Theorem 6]. Thus, assume ext(C ) ⊂ {x1, . . . , xt} and suppose, without
loss of generality, that s < t and ext(C ) = {x1, . . . , xs} so that, by [27,
Theorem 6] for every z ∈ relint(C ) there are 	1, . . . , 	s ∈ (0, 1] such that
z =

∑s
i=1 	ixi . We prove by induction on m that for all s ≤ m ≤ t, there

are 	m1 , . . . , 	
m
m ∈ (0, 1] with ∑m

i=1 	
m
i = 1 such that z =

∑m
i=1 	

m
i xi . The

claim clearly holds for m = s . Suppose, by the induction hypothesis that
the claim holds for some m with s ≤ m < t, and let us prove that it holds
for m + 1. Then z =

∑m
i=1 	

m
i xi with 	

m
i > 0 and

∑m
i=1 	

m
i = 1. Moreover,

since xm+1 ∈ C , it can be written as xm+1 =
∑s
i=1 �ixi where �i ≥ 0 and∑s

i=1 �i = 1. LetM > 0 be such that for i = 1, . . . , s ,
�i
M < 	i . Define

	m+1i =

⎧⎨
⎩
	i − �i

M if i ≤ s,
	i if s < i ≤ m,
1
M if i = m + 1.

Then
m+1∑
i=1

	m+1i xi =
m∑
i=1

	ixi −
s∑
i=1

�i
M
xi +

xm+1
M

= z − xm+1
M
+
xm+1
M

= z.

Moreover 	m+1i > 0 for all i ≤ m + 1 and
m+1∑
i=1

	m+1i =
m∑
i=1

	i −
s∑
i=1

�i
M
+
1
M
= 1.

(2) This is the usual Supporting Hyperplane Theorem, see [27, Theorem 14].
(3) Let x ∈ ∂r(C ). By part (2), there is a r ∈ R

n that properly supports C at
x, that is, r · z ≤ r · x for all z ∈ C . In particular, there is a t ∈ C such
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that r · t < r · x. Let y ∈ relint(C ) and assume by way of contradiction, that
r · y = r · x. Since y ∈ relint(C ), y + ε(y − t) ∈ C for a sufficiently small
ε > 0. Then,

r · (y + ε(y − t)) = r · y + ε(r · y − r · t)
= r · x + ε(r · x − r · t)
= r · x + εr · (x − t)
> r · x.

and a contradiction is reached since (y + ε(y − t)) ∈ C , but r · z ≤ r · x for
all z ∈ C . �
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