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Even though liquid foams are ubiquitous in everyday life and industrial processes, their
ageing and eventual destruction remain a puzzling problem. Soap films are known to drain
through marginal regeneration, which depends upon periodic patterns of film thickness
along the rim of the film. The origin of these patterns in horizontal films (i.e. neglecting
gravity) still resists theoretical modelling. In this work, we theoretically address the case
of a flat horizontal film with a thickness perturbation, either positive (a bump) or negative
(a groove), which is initially invariant under translation along one direction. This pattern
relaxes towards a flat film by capillarity. By performing a linear stability analysis on this
evolving pattern, we demonstrate that the invariance is spontaneously broken, causing the
elongated thickness perturbation pattern to destabilise into a necklace of circular spots.
The unstable and stable modes are derived analytically in well-defined limits, and the full
evolution of the thickness profile is characterised. The original destabilisation process we
identify may be relevant to explain the appearance of the marginal regeneration patterns
near a meniscus and thus shed new light on soap-film drainage.

Key words: foams, thin films, lubrication theory

1. Introduction

In dry liquid foams, coarsening or imposed deformations constantly renew the contact
network between bubbles: some bubbles come into contact while others separates from
each other. These topological transformations are known as T1 events (Weaire & Hutzler
2000). When two bubbles come into contact, a new film is produced, with an initial
thickness of the order of the meniscus size. This film thickness is generally much larger
than the range of the disjoining pressure. Its subsequent drainage is therefore initially
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governed solely by hydrodynamical laws (Denkov et al. 2008; Petit et al. 2015), until
most of its volume has flowed in the surrounding menisci and the interfaces start to
repel each other. After this hydrodynamical regime, the disjoining pressure regime begins:
the drainage is governed by short-range forces, leading the film towards its equilibrium
thickness (Stubenrauch & Klitzing 2003; Zhang & Sharma 2018; Chatzigiannakis &
Vermant 2020), until its rejuvenation by a bubble motion, or its collapse. This cycle of
thick-film production, film ageing and thin-film stabilisation has recently be shown to
govern the average thickness in sheared foam (Saint-Jalmes & Trégouët 2023). It therefore
influences foam coarsening, drainage and lifetime.

Since the seminal work of Mysels, Shinoda & Frankel (1959), and despite recent
improvements (Chan, Klaseboer & Manica 2011; Chatzigiannakis, Jaensson & Vermant
2021), some aspects of hydrodynamic drainage have yet to be modelled and understood.
A key result in the field was proposed by Barigou & Davidson (1994) and established
by Aradian, Raphaël & de Gennes (2001), who predicted the asymptotic behaviour of a
horizontal film of uniform thickness h∞ in contact with a meniscus. Capillary suction
leads to the formation of a groove along the meniscus, which becomes deeper with time
and spreads into the film until the disjoining pressure limits the film thinning. This is the
process at the origin of the formation of dimples in thin films. The model of Aradian
et al. provides an exact solution to the hydrodynamical problem of film capillary drainage,
under the important assumption that the flow satisfies the symmetry of the problem, i.e.
an invariance under translation along the direction of the meniscus axis (referred to as
invariant solutions hereafter). The stability of this solution is an open question and is
clearly called into question by experimental observations.

Experimentally, the contact between a film and meniscus has mainly been investigated in
two configurations: in vertical films, under the name of marginal regeneration (Stein 1991;
Nierstrasz & Frens 1998, 1999), and in bubbles floating at a fluid interface (Lhuissier
& Villermaux 2012; Frostad et al. 2016; Miguet et al. 2021). In both geometries,
instabilities are observed at the bottom meniscus and the unstable thin groove is thus
below the remaining part of the film. In such cases gravity has a destabilising effect, by
a Rayleigh–Taylor mechanism (Shabalina et al. 2019). However, a similar instability is
observed in horizontal films (Joye, Hirasaki & Miller 1994; Velev et al. 1995; Trégouët &
Cantat 2021) indicating the presence of other destabilising processes.

The theoretical determination of the stability of the invariant solution is difficult:
this invariant profile is indeed evolving in time at a rate controlled by the thin-film
equation (Oron, Davis & Bankoff 1997; Chomaz 2001), which involves nonlinearities
and high-order derivatives. As a consequence, previous analytical approaches are based
on strong geometrical approximations. More specifically, Bruinsma (1995) uses the same
equation set as we do, but assumes a quasi-flat invariant profile and shows that, under
this assumption, the groove destabilisation requires gravity. A more refined model is
numerically solved by Shi, Fuller & Shaqfeh (2022), and reproduced the destabilisation
observed by Frostad et al. (2016). Here again, gravity is present, so the simulation does not
allow conclusions to be drawn about the stability of the groove in a horizontal film.

In the hope of identifying the minimal ingredients responsible for the destabilisation of
such an invariant groove in a soap film, we propose in this paper to address the case of
an invariant groove or bump embedded in an otherwise flat film, so without meniscus. In
that situation, the problem becomes analytically solvable and a destabilisation process is
clearly identified: the invariant groove or bump is destabilised by capillary effects only. The
analytical solution is made possible because of the self-similar properties of the invariant
thickness profile established by Benzaquen, Salez & Raphaël (2013). As this reference
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Figure 1. Schematic representation of the film and of its non-dimensional dimensions. The reference bump is
modulated with a wavelength λ. A film element is shown in blue, with the expression of the force exerted by
the external film on its purple face ( f ). The black arrows on the left represent the parabolic velocity field, with
the interfacial velocity v in red.

solution is unsteady, its destabilisation is not exponential in time and we show that the
amplitude of a small perturbation breaking the invariance of the reference solution grows
as t7/4 at large time and large wavelength. The destabilisation mechanism we identify
should still be present in the case of a groove between a thin film and a meniscus, so
we believe that this study sheds new light on the old and important problem of thin-film
drainage.

Section 2 is dedicated to the physical assumptions underlying the model and to the
resulting thin-film equations, used in the limit of large Gibbs elasticity; § 3 discusses
the properties of the reference thickness profile, invariant along one direction. It is the
self-similar solution of the linearised thin-film equation whose analytical expression was
established by Benzaquen et al. (2013). This solution is then perturbed by a sinusoidal
variation of its height and width of wavelength λ, and a linear stability analysis is
performed in § 4, leading to a linear, time-dependent, set of equations giving the growth
rate of the perturbation. This equation set is eventually solved in § 5, where exact
polynomial expressions for a stable and an unstable mode are determined.

2. General assumptions and equations of motion in a soap film

2.1. Physical properties of the film
We consider a film of thickness 2h∞ with a bump localised along the y axis. The reference
bump is invariant along the y direction and symmetric with respect to the planes (0, x, y)
and (0, y, z). The aim of our work is to establish that an arbitrarily small modulation of
the bump height in the y direction (satisfying the two mirror symmetries; see figure 1) is
amplified with time, meaning that the invariance under translation of the reference bump
is spontaneously broken. Note that the film tends to minimise its interface area and thus
relaxes to a flat final state. The question is therefore to determine if its transient shape,
during the relaxation process, remains invariant under translation or not.

The surface tension is γ0 at large |x|, far from the bump, and slightly varies close to
the bump. In order to establish the fact that capillary effects alone are responsible for
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the spontaneous symmetry breaking, we neglect all other potential destabilising physical
processes: disjoining pressure, gravity and inertial effects are not taken into account in our
model. For the sake of simplicity, we also neglect the air friction: the damping forces are
due to the bulk viscosity η and to the interface viscosity ηs, with the additional assumption
that ηs � h∞η. We assume that the interface Gibbs elasticity is large enough so that the
interfaces can be considered as incompressible (Mysels et al. 1959), which is the relevant
limit for soap films with small (Seiwert, Dollet & Cantat 2014; Champougny et al. 2015)
or vanishing (Lenavetier et al. 2024) external forcing. This condition imposes that

∂vx

∂x
+ ∂vy

∂y
= div2D(v) = 0, (2.1)

with v(x, y, t) the interfacial velocity, assumed to be identical on both interfaces of the film.
In this limit the surface tension plays the role of the Lagrange multiplier that prevents the
surface from compressing/dilating and the hydrodynamical problem can thus be solved
without an additional equation of state for the interface.

The problem is made non-dimensional using h∞ as the length unit, τ = 3ηh∞/γ0 as
the time unit and γ0 as the tension unit. In the following, we use the bar notation for
dimensional variables. The equations of motion are determined from the mass and force
balances on a film element, defined as the liquid trapped between two pieces of interface
dx dy, chosen symmetrically in the top and bottom interfaces and followed along their
trajectories (see figure 1). The bump width w in the x direction is assumed to be much
larger than the film thickness. Under this assumption, the lubrication equations can be
used, which are Taylor expansions of the Stokes equations, with the thickness gradient as
a small parameter.

2.2. Poiseuille flow
The evolution of the film thickness 2h(x, y, t) is determined from the mass conservation
of a film element (Bruinsma 1995):

∂th + v · ∇h = −∇ · (h3∇�h), (2.2)

with ∇ and Δ the gradient and Laplacian two-dimensional operators in the (x, y) plane.
The left-hand side is the Lagrangian time derivative of the half-thickness of a film element
followed along its trajectory. The right-hand side quantifies the flux of liquid leaving the
film element due to the relative motion of the liquid with respect to the interfaces (see
figure 1). This motion is a Poiseuille flow driven by the Laplace pressure �h, with a
mean velocity h2∇�h and a flux h3∇�h. Note that, without this Poiseuille flow, the film
element becomes a closed system of constant volume 2h dx dy. In that case, the thickness
is conserved, as the condition div2D(v) = 0 imposes the conservation of the film element
area dx dy.

2.3. Capillary and viscous stress tensors
The second relationship between h and v is obtained from a force balance on a film
element, which also involves the non-dimensional surface tension γ = 1 + δγ . An
example of a film element of volume 2h dx dy is shown in blue in figure 1. The surface
tension and pressure forces acting on one of its lateral faces, e.g. its purple face, can
be expressed as a function of a two-dimensional stress tensor 𝞼cap. This tensor is
defined so that the force dF f acting on a face ( f ) of area 2h d	 f and of normal n f is
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Stability of elongated thickness fluctuation in a soap film

dF f = 𝞼cap · n f d	 f . In the case of the purple face shown in figure 1, the area is 2h dy and
the normal n f = ex.

This stress depends on the local tension value, on the Laplace pressure �h integrated
over the film thickness 2h and on the thickness gradient ∇h. Indeed the interface slope
leads to quadratic corrections on the capillary force. The expression of the stress tensor,
established in Lenavetier et al. (2024), is written below, both in the reference basis B0 =
(ex, ey), with ex and ey the unit vectors associated with the directions x and y shown in
figure 1, and in a local basis Be = (n, t) associated with the local film geometry. The unit
vector n is oriented in the direction of the thickness gradient, so that ∇h = |∇h|n and
t is a unit vector oriented along the lines of constant thickness, t = ez ∧ n. With these
conventions, we get

𝞼cap = 𝞼∗
cap + σ f I, (2.3)

with I the identity matrix. The isotropic term

σ f = 2(1 + δγ ) + 2h�h (2.4)

comes from the Laplace pressure and tension forces. The deviatoric part is

𝞼∗
cap =

(−|∇h|2 0
0 |∇h|2

)
Be

= −
(

(∂xh)2 − (∂yh)2 2∂xh∂yh
2∂xh∂yh (∂yh)2 − (∂xh)2

)
B0

. (2.5)

It arises from the correction of the tension forces, due to their projection in the (x, y) plane.
A film element is thus submitted to an anisotropic stress, which is higher in the direction
perpendicular to the thickness gradient.

The resulting force on the film element is

F cap = ∇ · 𝞼cap = 2h∇(�h) + 2∇δγ. (2.6)

For a film of arbitrary thickness, the first term 2h∇(�h) is a priori not the gradient of a
function and thus cannot be balanced by the second term 2∇δγ , whatever the value of the
surface tension. The force balance thus requires an additional term, which is here assumed
to be the interfacial viscous friction. The viscous stress in a single interface is given by

𝞼vis = ζ(∇v + (∇v)T), (2.7)

with ζ = ηs/(τγ0) = ηs/(3ηh∞) a dimensionless friction coefficient.
With the interfacial incompressibility condition, the resulting viscous force in a single

interface is F vis = ζ�v and the force balance becomes (Bruinsma 1995)

ζ�v + ∇δγ + h∇(�h) = 0. (2.8)

Equations (2.1), (2.2), (2.8) constitute a closed set of equations for the unknown
functions h, δγ and v and determine the film evolution from any initial state. This equation
set corresponds to the limit of high Marangoni number and low Bond number of the
equation set numerically solved in Shi et al. (2022), with ζ based on the interfacial
viscosity instead of the bulk viscosity.

Our initial condition is shown in figure 1: a flat film with a bump whose height and width
are modulated with a wavelength λ in the y direction. We restrict our stability analysis to
the case λ� w. This assumption allows us to define a near-field domain where x is of the
order of w and a far-field domain where x is of the order of λ. The thickness only varies at
the small scale, whereas the velocity is shown to vary at the large scale. We take advantage
of this scale separation to simplify further (2.8).
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2T( y) 2T( y + dy)

w y

x

y

2dy   vis · ex

2dy   vis · ex
y + dy

Figure 2. Scheme of the capillary and viscous forces in the vicinity of the bump. The light-blue domain
represents the bump and the grey rectangle the film element of interest. The stress on the red edge, spanning
from one side of the bump to the other, is dominated by the capillary stress. Its integral along the edge is,
by definition, the line tension. On the black edges, the capillary stress tensor is zero, and the viscous forces
dominate.

2.4. Line tension
As the thickness gradients are localised in the near-field domain, the line tension formalism
is used to express the capillary forces at the large length scale, as proposed in Lenavetier
et al. (2024). In our geometry, the line tension is defined, for a single interface, as

T = 1
2

∫ ∞

−∞
ey · (𝞼cap − 2I) · ey dx. (2.9)

It represents the force excess in the ey direction exerted on a line oriented in the x direction,
crossing the bump (see figure 2). In the limit where ∂xh � ∂yh, its expression, established
in Lenavetier et al. (2024), is

T =
∫ ∞

−∞

(
∂h
∂x

)2

dx. (2.10)

2.5. Far-field expression of the force balance
We anticipate that the thickness modulation of wavelength λ induces a motion in a domain
of width λ on both sides of the bump. In this far-field domain, the thickness gradients are
negligible and (2.8) becomes, for x ∼ λ� w,

ζ�v + ∇δγ = 0. (2.11)

The motion is then driven by the boundary conditions at x ∼ w � λ. The force balance
on the piece of film shown in figure 2, of characteristic size w dy, leads to the condition

2
∂T
∂y

= −4ey · 𝞼vis · ex(x = w). (2.12)

As we restrict our stability analysis to degrees of freedom that keep the mirror symmetry
x → −x, the x component of the velocity tends to 0 at small scale and we thus have
∂vx/∂y � ∂vy/∂x at x ∼ w. Using (2.7), the condition (2.12) becomes

∂T
∂y

= −2ζ
∂vy

∂x
(x = 0), (2.13)

where we used ∂vy/∂x(x = 0) = ∂vy/∂x(x = w) at first order in w/λ.
To solve the whole stability problem, the far-field velocity field is determined from

(2.11) solved for x > 0, with the boundary condition (2.13). The behaviour of this far-field
solution at small x is used to determine the deformation of the thickness pattern due to
convection in (2.2).

1003 A22-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1204


Stability of elongated thickness fluctuation in a soap film

3. Choice and properties of the reference bump

The investigation of the bump stability first requires characterisation of the evolution of a
bump invariant under translation, which is our reference state.

3.1. Self-similar solution
We first impose that the dynamics of this reference bump remains invariant under
translation along the y direction. In this case, the condition of incompressible interfaces
div2Dv = 0 becomes ∂vx/∂x = 0. Associated with the condition vx(0) = 0 given by the
symmetry, it imposes the condition of vanishing velocity at the interface. The set of
equations of motion is strongly simplified: (2.2) becomes

∂th = −∂x(h3∂xxxh). (3.1)

This is a very classical equation which also governs thin films deposited on a solid (Landau
& Levich 1942; Hammond 1983; Oron et al. 1997; Chomaz 2001; Lister et al. 2006).

Equation (2.8) is no longer useful, but consistently admits a solution with zero velocity
for any y-invariant thickness field. Indeed it leads to

δγ = −
∫ x

−∞
h∂xxxh dx′, (3.2)

which provides the tension value if needed.
Equation (3.1) is analytically solved in Benzaquen et al. (2013) in the linear regime. For

a small bump, it becomes

∂th = −∂xxxxh. (3.3)

The authors show that the profile converges at long time towards an asymptotic
self-similar profile:

has(x, t) = 1 + δh0(t)Φ
(

x
w0(t)

)
, (3.4)

where Φ is the function plotted in figure 3. It is an even function, decreasing exponentially
fast at large x and normalised so that

∫∞
−∞ Φ(U) dU = 1. The functions δh0 and w0 are

δh0(t) = At−1/4 and w0(t) = t1/4, (3.5a,b)

with A the area of the bump section, which is conserved by conservation of the liquid
volume. The height of the bump is Φ(0)δh0 and decreases with time, whereas the bump
width w0 increases: the bump spreads on the soap film until it disappears.

The explicit expression of Φ is given in Benzaquen et al. (2013) and will not be
useful in the following. However, we use a few relationships involving this function
and its derivative Φ ′, and more generally its derivative Φ(n) of order n, which are
established below. To shorten the notations, we introduce the auxiliary functions
Φ0(x, t) = Φ(x/w0(t)) and Φ ′

0(x, t) = Φ ′(x/w0(t)).
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Figure 3. Graph of the function Φ given by equation (19) of Benzaquen et al. (2013) (solid line). The
function −UΦ ′(U) (dashed line) is also used in § 4.

Using the expressions (3.4) and (3.5a,b), we get the time and space derivatives of has:

∂thas = −A
4

t−5/4(Φ0 + xt−1/4Φ ′
0) = −1

4
δh0

w4
0

(
Φ0 + x

w0
Φ ′

0

)
, (3.6)

∂xxxxhas = δh0

w4
0

Φ
(4)
0 . (3.7)

Using the expressions (3.6) and (3.7) in (3.3), we obtain the differential equation

4Φ(4)(U) = Φ(U) + UΦ(1)(U). (3.8)

These properties are used below in the following form:

∂t(δh0Φ0) = −δh0

w4
0

Φ
(4)
0 = − δh0

4w4
0

(
Φ0 + x

w0
Φ

(1)
0

)
, (3.9)

directly deduced from (3.3), (3.7) and

∂t

(
δh0

w0
Φ ′

0

)
= ∂t,x(δh0Φ0) = −∂x

(
δh0

w4
0

Φ
(4)
0

)
= −δh0

w5
0

Φ
(5)
0 . (3.10)

In this equation, the first and last equalities are obtained by spatial integration and
differentiation, respectively, and the second equality is obtained by switching the time
and space derivatives and using (3.9).

3.2. Line tension of the reference solution
This bump generates a line tension given by (2.10), the expression for which becomes

T0 =
∫ ∞

−∞

(
δh0

w0
Φ ′(U)

)2

w0 dU = I1
δh2

0
w0

, (3.11)

with

I1 =
∫ ∞

−∞
[Φ ′(U)]2 dU ≈ 0.058. (3.12)
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z

y

x

w

h∞

δh
Φ

(0
)

2π/k

Figure 4. Scheme of the thickness field given by (4.1). The crest line of the bump is at height
1 + δh( y, t)Φ(0), and the characteristic width of the bump is w( y, t).

4. Governing equations for a small non-invariant fluctuation

In §§ 4 and 5, we determine an explicit unstable mode of wavelength λ for this y-invariant
self-similar solution, and show that this unstable mode grows faster than the reference
bump decreases. It is built using two simple degrees of freedom, the width and the height
of the self-similar solution.

4.1. Initial perturbation
We assume that, at a given time t0, an arbitrarily small fluctuation of wavelength λ = 2π/k
is imposed to the y-invariant self-similar profile has of section area A. Note that the choice
of the initial time t0 imposes the initial width and height of the reference bump through
the relations (3.5a,b). The solution thus depends of the choice of this initial time. For the
evolution of the modulated bump, at t > t0, the function is sought in the form

h(x, y, t) = 1 + δh( y, t)Φ
(

x
w( y, t)

)
, (4.1)

with

δh = δh0(t)(1 + εh( y, t)) and w = w0(t)(1 + εw( y, t)), (4.2a,b)

as shown in figure 4. This form presumes that, at each y and t, the thickness profile keeps its
self-similar shape Φ, which is a strong assumption. The existence of a solution satisfying
the form of (4.1) is thus not ensured at this stage, but will be proved a posteriori by
exhibiting a solution.

The functions δh0(t) and w0(t) are given by (3.5a,b), and the small parameters
controlling the fluctuation amplitude are εh = ε̂h(t) eiky for the height and εw = ε̂w(t) eiky

for the width of the bump profile.
The functions ε̂h and ε̂w are assumed to depend on time only. We assume that, for t > t0,

δh0 � 1, w0 � 1/k, εh � 1 and εw � 1. The equation of motion (2.2) is linearised with
respect to δh0, εh and εw. Equations (2.11) and (2.13) are of quadratic order in δh0 and are
linearised in εh and εw only.

4.2. Qualitative analysis
Before tackling the full analytical problem, we first qualitatively identify the physical
processes involved.
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ywloc
wav

x

T –T – T –T +T +T +

(b)(a)

Figure 5. Schematic top view of the film, with the colour indicating the domain of various thicknesses: the
flat film (light blue), the bump (blue) and a positive height fluctuation (darker blue). (a) The local width wloc is
larger than the average width wav . (b) The local height hloc is larger than the average height hav . The amplitude
and orientation of the Poiseuille flow, relative to the interfaces, are given by the blue arrows, and the velocity
of the interfaces is represented by the red arrows.

The figure 5 provides a schematic basis to discuss the influence of the height and width
perturbations on the time evolution of the bump. The Poiseuille flow, localised at |x| ∼ w
and represented with blue arrows, is the motion of the fluid with respect to the interfaces.
It occurs perpendicularly to the bump and is oriented towards the film. It tends to spread
the bump by increasing its width and decreasing its height.

Let us first assume that the local width wloc is larger than the average width wav , the local
bump height δhloc remaining at the average height δhav , as shown in figure 5(a). Locally,
the interface curvature and thus the Laplace pressure below the bump are smaller than
their average values and the Poiseuille flow (P) decreases. As a consequence, the width
increases slower than in the rest of the bump (0 < dwloc/dt|P < dwav/dt|P) and the height
decreases slower (dδhav/dt|P < dδhloc/dt|P < 0). The Poiseuille flow is thus stabilising
the width: as wloc grows slower than the width of the remaining part of the bump, the
width is uniform again after some time.

However, as the flow no longer needs to remain invariant under translation along the y
direction, the interfacial velocity v, which was zero in § 3, now plays an important role:
the flow is the superposition of P discussed above and a plug flow (i.e. a flow that is
uniform through the entire thickness of the film) at a velocity equal to the interfacial
velocity v. The driving force for this second part of the flow results from the gradients
of line tension (T). The line tension scales as δh/w2 (see (3.11)) and a locally larger
width thus induces a smaller line tension. The resulting line-tension gradient along the
bump axis y drives a circulation in the film, schematised by the red arrows and circles in
figure 5(a): at the point of low line tension, the bump is stretched along its axis y and,
by interface incompressibility, it is compressed in the transverse direction x. This part of
the flow leaves the thickness modulation unchanged (dδhav/dt|T = dδhloc/dt|T = 0) but
decreases the width (dwloc/dt|T < dwav/dt|T = 0): this is again a stabilising ingredient
for the width.

The total influence of the width fluctuation is obtained by adding the effects of the
pressure-induced Poiseuille flow (P) and that of the tension-induced recirculation flow
(T). It can be written in the linear regime as follows:

d(δhloc − δhav)

dt
= ahw(wloc − wav) and

d(wloc − wav)

dt
= −aww(wloc − wav),

(4.3a,b)
with awh and aww positive numbers.
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Stability of elongated thickness fluctuation in a soap film

The same reasoning can be done with an initial fluctuation of the bump height, as
represented in figure 5(b). At a point of larger thickness (δhloc > δhav), the line tension and
Laplace pressure are larger, so the opposite scenario occurs: the Poiseuille contribution
leads to a faster height decrease dδhloc/dt|P < dδhav/dt|P < 0 and width increase 0 <

dwlav/dt|P < dwloc/dt|P, whereas the tension contribution does not modify the thickness
but imposes 0 = dwav/dt|T < dwloc/dt|T . The sum of the two contributions leads to

d(δhloc − δhav)

dt
= −ahh(δhloc − δhav) and

d(wloc − wav)

dt
= awh(δhloc − δhav),

(4.4a,b)
with ahh and ahw positive numbers.

Finally, considering a single degree of freedom (either the height only or the width only)
leads to the conclusion that the invariant solution is stable. However, considering together
these two degrees of freedom allows us to built a coupled system which can, in contrast,
lead to an instability. Indeed the eigenvalues of the system (4.3a,b), (4.4a,b) satisfy

ω2 + ω(ahh + aww) + ahhaww − ahwawh = 0. (4.5)

If ahhaww < ahwawh, one solution is positive and the perturbation grows.
In the following, we determine the coupling coefficients associated with the growth

of the unknown functions εh and εw and we show that, indeed, the invariant solution is
unstable. The whole destabilisation process can be summarised by the following positive
feedback: a positive height fluctuation leads to a higher tension, thus to a local axial
compression, thus to a bump width increase, thus to a decrease of the Poiseuille flow, thus
to a slowdown of the height decrease and finally to an increase of the initial fluctuation.

4.3. First linearisations
The different equations established in § 2 need to be expanded to first order in εh and εw.
For any function F(x/w) implicitly written F, we define the function F0 = F(x/w0). In the
following, we use that, at first order in εw, we have

F = F0 − x
w0

εwF′
0. (4.6)

4.3.1. Thickness profile derivatives
The thickness profile given by (4.1) is, at first order,

h = 1 + δh0(1 + εh)Φ

(
x

w0(1 + εw)

)
= 1 + δh0Φ0 + εhδh0Φ0 − xεw

δh0

w0
Φ ′

0, (4.7)

and its time derivative is

∂th = ∂t(δh0Φ0) + εh∂t(δh0Φ0) − xεw∂t

(
δh0

w0
Φ ′

0

)
+ ε̇hδh0Φ0 − xε̇w

δh0

w0
Φ ′

0. (4.8)
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4.3.2. Poiseuille flow
We first linearise the Poiseuille term of (2.2), leading to

−∇ · (h3∇�h) = −∇ · (∇�h). (4.9)

As 1/k � w, the thickness variations are dominated by the x derivative, so

�h = δh
w2 Φ ′′ and −∇ · ∇�h = − δh

w4 Φ(4). (4.10a,b)

This latter quantity must now be linearised with respect to εw and εh, and using (3.9),
(3.10) and (4.6), we get

−∇ · ∇�h = −δh0

w4
0

Φ(4)(1 + εh − 4εw),

−∇ · ∇�h = −δh0

w4
0

Φ
(4)
0 (1 + εh − 4εw) − x

δh0

w5
0

Φ
(5)
0 εw,

−∇ · ∇�h = ∂t(δh0Φ0)(1 + εh − 4εw) − x∂t

(
δh0

w0
Φ ′

0

)
εw.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)

4.3.3. Tension
From (2.10), the tension is

T =
∫ ∞

−∞

(
δh
w

Φ ′(U)

)2

w dU = δh2
0

w0
(1 + 2εh − εw)

∫ ∞

−∞
[Φ ′(U)]2 dU, (4.12)

and using (3.11), we get

T = (1 + 2εh − εw)T0 and ∂yT = ik(2εh − εw)T0. (4.13a,b)

4.4. Far-field recirculation
As discussed in § 2.5, the recirculation flow at the length scale λ is governed by (2.11) and
the bump properties only appear through the boundary condition (2.13). The velocity field
is thus determined in the half-plane x > 0 from these equations.

As div2Dv = 0, we introduce the stream function φ defined as

vx = ∂yφ and vy = −∂xφ, (4.14a,b)

with φ = 0 at large x and
φ = f (x, t) eiky. (4.15)

The two components of (2.11) become

ζ(∂xx + ∂yy)∂yφ + ∂xδγ = 0,

ζ(∂xx + ∂yy)∂xφ − ∂yδγ = 0.

}
(4.16)

The unknown tension variation δγ can be removed by taking the cross-derivatives and
combining both equations to obtain

(∂xx + ∂yy)(∂xx + ∂yy)φ = 0. (4.17)

Using (4.15), we get a fourth-order equation of the function f :

f (4) − 2k2f (2) + k4f = 0, (4.18)

which has k and −k as double roots.
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Figure 6. Velocity field (vx, vy) given by (4.24), (4.25) as a function of x/λ and y/λ, for 2ε̂h − ε̂w > 0. The
bump is schematically represented by the red rectangle.

In the domain x > 0, only the negative value leads to a non-divergent solution (the
other half-plane being obtained by symmetry). The condition vx(x = 0, y) = 0 imposes
f (x = 0, t) = 0, so f = −iφ1x e−kx, with φ1 a constant determined below. It leads to

vx = kφ1x e−kx eiky, (4.19)

vy = −iφ1(kx − 1) e−kx eiky, (4.20)

∂xvy = −iφ1[−k(kx − 1) + k] e−kx eiky, (4.21)

∂xvy(x = 0, y) = −2ikφ1 eiky. (4.22)

The boundary condition (2.13) imposes, using (4.13b),

φ1 = (2ε̂h − ε̂w)
T0

4ζ
. (4.23)

So, far from the bump, from (4.19), (4.20) and (4.23), we get

vx = (2ε̂h − ε̂w)
T0

4ζ
kx e−kx eiky, (4.24)

vy = −i(2ε̂h − ε̂w)
T0

4ζ
(kx − 1) e−kx eiky. (4.25)

This velocity field is shown in figure 6.
The convective term involved in (2.2) is −v · ∇h. The term −vy∂yh is of second order

in ε so the convective term becomes −vx∂xh, with ∂xh = (δh0/w0)Φ
′
0 at the zeroth order

in ε. Extrapolating the far-field velocity at the bump, in the small-x domain where
x e−kx ∼ x, we obtain the convective term involved in the thickness profile evolution:

−vx∂xh = −x(2εh − εw)
kT0

4ζ

δh0

w0
Φ ′

0. (4.26)
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4.5. Equation of stability
The Taylor expansion of the equation of motion (2.2) can now be performed using (4.8),
(4.11) and (4.26). At the zeroth order in εh and εw we consistently get ∂t(δh0Φ0) =
∂t(δh0Φ0).

At first order in ε, we get

εh∂t(δh0Φ0) − xεw∂t

(
δh0

w0
Φ ′

0

)
+ ε̇hδh0Φ0 − xε̇w

δh0

w0
Φ ′

0

= ∂t(δh0Φ0)(εh − 4εw) − x∂t

(
δh0

w0
Φ ′

0

)
εw − x

δh0

w0
Φ ′

0(2εh − εw)
kT0

4ζ
, (4.27)

which is reorganised using (3.9) into

Φ0δh0

(
ε̇h − εw

1
w4

0

)
+ xΦ ′

0
δh0

w0

(
−ε̇w − εw

1
w4

0
+ (2εh − εw)

kT0

4ζ

)
= 0. (4.28)

We observe only two kinds of x-dependencies in the different terms: either functions
proportional to Φ0 = Φ(x/w0(t)) or functions proportional to xΦ ′

0 = xΦ ′(x/w0(t)). As
these two functions are not proportional (see figure 3), the equality (4.28) requires that the
prefactor of each one is zero.

We thus get the conditions

ε̇h = εw
1

w4
0
,

ε̇w = −εw
1

w4
0

+ (2εh − εw)
kT0

4ζ
.

⎫⎪⎪⎬
⎪⎪⎭ (4.29)

Note that this set of two linear equations no longer involves any dependency in x and
admits solutions that are discussed below. This justifies a posteriori the functional choice
made for δh in (4.1) and (4.2a,b), and the assumption that εh and εw do not depend on x.

5. Stability analysis

The linear system (4.29) depends on time through w0 and T0 and the stability analysis
requires one to solve this time-dependent equation set. However, the instantaneous growth
rate discussed below provides a first intuition of the physical process.

5.1. Eigenvalues of the system
In the equation set (4.29), the Poiseuille flow and the flow induced by the line tension
are governed, respectively, by the characteristic rates ωP = 1/w4

0 and ωT = kT0/(4ζ ) =
(3I1/4)(kδh2

0/w0)(ηh∞/ηs). Note that the time scale is τ = 3ηh∞/γ0, so the associated
physical quantities satisfy ω̄P ∼ (δh0/w0)

4 γ0/(ηh∞) and ω̄T ∼ δh2
0/(λw0) γ0/ηs. As

anticipated in § 4.2, the driving force is always the minimisation of the interface energy,
proportional to γ0. Moreover, the damping force is either the bulk friction proportional to
η, due to a motion of the liquid phase with respect to the interfaces, or the interface friction
proportional to ηs, due to in-plane recirculations in the film.
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Figure 7. Growth rate ω+ of the instability as a function of ωT and ωP, as given by (5.2). Some level curves
are shown in black, for integer values of ω+.

With these notations, the system (4.29) becomes

d
dt

[
εh
εw

]
=
[

0 ωP
2ωT −ωT − ωP

] [
εh
εw

]
. (5.1)

Coming back to our qualitative analysis in § 4.2, we get the expected signs in the matrix.
Note, however, that one coupling coefficient is zero. This comes from the fact that we
work here with the relative height perturbation εh and not with the local bump height
δh0(1 + εh) as previously. The Poiseuille flow is proportional to the bump height (see
(4.11)), leading to the cancellation of the two terms proportional to εh in (4.27).

The eigenvalues of (5.1) are

ω± = 1
2(−(ωT + ωP) ±

√
(ωT + ωP)2 + 8ωTωP), (5.2)

and the associated eigenvectors (εh, εw)± = (1, ω±/ωP). The growth rate ω+ is strictly
positive if both ωT and ωP are strictly positive, so the corresponding initial fluctuation can
a priori grow.

The asymptotic behaviour of ω+ is 2ωP at large ωT/ωP and 2ωT at small ωT/ωP,
as shown in figure 7. The growth rate is thus dominated by the slowest process, either
the Poiseuille flow, driven by ωP, or the tension-induced recirculation, driven by ωT .
As expected from § 4.2, the instability disappears if one of the two processes becomes
infinitely slow, i.e. if the corresponding characteristic rate (ωP or ωT ) vanishes. If both
processes evolve on the same time scale, ωT = ωP = ωT,P and the growth rate becomes
ω+ = (

√
3 − 1)ωT,P ≈ 0.73ωT,P.

The negative eigenvalue ω− scales as −ωP and as −ωT , respectively, at small and large
ωT/ωP and is thus dominated by the fastest process.
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5.2. System solution

5.2.1. Explicit time-dependent equations
Using expression (3.5a,b) for the reference bump and expression (3.11) for the line tension,
(4.29) becomes

ε̇h = t−1εw, (5.3)

ε̇w = −t−1εw + t−3/4K(2εh − εw), (5.4)

with K = kI1A2/(4ζ ), I1 a number defined in (3.11) and A the invariant bump area, as
defined in (3.5a,b).

To simplify the time dependency, we define a new time variable Θ = 4Kt1/4 so t =
(Θ/(4K))4, and the associated unknown functions X(Θ) = ε̂h(t) and Y(Θ) = ε̂w(t) for
the height and the width.

After the change of variable, (5.3) and (5.4) become

d
dΘ

[
X
Y

]
=
[

0 ΩP
2ΩT −ΩT − ΩP

] [
X
Y

]
with ΩP = 4

Θ
and ΩT = 1. (5.5)

This system is formally identical to (5.1) and its two eigenvalues Ω+ and Ω− are thus
deduced from (5.2). At large Θ , Ω+ scales as 2ΩP = 8/Θ and Ω− tends to −ΩT = −1.

5.2.2. A polynomial solution
As the positive eigenvalue tends to 0 at large Θ , we guess the existence of a growing
solution (X+, Y+) with a power-law behaviour and we try to build a solution of the form

X+ = ΘN
∞∑

j=0

ajΘ
−j and Y+ = ΘN

∞∑
j=0

bjΘ
−j, (5.6a,b)

satisfying, from (5.5),

dX+

dΘ
= 4

Θ
Y+ and

dY+

dΘ
= 2X+ −

(
4
Θ

+ 1
)

Y+. (5.7a,b)

These conditions lead, for the terms of highest order ( j = 0), to

Na0 = 4b0 and 2a0 − b0 = 0, (5.8a,b)

which imposes N = 8.
For the generic terms j ≥ 0, we thus get the conditions

(8 − j)aj = 4bj and 2aj+1 − bj+1 = bj(12 − j), (5.9a,b)

and after substitution of the first relation in the second, we get

aj+1 = aj
(8 − j)(12 − j)

1 + j
. (5.10)

The coefficients aj are zero for j > 8 and a solution of (5.5) is the polynomial

X+ =
8∑

j=0

ajΘ
8−j; Y+ =

7∑
j=0

aj
8 − j

4
Θ8−j, (5.11a,b)
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0

0 0.1 0.2 0.3
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Y

Figure 8. Numerical trajectories in the (X, Y) plane, with an initial condition (X0, Y0) = 0.1(cos(θ), sin(θ))

at Θ = 1, obtained by solving (5.5). All trajectories diverge at long time, except that obtained with θ ≈
2.12[π] rad, corresponding to the stable solution (dashed lines). The arrows indicate the direction of the
trajectories and the time Θ = 2.5 (arbitrarily chosen but visible on most of the trajectories) is indicated by
a circle of the same colour as the curve. Note that the yellow circles are hidden by the blue ones, and green
ones are not shown as they would be outside the figure.

with a0 = 1 arbitrarily chosen and, from (5.10),

aj = 8!12!
(8 − j)!(12 − j)!j!

and bj = (8 − j)8!12!
4(8 − j)!(12 − j)!j!

. (5.12a,b)

This explicit solution of the problem diverges at large time and thus provides evidence
that the invariant bump is unstable.

Another solution (X−, Y−), decreasing faster than exponentially, can also be built
(see (A9) in Appendix A). All the solutions can be written as (X, Y) = a+(X+, Y+) +
a−(X−, Y−) with a+ and a− two prefactors determined from the initial conditions at
Θ0 = 4Kt1/4

0 , with t0 the arbitrary initial time defined in § 4.1.
For the purpose of illustration, and to check our computations, the numerical integration

of (5.5) has been performed with Matlab. The trajectories obtained for a set of initial
conditions satisfying X2 + Y2 = 0.01 at the arbitrary time Θ0 = 1 are plotted in figure 8.
It shows a divergence at large time, except for a particular initial condition, corresponding
to the stable solution. The functions X(Θ) and Y(Θ) are shown in figure 9 as a function
of time, for the same initial conditions as in figure 8. They have been divided by X(6)

to provide evidence that the large-Θ behaviour does not depend on the initial condition.
Indeed, at large time, all the solutions are proportional to the polynomial solution (X+, Y+)

as expected.

5.3. Physical growth rate of the instability
In the following we consider only the contribution of the unstable mode (denoted with
‘+’), for t > t0, and we come back to the physical variables, using the bar notation
when needed. The explicit expression of the relative amplitude fluctuation of the unstable
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Figure 9. Numerical values of X(Θ)/X(6) (a) and Y(Θ)/X(6) (b), obtained by solving (5.5). The colour code
is the same as in figure 8 and thus indicates the initial condition. The red circles represent the analytical
solutions (X+/X+(6), Y+/X+(6)), given by (5.11a,b).

mode is directly deduced from the solution (5.11a,b), (5.12a,b), using the definition of the
function (X, Y) given in § 5.2.1:

ε̂+
h = α

8∑
j=0

8!12!
(8 − j)!(12 − j)!j!

(
t̄

τ(4K)−4

)(8−j)/4

, (5.13)

ε̂+
w = α

7∑
j=0

8!12!
(8 − j)!(12 − j)!j!

8 − j
4

(
t̄

τ(4K)−4

)(8−j)/4

, (5.14)

with K = kI1A2/(4ζ ) a parameter proportional to the wavenumber k and α a prefactor
determined by the initial amplitude fluctuation, small enough to ensure that ε̂+

h,w � 1.
Note that, as we consider the unstable mode only, the initial values of ε̂+

h and ε̂+
w are not

independent.
At large time, the solution behaves as

ε̂+
h ∼ α

(
t̄

τ(4K)−4

)2

, ε̂+
w ∼ 2α

(
t̄

τ(4K)−4

)2

. (5.15a,b)

In order to get some orders of magnitude, we set the physical parameters to the values
presented in table 1 (left). The chosen tension and viscosity correspond to usual surfactant
solutions. In order to keep the viscous parameter ζ = ηs/(3ηh∞) close to unity, we choose
to consider an interface shear viscosity of 10−8 kg s−1, which should be reached for highly
soluble surfactants (Zell et al. 2014). Note that the friction of air may play a role for such
a low interface viscosity, which has not been considered in the model (Lenavetier et al.
2024). With these values, the time scale and the viscous parameter are calculated and
presented in table 1 (left). As initial bump shape, we choose the self-similar shape of
height h̄b(t̄0) = h∞Φ(0)δh0(t0) = 200 nm and of width w̄(t̄0) = h∞w0(t0) = 30 μm. As
the aspect ratio of the bump evolves with time following (3.5a,b), these choices impose
the value of the initial time t0 and of the geometrical parameter A, which are specified in
table 1 (centre). Finally, the initial height perturbation is 1 % of δh̄0.

The value of ε̂+
h is plotted in figure 10(a) for the wavelengths λ̄ = [1, 2, 5, 10]w̄0, for

the time range satisfying the constraint ε̂+
h < 0.3. Note that only the last case satisfies the
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h∞ = 1 μm h̄b(t̄0) = 0.2 h∞ = 200 nm ε̂+
h (t̄0) = 0.01

γ0 = 30 × 10−3 N m−1 w̄(t̄0) = 30 μm

η = 10−3 kg m−1 s−1 t0 = (w̄(t̄0)/h∞)4

ηs = 10−8 kg s−1 δh0(t0) = (h̄b(t̄0)/h∞)/Φ(0)

τ = 3ηh∞
γ0

= 10−7 s w0(t0) = 30
A = w0(t0)δh0(t0) = 6/Φ(0) = 20.8

ζ = ηs

τγ0
= 3.33

K = 1.88k̄h∞ = 11.81h∞/λ̄

t̄0 = τw0(t0)4 = 81 ms

Table 1. Parameters used for the numerical application. Left column: soap film and subsequent parameters.
Centre column: initial bump at the onset of instability (t = t0). Right column: initial perturbation. The top
parts of the table are the chosen physical parameters and the bottom parts are the corresponding numerical
parameters.
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Figure 10. (a) Fluctuation amplitude divided by the bump height ε̂h(t̄), predicted by (5.13), for the physical
parameters given in table 1. The wavelength is λ = [1, 2, 5, 10]w0, respectively, for the magenta, red, green
and blue curves. (b) Value of the different monomials in (5.13) for λ = 2w0, from the t̄3/8 term (yellow) to the
t̄2 term (dark brown). The monomials of lower orders are indistinguishable from zero. The dominant terms are
the monomial t̄3/2 and t̄7/4, respectively, before and after t̄ = 0.57 s. The asymptotic power law, dominated by
the t̄2 term, would only be reached after t̄ = 22 s.

condition λ� w0 assumed in the model, and that the other cases should be considered as
extrapolated results. However, as the short-wavelength cases are the most unstable modes,
the physical destabilisation process is expected to be close to these extrapolated modes.
The contribution of each term of the polynomial (5.13) is plotted in figure 10(b). Low-order
monomials dominate at short time, while high-order monomials only make a significant
contribution at long time. For the example shown in figure 10, at the end of the linear
regime at t̄ − t̄0 ∼ 0.5 s, the largest contribution comes from the t̄7/8 term so the power
law (5.15a,b) is never observed.

In order to characterise more precisely the bump shape, we define its maximal height
h̄max(t̄) = h∞Φ(0)δh0(t̄)(1 + ε̂+

h ), reached at the point (x̄ = 0, ȳ = 0), and the height at
the saddle points along the bump crest h̄sad(t̄) = h∞Φ(0)δh0(t̄)(1 − ε̂+

h ), reached at the
point (x̄ = 0, ȳ = λ̄/2). These characteristic heights are plotted in figure 11 as a function of
time, for the same parameter and wavelength values as in figure 10. In this representation,
the fate of the initially invariant bump clearly appears. The saddle-point height decreases
faster than the average bump height, and the height of the maximum also decreases with
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Figure 11. Geometrical properties of the bump as a function of time in physical units. The wavelength is λ =
[1, 2, 5, 10]w0, respectively, for the magenta, red, green and blue curves. (a) The top curves are the maximal
height h̄max and the bottom curves the saddle-point height h̄sad . The black dashed line is the average bump
height. (b) Similarly, the top and bottom curves are the maximal and minimal values of the bump width w̄ and
the black dashed line is the average bump width.

time, but slower than the average bump height. Note that the thickness is only modified by
the Poiseuille flow, which leads to a thickness decrease at every point along the bump crest:
the increase of h̄max observed at long time for the shortest wavelength is thus unphysical
and comes from the fact that the system has left the linear regime. The difference between
the maximum height and the saddle-point height δ̄h∗ = (h̄max − h̄sad)/2 = h∞Φ(0)δh0ε̂

+
h

quantifies the absolute amplitude of the perturbation. As δh0 ∼ t̄−1/4 and ε̂+
h grows with

an apparent power law in the range t̄[1.5−2], the perturbation amplitude grows slightly faster
than linearly.

The minimum and maximum widths of the perturbation are shown in figure 11.
Importantly ε̂+

h and ε̂+
w have the same sign, so the width increases at the places of

maximum height. A three-dimensional profile built from (5.13), (5.14) with parameters
of table 1 is shown in figure 12(a,b) and shows this transition from the initial invariant
bump towards well-separated round hills expected at long time (Trégouët & Cantat 2021).
The shape evolution is also plotted for a groove in figure 12(c,d) to underline that the
whole study remains valid for a negative value of δh0, so a groove instead of a bump, as
potentially relevant for the marginal regeneration problem.

Another important point is that the growth is faster at small wavelength. The model
assumes λ� w0, so the small-wavelength limit cannot be discussed in this frame. As a
consequence, this model does not predict the fastest wavelength. A reasonable guess is
that this fastest wavelength is of the order of the bump width.

6. Conclusion

This paper demonstrates that an elongated perturbation in the thickness of a soap
film (whether a bump or a groove) destabilises into circular spots before eventually
disappearing. More specifically, we show that the self-similar shape constructed by
Benzaquen et al. (2013) is linearly unstable, and we provide the analytical expression
of the unstable mode, whose growth over time follows a polynomial law. Our analytical
predictions are restricted to the long-wavelength regime and therefore do not predict
the fastest-growing wavelength. Determining this directly observable quantity would
require numerical exploration. Experimental validation of this theory is highly appealing,
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Figure 12. Examples of film-thickness profiles calculated with the parameters of table 1 (a,b) or with the
same parameters but for a groove of initial depth h̄b(t̄0) = −0.2h∞ (c,d). The initial perturbations are shown
in (a,c) and the profiles after 500 ms are shown in (b,d), for λ = 20w̄(t̄0). The colour bar represents |h̄ − h∞|
in micrometres.

although preparing a controlled initial shape with the geometric properties discussed here
may prove challenging. The most exciting prospect lies in extending the theory to scenarios
involving a film in contact with a meniscus. Since all the relevant physical processes
contributing to destabilisation remain unchanged in this slightly modified configuration,
we assume that the instability causing marginal regeneration shares a common nature
with the phenomenon discussed here. However, due to the non-self-similarity of the
corresponding reference solution constructed by Aradian et al. (2001), the analytical
treatment becomes potentially more complex. Thus, a numerical simulation, guided by
the theoretical framework established in this work, appears to be a promising prospect.
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Appendix A

In order to determine the decreasing solution (X−, Y−) of (5.5), we first use

Y = Θ

4
X′ and Y ′ = Θ

4
X′′ + X′

4
(A1a,b)
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to transform

Y ′ = 2X −
(

4
Θ

+ 1
)

Y (A2)

into

X′′ +
(

5
Θ

+ 1
)

X′ − 8X
Θ

= 0. (A3)

We then introduce the auxiliary function W defined so that X− = WX+, with X+ the
polynomial solution (5.11a,b). Equation (A3) becomes

X+W ′′ +
[(

5
Θ

+ 1
)

X+ + 2(X+)′
]

W ′ = 0. (A4)

Setting Z = W ′ we obtain

− Z′

Z
= 5

Θ
+ 1 + 2

(X+)′

X+ , (A5)

leading to

− ln
(

Z
Z∗

)
= ln(Θ5) + Θ + ln((X+)2),

Z∗

Z
= Θ5(X+)2 eΘ,

Z = Z∗ e−Θ

Θ5(X+)2 ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A6)

with Z∗ an arbitrary constant.
The functions W and X− are thus

W = Z∗
∫ Θ

Θ0

e−Θ

Θ5(X+)2 dΘ + W(Θ0),

X− = X+
(

Z∗
∫ Θ

Θ0

e−Θ

Θ5(X+)2 dΘ + W(Θ0)

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)

The constant W(Θ0) can be determined from the constraint that X− tends to 0 at large
Θ . This imposes

W(Θ0) = −Z∗
∫ ∞

Θ0

e−Θ

Θ5(X+)2 dΘ. (A8)

Finally we get, choosing Z∗ = −1,

X− = X+
∫ ∞

Θ

e−Θ

Θ5(X+)2 dΘ,

Y− = Θ

4
(X−)′ = Y+

∫ ∞

Θ

e−Θ

Θ5(X+)2 dΘ − 1
4

e−Θ

Θ4X+ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A9)
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