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THE DISTRIBUTION OF ZEROS OF SOLUTIONS OF
FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

YONG ZHOU

In this paper, we establish some estimates for the distance between adjacent zeros
of the solutions of the first order delay differential equation

x'(t) + P{t)x{t - r) = 0

and the first order advanced differential equation

x'(t) - P(t)x(t + r) = 0

where P S C([io,oo), [0,oo)) and r g R+. Our results improve recent results in
the literature.

1. INTRODUCTION

The oscillation theory of delay differential equations has been extensively developed
during the past several years. We refer to the monographs by Erbe, Kong and Zhang
[1], Gopalsamy [2], Gyori and Ladas [3] and the references cited therein. But results
dealing with the distribution of zeros of the oscillatory solutions of delay differential
equations are relatively scarce. Erbe et al. [3], Liang [4], and Zhou [5] established
estimates for the distance between adjacent zeros of the solutions of first order delay
differential equations. Recently, Zhou [6, 7, 8] and Wang [8] studied the distribution
of zeros of the oscillatory solutions of neutral differential equations.

In this paper, we consider first order delay differential equations of the form

(1) x'(t)+P(t)x(t-T) = Q,

and first order advanced differential equations of the form

(2) x'{t)-P(t)x{t + T) = 0,

where

(3) P6C([io,oo),[0,oo)), r > 0 .

By using a new technique, we obtain a better estimate for the distance between adjacent
zeros of the solutions of (1) which improve the results in [1, 4, 5]. We also extend this
result to (2).
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2. LEMMAS

First we define a sequence {fn(p)} by

(4) fi{p) = ef, fn+1(p) = e " » < ' \ „ = i, 2 , . . .

where p is a positive constant.

It is easily seen that for p > 0,

fn+i(p) > /„(/»), n = l , 2 , . . . .

Observe that when p > 1/e then

lim fn{p) = +oo,
n—foo

because otherwise the sequence {fn{p)} would have a finite limit / 0 , such that

/o = e"°.

Using the known ineqality ex > ex, we have

/o = epf° > epfo > /o

which is a contradiction.

When 1/e < p < 1, we also define a sequence {gm(p)} by

(5) ?<Lz£> 2 ( 1 ; }

H

It is easily seen that for 1/e < p < 1

9m+i(p) < 9m{p), m = 1,2,... .

We now consider the first order delay differential inequality

(6) x'(t) + P{t)x{t - r) < 0

and the first order advanced differential inequality

(7) x'(t) - P(t)x(t + r) > 0.

In order to prove our main results, we present several useful lemmas.
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LEMMA 1 . Suppose that (3) holds and let x(t) be a solution of inequality (6)
on [tx,oo), where tx > t0. Further assume that there exist ti (t\ > tx) and positive
constant p such that

(8)
/"' 1
/ P(s)ds>p>-, fort>ti
Jt-r e

and that there exist To > tx and T>T0 + 3T such that x(t) is positive onT0<t<T.
Then for some n > 1

(9) °^ZnP- > /- 0>)' forte [To+ (2 + n)r, T]

where fn(p) is defined by (4).

PROOF: Let x(t) be a positive solution of inequality (6) on [T 0 ] r ] . Then by (6)
we get

(10) x'(t) < -P(t)x(t -T)<0, for t 6 [To + T, T]

which implies that x(t) is nonincreasing on [To + r,T). It follows that

(11) ^ T - 1 ' f ° r *e[ r 0 + 2r,r].

When TQ + 3T < t <T, dividing (6) by x(t), and integrating from t — T to t, we get

By using (8) and (11), we have

l n

It follows that

(12) > g = / , ( , ) , fort€[T0 + 3r,T].

Repeating the above procedure, we get

(13) ^ r ^ > e " - ' W = fn(p), for t 6 [To + (2 + n)r,T].
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The proof of Lemma 1 is completed. D

LEMMA 2 . Suppose that (3) holds and let x(t) be a solution of inequality (6)
on [tx,oo), where tx > to. Further assume that there exist t\ (t\ >tx) and positive
constant p < 1 such that

(14)
ft i
/ P(s)ds>p> -, fort>h
Jt-T e

and that there exist To > t\ and a positive integer N > 2 such that x(t) is positive on
To < t < To + (2 + N)T . Then for some m < N - 1

(15) Z ( * ~ T ) <gm{p), fort£[T0+3T,T0 + (2 + N-m)r]

where gm{p) is defined by (5).

P R O O F : Let x(t) is a positive solution of inequality (6) on [To, To + (2 + N)r].
From (14), when t >TX we know that

ft ft+r
I P{s) ds> p and / P(s) ds > p.

Jt-T Jt

Observe that /(A) = ft P(s) ds is a continuous function, f(t) = 0 and f(t + r) > p

and there exists \ t such that ft
 t q{s) ds — p, where t < \ t <t + r.

When To + 3r < t < To + (2 + N - l ) r , integrating both sides of (6) from t to \ t ,
we obtain

(16) x{t) - x(\t) > / P(s)x(s - T) ds.
Jt

Since < < s < t + r , w e easily see tha t T 0 + 2 T < £ - T < S - T < £ . Integrating both

side of (6) from s - r to t, we get

x(s - T) - x(t) > I P{u)x(u - T) du.
Js-T

From (10), it is clear that x(u — r ) is nonincreasing on TQ + 2T < s — T < u < t, thus,
we have

x(s -T)> x{t) + x(t -T) P[U) du
Js — T

(17) = x{t) + x{t - T) I I" P(u) du - I" P(u) du\

> x(t) + x(t-r)lp- f P(u)du\ .
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From (16) and (17), we have

/•At/•At
(t) > x{Xt) + / P{s)x(s - T)

Jt
ds

(18) > x(Xt) + f ' P(s) lx{t) + x{t -r)(p- I"P(u)du\ | ds

/

At rS

ds / P(s)P(u)du.
JtAs is well known, the identical relation

[ ' ds I P(s)P(u) du= I l du I l P{s)P(u) ds
t Jt Jt Ju

holds. On the right hand side we exchange the variables of integration s and u. The
above equality becomes

f ' ds f P(s)P(u) du= j ' ds I' ' P(u)P(s) du
Jt Jt Jt Js

which implies

[ ' ds [ P(s)P(u) du = \ [ * <b [ ' P(u)P(s) du
Jt Jt 2 Jt Jt

Substituing this into (18), we have

(19) x(t) > x(Xt) + px(t) + ^-x(t - T).

Noting that
x{Xt) > 0, for t G [To + 3r, To + (2 + N - l ) r ] ,

by (19), we get

(20) X" ~J' < ^ ~ = 9i(p), for t G [To + 3r, To + (2 + N - l ) r l .
x(t) p

When To + 3r < t < To + (2 + N - 2)T, we easily see that To + 3 T < t < Xt < t + T <
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Thus, by (20),we have

(21) x{Xt) > —TTX(A* - r)> f o r < e [To + 3r, To + (2 + N - 2) r ] .

Since x(t) is nonincreasing on [To + r, To + (2 + AT)T] and To + 2T < Af - r < £ < At <
To + {2 + N - l ) r , we get

Substituting this into (19), we have

x{t) > -^r^x{t - T) + px(t) + ^-x(t -T), for t e [To + 3T, TO + (2 + N - 2)r].
9i\P) *

Therefore

^ 7 7 T ^ < 2 ( 1 ~ o} = 92(p), for t e [To + 3r,T0 + (2 + N - 2) r ] .
X W 2 f

Repeating the above procedure, we obtain

(22) g(*Z_[) < 2(1 - p) = for t e [r0 + 3r, To+ (2 +AT-m)r] .

The proof of Lemma 2 is completed. D

The above lemmas can be extended to the inequality (7). Since the proofs are
similar we omit them and we formulate only the corresponding results.

LEMMA 3 . Suppose that (3) holds and let x(t) be a solution of inequality (7)
on [tx,oo), where tx > t0. Further assume that there exist ti (t\ > tx) and positive
constant p such that

rt+r x

(23) / P(s) ds>p>-, fort> h
Jt e

and that there exist TQ > t\ and a positive integer N > 2 such that x(t) is positive on
To < t < To + (2 + N)T . Then for some n<N

(24) fiLtZl >/ n ( p ) > forte[To,T0 + (N-n)r]
X(l)
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where fn(p) is defined by (4).

LEMMA 4 . Suppose that (3) holds and let x(t) be a solution of inequality (7)
on [tx,oo), where tx > to- Further assume that there exist t\ (t\ > tx) and positive
constant p < 1 such that

rt+r j
(25) / P{s)ds> p> - , fort>ti

Jt e

and that there exist To > t\ and T > To + 4r such that x(t) is positive on To <t <T.
Then for t € [To + mr, T - 3r]

(26) ^ ± 1 ) < gm(p)

where m is a positive integer and gm(p) is defined by (5).

3. M A I N RESULTS

In this section we shall apply the lemmas in section 2 to establish estimates for the

distance between adjacent zeros of the solutions of equations (1) and (2).

In the following, d(x) denotes the distance between adjacent zeros of the solution

x(t) of (1) or (2).

THEOREM 1 . Suppose that (3) holds and let x(t) be a solution of (1) on [tx, oo),
where tx > to- Further assume that there exist t\ (t\ > tx) and positive constant p
such that

(27) / P(s)ds>p> - , fort>tx.
Jt-T e

Then x(t) on [t\, oo) has arbitrarily iarge zeros and d(x) < (2 + kp)r, where

1, when p > 1,
(28) kp = min {n + m | fn(p) > gm(p)}, when 1/e < p < 1,

l m>l

and fn(p), 9m{p) are defined by (4) and (5).

P R O O F : It suffices to prove that for any To > t\ the solution x(t) of (1) has zeros
on [To, To + kpr]. Otherwise, without loss of generality, we assume that x(t) is positive
on [To, To + kpT}. We consider the following two cases:
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C A S E 1. p> 1

In this case, kp — 1. From (1) and (3) we get

x'[t) = -P(t)x(t - r ) < 0, for t G [To + r, To + 3r]

which implies that x(t) is nonincreasing on [To + T,T0 + 3 r ] , and thus

x(t) > x(T0 + 2r) , for i € [To + r, To + 2r].

Integrating both sides of (1) from To + 2r to To + 3 T , we obtain

1-lQ + iT

x{T0 + 3T) = x{T0 + 2r) - / P(s)x{s - r) d
JTO+2T

{ /•T0+3r ~\

1 - / P(s) ds } .
JT0+2T JBy (27) and (29), we have

z(T0 + 3T) < x{TQ + 2 T ) ( 1 - p) < 0

which is a contradiction.

C A S E 2. 1/e < p < 1

Without loss of generality, we assume that x(t) is positive on [Tn, Tn + (2 + kr)r]
Let kp = n* + m* where

(30) U*(p)>9m-{p).

By Lemma 1, we have

(31) ^ ^ ^ >/n '(p) , for t € [To + (2+ n > , To + ( 2 + AP)T].

On the other hand, by Lemma 2 we get

(32) X ( t ~ T ) < ffm. (p), for t € [To + 3r, To + (2 + kp - m*)r].

Setting t = To + (2 + n*)r in (30) and (31), we obtain

which contradicts (30) and completes the proof. D
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REMARK 1. Theorem 1 improves [1, Theorem 2.2.1 and 2.2.2] [4, Theorem 1 and 2]and
[5, Theorem 1].

COROLLARY 1 . When P(t) in (1) is a positive constant p, pr = p > 1/e, and
x(t) is a solution of (1) on [tx, oo), then x(t) on [tx,oo) has arbitrarily large zeros and
d{x) < (2 + kp)r, where kp is defined by (28).

Using a similar method to the proof of Theorem 1, by Lemmas 3 and 4, we obtain:

THEOREM 2 . Assume that (3) holds and x(t) is a solution of (2) on [tx,oo),
where tx > t0. Assume that there exist *i (ti >tx) and positive constant p such that

rt+r j
(33) / P(s)ds>p> - , fort>t!.

Jt. e
Then x(t) on [£1,00) has arbitrarily iarge zeros and d(x) < (2 + kp)r, where kp is

defined by (28).
COROLLARY 2 . When P(t) in (2) is a positive constant p, pr = p > 1/e, and

x(t) is a solution of (2) on [^,00), then x(t) on [tx,oo) has arbitrarily large zeros and

d{x) < (2 + kp)T, where kp is defined by (28).

EXAMPLE 1. Consider the delay differential equation

x'(t) + x(t-0A) = 0

where p = 1. We have p = r = 0.4 and fi(p) = 1 . 491 . . . , / 2 (p ) = 1 .816. . . , / 3 (p ) =

2 . 0 6 7 . . . , . . . , / 1 0 (p ) = 4 . 3 8 7 . . . , / n ( p ) = 5 .784 . . . . / 1 2 (p ) = 1 0 . 1 1 1 . . . , . . . ; 9l(p) =

7 .500 . . . , g2{p) = 6 . 1 3 6 . . . , g3(p) = 5 . 6 3 1 . . . , g4{p) = 5 . 3 7 9 . . . . . . . .

Thus, we find fn(p) < 5 < gm(p), 1 < n < 10, m > 1; / u ( p ) > gm{p), m > 3;

/i2(p) > 9m(p), m>\.

Hence, by Corollary 1, we have kp = 12 + 1 = 13 and d(x) < 15 x 0.4. This
improves the result in [4] : d(x) < 28 x 0.4.

EXAMPLE 2. Consider the differential equation

x'{t)+x(t-0.55) = 0

where p - 1. We have p = r - 0.55 and / i(p) = 1.733.. . , /2(p) = 2.594. . . , /3(p) =
4.165. . . , /4(p) - 9.884. . . , . . . . 9l(p) = 2.975, 52(p) = 1.703.. . , g3(p) =

0.907.. . , . . . .

Thus, we find fx(p) > gm(p), m > 2; /2(p) > gm(p), m > 2; /3(p) >
9m{p), m> 1. Hence, by Corollary 3.1, we have kp = 1 + 2 = 3 and d{x) < 5 x 0.55.

REMARK 2. We can also apply our results to neutral differential equations

j t [x(t) + C(t)x(t - r)) + P(t)x(t - a) = 0

where C, P € C([t0,00) ,R+) and r,<7 € R+ • We can improve the results in [6, 7, 8].

https://doi.org/10.1017/S0004972700032913 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032913


314 Y. Zhou [10]

REFERENCES

[1] L.H. Erbe, Q.K. Kong and B.G. Zhang, Oscillation theory for functional differential equa-
tions, Monographs and Textbooks in Pure and Applied Mathematics 190 (Marcel Dekker,
Inc., New York, 1995).

[2] K. Gopalsamy, Stability and oscillation in delay differential equations of population dy-
namics (Kluwer Academic Publishers, Dordrecht, 1992).

[3] I. Gyori and G. Ladas, Oscillation theory of differential equations with applications
(Clarendon Press, Oxford, 1991).

[4] F.X. Liang, 'The distribution of zeros of solutions of first-order delay differential equa-
tions', J. Math. Anal. Appl. 186 (1994), 383-392.

[5] Y. Zhou, 'On the distribution of zeros of solutions of delay differential equations', Ann.
Hunan Math. 16 (1996), 108-110.

[6] Y. Zhou, 'The distribution of zeroes of solutions of first order neutral differential equa-
tions', Northeast Math. J. 13 (1997), 153-159.

[7] Y. Zhou, 'An estimate for distance between adjacent zeros of solutions of neutral equa-
tions', Chinese Quart. J. Math. 11 (1996), 47-52.

[8] Y. Zhou and Z.C. Wang, 'The distribution of zeroes of solutions of neutral equations',
Appl. Math. Mechanics 18 (1997), 1197-1204.

Department of Mathematics
Xiangtan University
Hunan 411105
People's Republic of China

https://doi.org/10.1017/S0004972700032913 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032913

